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A B S T R A C T   

Two novel seco-phenanthroquinolizidine alkaloids, (− )-(14aR,15R)-hydroxyjulandine (1) and (+)-(S)-3-O-des-
methyljulandine (2), together with eleven known compounds (3–13) were isolated from the leaves of Indonesian 
Boehmeria virgata. The structures of these compounds were assigned based on the interpretation of 1D/2D NMR 
and HRMS data. The absolute configurations of seco-phenanthroquinolizidines 1 and 2 were determined from 
their ECD spectra by comparison with the known phenanthroquinolizidine 3. The isolated seco-phena-
throquinolizidines 1–3 were evaluated for antiproliferative activity against five tumor cell lines. Compound 3 
exhibited potent cytotoxic activity, while 1 and 2 were not active against all tested cell lines.   

1. Introduction 

Phenanthroquinolizidine compounds, a subtype of quinolizidine al-
kaloids, are a small group of herbal metabolites found in several plant 
families, such as Urticaceae (Hart et al., 1968); (Cai et al., 2006); 
(Hoffmann et al., 1978); (Krmpotic et al., 1972); (Al-Shamma et al., 
1982); (Doan Thi Thuy et al., 2019); (Luo et al., 2003), Vitaceae (Saifah 
et al., 1983), Lauraceae (Hoffmann et al., 1978), and Acanthaceae 
(Abdel-Şattar et al., 2020). An overview of the literature (Jia et al., 
2020) and the latest report by Abdel-Şattar et al. (2020) revealed no 
more than ten naturally occurring phenanthroquinolizidine alkaloids 
with promising biological properties, including cytotoxic (Hoffmann 
et al., 1978); (Doan Thi Thuy et al., 2019); (Luo et al., 2003), antiviral 
(Krmpotic et al., 1972), antimicrobial (Al-Shamma et al., 1982), and 
antimalarial (Abdel-Şattar et al., 2020) have been reported. 

Boehmeria virgata (G. Forst.) Guill. (Urticaceae), locally known as 
“Parangromang”, is a medicinal plant traditionally used by the Makassar 
ethnic group in South Sulawesi, Indonesia to treat cancer diseases 
(Manggau et al., 2018); (Wardihan et al., 2013). Previous studies re-
ported that an ethanolic extract of B. virgata leaves exhibited cytotoxic 
activity against HeLa, WiDr, and T4T7D cell lines (Wardihan et al., 
2013) and alkaloid compounds were predicted as the pharmacologically 

active substances (Manggau et al., 2018). Although no details on iso-
lated active constituents of this plant were subsequently reported, 
alkaloid components especially phenanthroquinolizidine analogues 
have been isolated from related species including B. pannosa Nakai & 
Satake ex Oka (Cai et al., 2006), B. cylindrica (L.) Sw. (Al-Shamma et al., 
1982), B. siamensis Craib (Luo et al., 2003), B. caudata Sw. (Hoffmann 
et al., 1978), and B. rugolosa Wedd. (Semwal et al., 2009). Furthermore, 
triterpenoid compounds, such as boehmerone and boehmerol (Oyarzún 
et al., 1986), as well as a lignan, boehmenan (Takemoto et al., 1975), 
were obtained from B. excelsa (Bertero ex Steud.) Wedd. and B. tricuspis 
(Hance) Makino, respectively. The isolations of flavonoid glycosides 
(Semwal et al., 2009) and other compounds (Doan Thi Thui et al., 2018) 
have also been reported. In our continuing phytochemical studies of 
Indonesian plants collected in South Sulawesi (Yamashita et al., 2020); 
(Rahim et al., 2020); (Rahim et al., 2018), we herein report the isolation 
and structure elucidation of two novel seco-phenanthroquinolizidine 
alkaloids 1 and 2, along with eleven known compounds (3–13) from the 
Indonesian plant B. virgata, as well as the antiproliferative activity of the 
isolated seco-phenanthroquinolizidines 1–3. 
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2. Results and discussion 

Leaves of B. virgata were extracted with methanol, and the extract 
was further partitioned and fractionated using various chromatographic 
techniques to give two new seco-phenanthroquinolizidine alkaloids, 
(− )-(14aR,15R)-hydroxyjulandine (1) and (+)-(S)-3-O-desmethylju-
landine (2) (Fig. 1). Eleven known compounds (Figure S1, Supporting 
Information), including (− )-(R)-julandine (3) (Suzuki et al., 1995), 
(− )-cryptopleurine (4) (Kim et al., 2004), ixerol B (5) (Hu and Wang, 
2013), 4-oxo-β-ionol (6) (Hartman et al., 1988), (3R,6R,7E)-3-hy-
droxy-4,7-megastigmadien-9-one (7), (− )-3-hydroxy-β-ionone (8) 
(Machida and Kikuchi, 1996), (− )-dehydrovomifoliol (9) (Mori, 1974), 
(− )-3-oxo-α-ionone (10) (Ito et al., 1997), methyl trans-ferulate (11) 
(Song et al., 2008), p-coumaric acid methyl ester (12) (Seifert and 
Unger, 1994), and (S)-5-methoxypyrrolidin-2-one (13) (Song et al., 
2008), were also isolated and elucidated by comparison of their spec-
troscopic data with those in the literature. 

Compound 1 was isolated as a pale-yellow oil and showed a positive 
response with Dragendorff reagent. The molecular formula, C24H30NO4, 
was determined based on a protonated molecular ion peak at m/z 
396.2176 [M+H]+, (calcd 396.2175) by HRMS. The 1H NMR data of 1 
(Table 1) indicated the presence of three methoxy groups at δH 3.58 (3H, 
s, OCH3-2), 3.71 (3H, s, OCH3-6), and 3.81 (3H, s, OCH3-3). A 1,2,4- 
trisubstituted phenyl ring (ring-A) was postulated from proton signals 
at δH 6.53 (1H, d, J = 1.7 Hz, H-1), 6.70 (1H, dd, J = 1.7, 8.3 Hz, H-4a), 
and 6.72 (1H, d, J = 8.3 Hz, H-4), while a 1,4-disubstituted benzene ring 
(ring-B) was proposed from proton signals at δH 6.67 (2H, dd, J = 2.1, 
8.6 Hz, H-5 and H-7) and 6.92 (2H, dd, J = 2.1, 8.6 Hz, H-4a and H-8). A 
signal at δH 4.40 (1H, dd, J = 1.7, 7.6 Hz, H-15) was characterized as a 
hydroxylated methine. The 13C NMR data (Table 1) showed 24 carbon 
signals (two overlapped carbon signals at δC 129.3 and 113.3), which 
corresponded to three methoxy carbons (δC 55.1, 55.6, and 55.7), five 
methylene carbons (δC 59.7, 55.4, 30.6, 25.3, and 23.9), nine methine 
carbons including seven aromatic (δC 129.3, 129.3, 121.4, 113.3, 113.3, 
113.5, and 110.8) and two carbons bearing oxygen and nitrogen (δC 73.8 
and 64.4, respectively), as well as seven non-hydrogenated olefinic and 
aromatic carbons (δC 158.1, 148.4, 147.7, 134.5, 133.8, 132.5, and 
130.1) based on the HMQC and DEPT spectra. In the HMBC spectrum of 
1 (Fig. 2), the correlations of H-1 with C-3/C-4a/C-15a and H-4 with C- 
2/C-15b characterized a 1,2,4-trisubstituted phenyl ring-A linked to a 
quinolizidine moiety at C-15a, while the correlations of H-4b/H-8 with 
C-6/C-8b and H5/H7 indicated a C-8a 1,4-disubstituted benzene ring-B 
connected at C-8b. Based on these data and the presence of COSY cor-
relations encompassing H-11 to H-15, compound 1 is likely a seco-phe-
nanthroquinolizidine alkaloid. When the NMR spectroscopic data were 
compared with those of the known phenathroquinolizidine, (− )-14aR- 
julandine (3) (Suzuki et al., 1995), differences were observed at only the 
C-14, C-14a, and C-15 positions and an additional methine signal at δH 
4.40 (1H, dd, J = 1.7, 7.6 Hz, H-15) was present. These findings together 

with the fact that the molecular weight of 1 is 16 amu more than that of 
3 suggested that 1 is a hydroxylated julandine analogue. A NOESY 
correlation between H-14a and H-9α indicated an α orientation for 
H-14a (Fig. 3). Also, correlations of H-15 with H-14α, H-14a, and H-1 
indicated OH-15 and H-14a trans to each other and in axial positions. 
These NOESY correlations also supported the connection of ring-A to 
C-15a. Compound 1 exhibited a negative optical rotation, [α]23

D − 137.6 
(CHCl3, c 0.14), and a negative Cotton effect at 284 nm in the CD 
spectrum, which were the same as those of (− )-R-julandine (3, [α]23

D 
− 57.9 (CHCl3, c 0.16)) isolated in this study (Fig. 4). The data indicated 
that 1 and 3 have the same R-orientation at C-14a. Therefore, compound 
1 was determined to be (− )-(14aR,15R)-hydroxyjulandine. 

Compound 2 was obtained as a pale-yellow oil. In the HRMS of 2, a 
protonated molecular ion peak at m/z 366.2073 [M+H]+ (calcd 
366.2069) indicated a molecular formula of C22H28NO3, which is 30 
amu less than that of 1 indicating loss of OCH2. The 1H NMR data of 2 
were like those of 1, except for the absence of the hydroxylated methine 

Fig. 1. Structures of compounds 1 and 2 isolated from B. virgata leaves.  

Table 1 
1H and 13C NMR Spectroscopic Data of 1 and 2.   

1 2 

Position δH (J in Hz)a 
δC

a 
δH (J in Hz)a 

δC
b 

1 6.53 d (1.7) 113.5 6.41 d (1.7) 112.4 
2  148.4  145.6 
3  147.7  143.8 
4 6.72 d (8.3) 110.8 6.72 d (8.2) 113.7 
4a 6.70 dd (1.7, 8.3) 121.4 6.61 dd (1.7, 8.2) 121.3 
4b 6.92 dd (2.1, 8.6) 129.3 6.97 dd (1.8, 8.7) 130.2 
5 6.67 dd (2.1, 8.6) 113.3 6.69 dd (1.8, 8.7) 113.4 
6  158.1  157.9 
7 6.67 dd (2.1, 8.6) 113.3 6.69 dd (1.8, 8.7) 113.4 
8 6.92 dd (2.1, 8.6) 129.3 6.97 dd (1.8, 8.7) 130.2 
8a  132.5  133.3 
8b  133.8  131.4 
9 a. 3.29 d (16.5) 59.7 a. 3.02 d (16.5) 60.4  

b. 3.37 d (16.5)  b. 3.56 d (16.5)  
11 a. 2.17 m 55.4 a. 2.09 m 55.6  

b. 3.01 m  b. 3.06 m  
12 1.69 m 25.3 1.71 m 25.9 
13 a. 1.37 overlap 23.9 a. 1.32 m 24.4  

b. 1.86 m  b. 1.79 m  
14 a. 1.36 overlap 30.6 a. 1.31 m 33.3  

b. 2.31 m  b. 1.83 m  
14a 2.23 m 64.4 2.22 m 57.9 
15 4.40 dd (1.7, 7.6) 73.8 a. 2.31 m 39.6    

b. 2.51 m  
15a  134.5  131.3 
15b  130.1  133.9 
OCH3-2 3.58 s 55.6 3.53 s 55.6 
OCH3-3 3.81 s 55.7   
OCH3-6 3.71 s 55.1 3.72 55.2 

a1H NMR: 600 MHz in CDCl3, 13C NMR: 100 MHz in CDCl3. 
b13C NMR: 150 MHz in CDCl3. 
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signal (δH 4.40) found in 1 and the presence of two, rather than three, 
methoxy signals in 2. The differences in the 13C NMR data (Table 1) of 1 
and 2 at C-2, C-3, and C-4 indicated that a methoxy group on the 1,2,4- 
trisubstituted phenyl ring-A of 1 was changed to a hydroxy group in 2. 
The HMBC correlations of the methoxy signals at δH 3.52 (3H, s) with δC 
145.6 (C-2), δH 6.41 (d, J = 1.7 Hz, H-1) with δC 143.8 (C-3)/δC 121.3 (C- 
4a), δH 6.72 (d, J = 8.2 Hz, H-4) with δC 145.6 (C-2)/ δC 133.9 (C-15b), 
and δH 3.72 (3H, s) with δC 157.9 (C-6) suggested that 2 is a 3-O-des-
methyl analogue of julandine. Compound 2 showed a positive optical 
rotation with [α]23

D +44.1 (CHCl3, c 0.03) and positive Cotton effect at 
284 nm in CD spectrum (Fig. 4). Based on these results, compound 2 has 
an S-configuration at C-14a and was determined to be (+)-(S)-3-O- 
desmethyljulandine. 

The seco-phenanthroquinolizidines 1, 2, and 3 were evaluated for 
their antiproliferative activity against five human tumor cell lines 
(HTCLs), A549 (lung cancer), MCF-7 (breast cancer: estrogen receptor 

(ER) positive and HER2 negative), MDA-MB-231 (breast cancer: ER, 
progesterone receptor (PR), and HER2 negative), KB (epidermoid car-
cinoma: HeLa derivative) and KB-VIN (vincristine resistant KB subline: 
P-gp-over-expressing). The known seco-phenanthroquinolizidine, (R)- 
julandine (3), showed potent cytotoxicity against all cell lines including 
MDR (KB-VIN) (Table 2), while the newly identified seco-phenan-
throquinolizidines 1 and 2 displayed no activity. The greater potency of 
3 compared with 1 was consistent with prior reports that hydroxylation 
at C-15 of the phenanthroquinolizidine skeleton decreases cytotoxicity 
(Cai et al., 2006). Although compound 2 was inactive, the related 
pileamartine D with a bond between C-4a and C-4b showed selective 
cytotoxic activity in a recent study (Doan Thi Thuy et al., 2019) sug-
gesting that a rigid phenanthrene structure is beneficial for cytotoxicity. 
In addition, although cryptopleurine (4) was not tested in this study due 
to insufficient quantity, it exhibits nanomolar cytotoxic activity against 
many HTCLs as reported in other studies (Doan Thi Thuy et al., 2019); 
(Banwell et al., 2006). Similarly, reduced cytotoxicity was previously 
reported for some seco-phenanthroquinolizidine (Banwell et al., 2006) 
and phenanthroindolizidine derivatives (Lykkeberg et al., 2002); (Stærk 
et al., 2000) 

3. Experimental 

3.1. General experimental 

Optical rotations were measured on a JASCO P-2200 digital polar-
imeter in CHCl3. NMR spectra were recorded on JEOL JNM-ECS400 and 
JNM-ECA600 NMR spectrometers with tetramethylsilane as an internal 
standard. Chemical shifts (δ) are stated in part per million (ppm). HRMS 
data were obtained from JMS-700 (FAB) mass spectrometer. Analytical 
and preparative TLC were performed on precoated silica gel 60 F254 
plates (0.25 or 1 mm thickness; Merck) and NH2 silica gel F254 (0.5 mm; 
Wako). Column chromatography was performed with silica gel 60 N 

Fig. 2. 1H–1H COSY (bold lines) and selected key HMBC (arrows) correlations of compounds 1 and 2.  

Fig. 3. Key NOESY correlations (dotted arrows) of compounds 1 and 2.  

Fig. 4. Experimental ECD spectra of compounds 1–3 in MeOH.  
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(spherical, 63–210 μm, neutral, Kanto Chemical). Analytical and 
reversed-phase preparative TLC (PTLC) was conducted on Silica gel 60 
RP-18 F254S (0.25 mm, Merck). All cell lines were obtained from the 
Lineberger Comprehensive Cancer Center (UNC− CH) or from ATCC, 
except KB-VIN, which was obtained from Professor Y.-C. Cheng (Yale 
University). 

3.2. Plant material 

Leaves of B. virgata were collected at Lengkese Village, Parigi Sub-
sdistrict, Gowa, South Sulawesi, Indonesia in November 2019 and 
authenticated by Djoko Santoso, Department of Pharmaceutical Biology, 
Faculty of Pharmacy, Universitas Gadjah Mada, Indonesia. A voucher 
specimen was deposited in the Pharmacognosy-Phytochemistry Labo-
ratory, Hasanuddin University (2019_AR_FFUH_01). 

3.3. Extraction and isolation compounds 

Air-dried leaves of B. virgata (1.45 kg) were powdered and extracted 
three times (8.5 L for each time) with MeOH at room temperature for 
48 h. The volatile solvent was evaporated to afford a crude MeOH 
extract (90.8 g). The MeOH extract was further partitioned between n- 
hexane and MeOH–H2O (9:1) to give n-hexane and MeOH–H2O extracts, 
69.8 g and 20.4 g, respectively. The MeOH–H2O extract in EtOAc 
(250 mL) was subjected to ultrasound sonication for 15 min to separate 
EtOAc soluble and insoluble parts. The same process was repeated five 
times on the insoluble part to give an EtOAc soluble part (1.86 g) and 
insoluble material (18.45 g). The EtOAc soluble part (1.8 g) was sub-
jected to column chromatography (CC) on a silica gel eluting with n- 
hexane–acetone (10:1, 5;1, 1:1, 1:2, 1:5, v/v), acetone 100 %, and 
MeOH 100 % to give 12 fractions (FA–FL). Fraction J (291 mg) was re- 
chromatographed by silica gel CC eluted successively with CHCl3–MeOH 
(40:1, 30:1, 25:1, 20:1, 10:1, v/v) and MeOH 100 % to afford nine 
subfractions (J1–J9). The subfraction J4 (18.5 mg) was separated by 
NH2 silica gel PTLC developed with n-hexane–acetone (3:1, v/v) to give 
compounds 3 (3.1 mg), 4 (0.5 mg), and 1 (6.8 mg). Compounds 2 
(0.7 mg) and 6 (2.4 mg) were isolated from subfractions J6 and J7, 
respectively, by NH2 silica gel PTLC developed with CHCl3–MeOH (20:1, 
v/v). Repeated purifications of subfraction J5 by NH2 silica gel PTLC 
developed with CHCl3–MeOH (25:1, v/v) gave compound 5 (2.3 mg). 
Fraction I (500 mg) was further fractionated with reversed-phased me-
dium pressure liquid chromatography (MPLC) eluted with MeOH–H2O 
(4:1, v/v), MeOH 100 %, and acetone to give 9 subfractions, I1-I9. 
Repeated chromatography of subfraction I2 (188.6 mg) by silica gel 
CC eluting with n-hexane–EtOAc (5:1, 4:1, 3:1, 1:1, 1:5, v/v), EtOAc 100 
%, and MeOH 100 % yielded 15 further subfractions (I2A–I2O). Com-
pounds 7 and 8 were obtained from subfraction I2E as a mixture 
(3.0 mg). Compound 9 (1.6 mg) was isolated from subfraction I2G 
(4.7 mg) by PTLC on silica gel eluted with n-hexane–EtOAc (2:1, v/v). A 
mixture (3.1 mg) of 10 and 11 was also obtained from subfraction I2H 
(11.3 mg) by reversed-phase PTLC eluted with MeOH–H2O (3:1, v/v). 
Subfraction I2K was separated by the repeated reversed-phase PTLC 
eluted with MeOH–H2O (2:1, v/v) and normal phase PTLC eluted with n- 

hexane–EtOAc (2:1, v/v) to give compounds 12 (1.7 mg) and 13 
(0.9 mg). 

3.3.1. (− )-(14aR,15R)-hydroxyjulandine (1) 
Pale-yellow oil; [α]23

D − 137.6 (CHCl3, c 0.14); ECD (c 21 μg/mL, 
CH3OH) Δε284 − 3.91, Δε310 +1.24; 1H NMR (CDCl3, 600 MHz) and 13C 
NMR (CDCl3, 100 MHz), see Tables 1 and 2; HR-FAB-MS m/z 396.2176 
[M+H]+, (calcd for C24H30NO4, 396.2175). 

3.3.2. (+)-(14aS)-3-O-desmethyljulandine (2) 
Pale-yellow oil; [α]23

D +44.1 (CHCl3, c 0.03); ECD (c 40 μg/mL, 
CH3OH) Δε284 +7.88, Δε307 − 4.43; 1H NMR (CDCl3, 600 MHz) and 13C 
NMR (CDCl3, 150 MHz), see Tables 1 and 2; HR-FAB-MS m/z 366.2073 
[M+H]+, (calcd for C23H28NO3, 366.2069). 

3.4. Antiproliferative activity assay 

The antiproliferative activity assay using five human tumor cell lines, 
including A549 (lung carcinoma), MDA-MB-231 (estrogen receptor 
(ER)-negative, progesterone receptor (PR)-negative, HER2-negative 
breast cancer), MCF-7 (ER-positive, HER2-negative breast cancer), KB 
(epidermoid carcinoma, HeLa derivative), and KBVIN (vincristine 
resistant KB subline: P-gp-over-expressing) as previously presented 
(Saito et al., 2021). Briefly, 4000 − 12 000 freshly trypsinized cells were 
seeded in 96-well microtiter plates with each test compound prepared in 
DMSO, which were cultured for 72 h. The treated cells were fixed in 10 
% trichloroacetic acid followed by staining with 0.04 % sulforhodamin 
B. The highest concentration of vehicle (DMSO) was 0.1 % v/v, which 
displayed no effect on cell growth. Paclitaxel (Sigma-Aldrich, purity >95 
%) was used as a reference compound. The mean IC50 is the concen-
tration of compound that inhibited cell growth by 50 % compared with a 
vehicle control under the experimental conditions used and is the 
average from at least three independent experiments with duplicate 
samples (n = 6). 
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Table 2 
Antiproliferative Data of Compounds 1–3.  

compound 
cell lines (IC50 μM)a 

A549 MDA-MB-231 MCF-7 KB KB-VIN 

1 24.4 ± 0.8 28.8 ± 1.2 36.2 ± 1.8 31.8 ± 0.3 44.5 ± 3.0 
2 >40 >40 >40 >40 >40 
3 0.8 ± 0.1 0.9 ± 0.01 4.6 ± 0.3 3.6 ± 0.4 4.5 ± 0.4 
PXL (nM)b 6.4 ± 0.1 7.7 ± 0.5 7.6 ± 0.5 5.2 ± 0.1 1538.4 ± 116.5  

a Antiproliferative activity is stated as IC50 values for each cell line, the concentration of compound that caused 50 % reduction relative to untreated cells evaluated 
by the SRB assay, mean ± SD (n = 6). 

b The IC50 of paclitaxel (PXL) is stated in nM. 
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Appendix A. Supplementary data 

Supplementary material related to this article can be found, in the 
online version, at doi:https://doi.org/10.1016/j.phytol.2021.08.003. 
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