BAB V

PENUTUP

V.1 Kesimpulan

Berdasarkan hasil yang diperoleh dari penelitian ini, maka dapat disimpulkan sebagai berikut :

- Berdasarkan kecepatan gelombang geser hingga kedalaman 30 meter yang diperoleh, struktur perlapisan sub-permukaan tanah terdiri atas lima lapisan. Lapisan tersebut terdiri dari *soft clay, clay and silt, sandy clays, medium to dense sand* dan *medium to dense gravel* dengan nilai Vs₃₀ yaitu 225.3 m/s yang diklasifikasikan sebagai situs kelas D atau tanah sedang (*stiff soil*).
- 2. Kecepatan gelombang geser (Vs) meningkat berdasarkan bertambahnya jumlah kompaksi yang dilakukan, dimana kompaksi 30 *passes* memiliki nilai Vs rata-rata dan daya dukung ijin terbesar yaitu 156.2 m/s dan 190.3 kPa. Perubahan Vs rata-rata pada kompaksi 0 5, 5 10 serta 10 30 *passes* secara berurutan adalah 9.2 m/s, 6.6 m/s dan 5.6 m/s dengan perubahan Vs rata-rata dari 0 30 *passes* yaitu 21.4 m/s.

V.2 Saran

Adapun saran untuk penelitian selanjutnya yaitu :

- 1. Sebaiknya dilakukan interval pelewatan kompaksi yang konstan untuk mengetahui lebih jelas efek kompaksi pada setiap lintasan.
- 2. Sebaiknya dilakukan pengambilan data pendukung seperti data bor atau NSPT tanah sebagai korelasi dalam melakukan interpretasi sub-permukaan tanah.

DAFTAR PUSTAKA

- Ariestianty, S. K., Taha, M. R., Nayan, K. A. M., & Chik, Z. (2009). Penentuan modulus geser tanah menggunakan metode analisis multi channel gelombang permukaan. *Jurnal Ilmiah Semesta Teknika*, 12(2), 185–198.
- Bathia, A. B. (1986). *Mechanics of Deformable Media*. University of Sussex Press.
- Darwis, H. (2017). Dasar-dasar Teknik Perbaikan Tanah. Pustaka AQ.
- Das, B. M., Endah, N., & Mochtar, I. B. (1995). Mekanika Tanah Jilid 2 (Prinsip-Prinsip Rekayasa Geoteknis). Erlangga.
- Das, B. M., & Ramana, G. V. (2010). *Principles of Soil Dynamics* (Second Edi). Cengage Learning.
- Dobrin, M. B. (1988). Introduction to geophysical prospecting. 3rd edition. In *Introduction to geophysical prospecting. 3rd edition.*
- Federal Emergency Management Agency. (2003). NEHRP Recommended Provisions for Seismic Regulations for New Buildings and Other Structures (FEMA 450). In *Part 1* (Issue Fema 450). FEMA. https://doi.org/10.1016/j.compgeo.2013.09.005
- Foti, S. (2000). Multistation methods for geotechnical characterization using surface waves. *Politecnico Di Torino Ph D Dissertation*, 42, 315–323. http://www2.polito.it/ricerca/soilmech/sasw/SF_Phd_diss.pdf
- Foti, S., Lai, C., Rix, G. J., & Strobbia, C. (2014). Surface Wave Methods for Near-Surface Site Characterization. In Surface Wave Methods for Near-Surface Site Characterization. https://doi.org/10.1201/b17268
- Kuo, Y. L., Jaksa, M. B., Scott, B. T., Bradley, A. C., Power, C. N., Crisp, A. C., & Jiang, J. H. (2013). Assessing the effectiveness of rolling dynamic compaction. 18th International Conference on Soil Mechanics and Geotechnical Engineering: Challenges and Innovations in Geotechnics, ICSMGE 2013, 2(April 2015), 1309–1312.
- Maemunah. (2018). Analisis Daya Dukung Tanah Pada Pondasi Jembatan di Desa Lembar Kecamatan Lembar (NTB) Menggunakan Metode Seismik. Universitas Mataram.
- Nurcandra, N., D, D., & Koesuma, S. (2016). Penentuan Tingkat Kekerasan Batuan Menggunakan Metode Seismik Refraksi di Jatikuwung Karanganyar. *Indonesian Journal of Applied Physics*, *3*(01), 29.

https://doi.org/10.13057/ijap.v3i01.1212

- Olafsdottir, E. A. (2019). *Multichannel Analysis of Surface Waves for Soil Site Characterization*. University of Iceland.
- Olafsdottir, E. A., Bessason, B., & Erlingsson, S. (2018). Combination of dispersion curves from MASW measurements. *Soil Dynamics and Earthquake Engineering*, 113(May), 473–487. https://doi.org/10.1016/j.soildyn.2018.05.025
- Olafsdottir, E. A., Erlingsson, S., & Bessason, B. (2018). Tool for analysis of multichannel analysis of surface waves (MASW) field data and evaluation of shear wave velocity profiles of soils. *Canadian Geotechnical Journal*, 55(2), 217–233. https://doi.org/10.1139/cgj-2018-0078
- Park, C. B. (1995). Characterization of Geotechnical Sites by Multi-Channel Analysis of Surface Waves (MCASW). *KGS Fall*, 95, 141–148.
- Park, C. B., Miller, R. D., & Xia, J. (1998). Imaging dispersion curves of surface waves on multi-channel record. *1998 SEG Annual Meeting*. https://doi.org/10.1190/1.1820161
- Park, C. B., Miller, R. D., & Xia, J. (1999). Multichannel analysis of surface waves. *Geophysics*, 64(3), 800–808. https://doi.org/10.1190/1.1444590
- Park, C. B., Miller, R. D., Xia, J., & Ivanov, J. (2007). Multichannel analysis of surface waves (MASW) - active and passive methods. *The Leading Edge*.
- Rasimeng, S., Laksono, A., & Rustadi. (2018). Interpretasi Nilai Kecepatan Gelombang Geser (Vs30) Menggunakan Metode Seismik Multichannel Analysis Of Surface Waves (MASW) Untuk Memetakan Daerah Rawan Gempa Bumi Di Kota Bandar Lampung. *Jurnal Geofisika Eksplorasi*, 3(3).
- Richart, F. E., Hall, J. R., & Woods, R. D. (1970). Vibrations of soils and foundations. In *Prentice Hall*.
- Roser, J., & Gosar, A. (2010). Determination of Vs30 for seismic ground classification in the ljubljana area, Slovenia. *Acta Geotechnica Slovenica*, 7(1), 61–76.
- Rosyidi, S. A. P. (2013). *Metode Analisis Gelombang Permukaan Untuk Penyelidikan Sub-Permukaan*. LP3M - Universitas Muhammadiyah Yogyakarta. http://library1.nida.ac.th/termpaper6/sd/2554/19755.pdf
- Rosyidi, S. A. P. (2015). Pemetaan Daya Dukung Tanah Dan Diskontinuitas Struktur Tanah Dasar Menggunakan Metode Multi Channel Analysis of Surface Waves (MASW). Seminar Nasional Teknik Sipil V Tahun, 2004, 161–169.

Santoso, D. (2002). Pengantar Teknik Geofisika. Universitas Teknik Bandung.

- Scott, B. ., & Jaksa, M. . (2014). Evaluating rolling dynamic compaction of fill using CPT. 3rd International Symposium on Cone Penetration Testing (CPT'14), May 2014, 941–948.
- Shearer, P. M. (2009). *Introduction to Seismology* (Second Edi). Cambridge University Press. http://library1.nida.ac.th/termpaper6/sd/2554/19755.pdf
- Stokoe, K. H., Wright, S. G., Bay., J. A., & Roesset, J. M. (1994).
 Characterization of geotechnical sites by SASW method. In R. D. Woods (Ed.), *Geophysical characterization of sites* (pp. 15–25). Oxford Publisher.
- Susilawati. (2008). Penerapan Penjalaran Gelombang Seismik Gempa pada Penelaahan Struktur Bagian dalam Bumi. *Universitas Sumatera Utara*.
- Telford, W. M., Geldart, L. P., & Sheriff, R. E. (1990). *Applied Geophysics*. Cambridge University Press.
- Tezcan, S. S., & Ozdemir, Z. (2012). Allowable Bearing Pressure in Soils and Rocks through Seismic Wave Velocities. *Earth Science Research*, 1(1), 98– 108. https://doi.org/10.5539/esr.v1n1p98
- Utami, H. A. (2016). *Perbandingan Pre Stack Depth Migration dan Post Stack Depth Migration Data Seismik Marine di Wilayah Perairan Vietnam*. Universitas Lampung.
- Wangsadinata, W. (2006). *Perencanaan Bangunan Tahan Gempa Berdasarkan SNI 1726-2002*. Shortcourse HAKI.

LAMPIRAN

LAMPIRAN 1 Tabel Hasil Pengolahan Data

Tabel hasil pengolahan data untuk 0, 5, 10 dan 30 passes

Ne		0 Passes				5 Passes				10 Passes				30 Passes							
INO	Lane	Thickness	h (m)	Vs (m/s)	qa (kN/m^2)	Vs30	Thickness	h (m)	Vs (m/s)	qa (kN/m^2)	Vs30	Thickness	h (m)	Vs (m/s)	qa (kN/m^2)	Vs30	Thickness	h (m)	Vs (m/s)	qa (kN/m^2)	Vs30
1		0.5	0.5	107.1	172.91228	136.1	0.5	0.5	119.7	177.7878206											
2		0.5	1	117.4	176.927562		0.5	1	125	179.723957											
3		0.5	1.5	124.7	179.616025		0.5	1.5	131.1	181.8775693											
4		0.5	2	129.7	181.390051		0.5	2	138.1	184.2582271											
5	Δ	0.5	2.5	136	183.553722		0.5	2.5	145.7	186.7425808	144										
6	^	0.4	2.9	142	148.436444		0.5	3	149	187.7911129	144										
7		0.5	3.4	144.7	186.42133		0.5	3.5	154	189.347096											
8		0.6	4	154.9	227.547762		0.5	4	157.9	190.5346652											
9		0.5	4.5	161.8	191.700435		0.5	4.5	163.8	192.2901078											
10		0.5	5	165.4	192.75797		0.5	5	175.2	195.5518793											
11		0.5	0.5	101.4	170.56423	133.4						0.5	0.5	124.2	179.435706						
12		0.5	1	108.9	173.634267							0.5	1	132.3	182.292344						
13		0.5	1.5	120.7	178.157983							0.5	1.5	138.5	184.391506						
14		0.5	2	128.3	180.89857							0.5	2	146.9	187.125907						
15	В	0.5	2.5	138.6	184.424781							0.5	2.5	150.3	188.199391	150.6					
16		0.5	3	140.4	185.020668							0.5	3	155.1	189.684314						
17		0.5	3.5	149.5	187.948458							0.5	3.5	159	190.865639						
18		0.5	4	153.2	189.100/1							0.5	4	168.2	193.568626						
19		0.5	4.5	158.8	190.80559							0.5	4.5	1/2.6	194.8223						
20		0.5	5	166.5	193.077661							0.5	5	1//.8	196.273383		0.5	0.5	400.0	404 770404	
21		0.5	0.5	103	1/1.233122	134.9											0.5	0.5	130.8	181.//3431	
22		0.5	1	114.4	175.78628												0.5		139.7	184.789619	
25		0.5	1.5	110.4	1/0.54959												0.5	1.5	145.1	185.903847	
24		0.5	2	120.9	101.109094												0.5	2	151.4	100.042795	
25	С	0.5	2.5	120.6	103.113302												0.5	2.5	150.0	101 00505	156.2
20		0.5	25	155.0	104.424701												0.5	25	167.0	102 3380/0	
2/		0.5	3.5	162.6	101.026056												0.5	3.5	171 2	193.338049	
20		0.5	4	163.8	192 200108												0.5	4	171.5	194.434410	
30		0.5	5	165.7	192.250100												0.5	5	179.9	196 850381	
0.0 0.0 0 100.7 152.045510																0.0	5	175.5	10.000001		
Average					134.8																

LAMPIRAN 2 Grafik Perubahan Vs dan qa

Gambar Grafik perubahan Vs terhadap pelewatan kompaksi

Gambar Grafik perubahan daya dukung izin (qa) terhadap pelewatan kompaksi

LAMPIRAN 3 Profil Vs 1D

PreA 0 passes

PreB 0 passes

PreC 0 passes

PostA 5 passes

PostB 10 passes

PostC 30 passes

Overlay Vs5 dan Vs30

LAMPIRAN 4 Program Workflow

LAMPIRAN 5 Kurva Teoritis

Kurva teoritis terbentuk dari hasil kalkulasi *initial model* menggunakan algoritma *fast delta matrix*.

A. Notasi dan Parameter

1. Parameter Dispersi

- k, ω bilangan gelombang dan frekuensi
- $c = \omega/k$ kecepatan fasa
- D(c,k) fungsi dispersi

2. Parameter Model Lapisan

i = 1, 2,, n	Indeks lapisan
i = 0	Indeks atas lapisan half-space (jika ada)
$\ell = n + 1$	Indeks bawah lapisan half-space (jika ada)
α_i, β_i	Kecepatan gelombang P dan S lapisan ke-i
$ \rho_i, \mu_i = \rho_i \beta_i^2 $	Densitas dan rigiditas lapisan ke- <i>i</i>
d_i	Ketebalan lapisan ke- <i>i</i>
$\gamma_i = \beta_i^2/c^2$	

 $t_i = (2 - c^2/\beta_i^2)$

3. Layer Eigenfunctions

	$c < \alpha_i (c < \beta_i)$	$c > \alpha_i (c > \beta_i)$
r _i	$(1-c^2/\alpha_i^2)^{1/2}$	$i(c^2/\alpha_i^2-1)^{1/2}=i\bar{r_i}$
s _i	$(1-c^2/\beta_i^2)^{1/2}$	$i(c^2/\beta_i^2-1)^{1/2}=i\bar{s_i}$

$C_{\alpha_i}(k)$	$\cosh(kr_id_i)$	$\cos{(k\bar{r}_i d_i)}$
$S_{\alpha_i}(k)$	$\sinh(kr_id_i)$	$i \sin(k\bar{r}_i d_i)$
$C_{\beta_i}(k)$	$\cosh\left(ks_{i}d_{i} ight)$	$\cos{(k\bar{s}_id_i)}$
$S_{\beta_i}(k)$	sinh (ks _i d _i)	$i \sin(k\bar{s}_i d_i)$

B. Elemen Fast Delta Matrix

Di definisikan

 $\varepsilon_i = \rho_{i+1}/\rho_i; \ \eta_i = 2(y_i - \varepsilon_i \gamma_{i+1})$ dan $a_i = \varepsilon_i + \eta_i; a'_i = a_i - 1; b_i = 1 - \eta_i; b'_i = b_i - 1.$ Serta $a'_i + b_i = a_i + b'_i = a_i b_i - a'_i b'_i = \varepsilon_i$. $\bar{T}_{11} = ab$ $\bar{T}_{12} = aa'$ $\bar{T}_{13} = 0$ $\bar{T}_{14}=0$ $\bar{T}_{15} = bb'$ $\bar{T}_{16} = a'b'$ $\bar{T}_{21} = ab'C_{\alpha}C_{\beta} - a'b(S_{\alpha}/r)(S_{\beta}/s)$ $\bar{T}_{21} = ab'C_{\alpha}C_{\beta} - a'b(S_{\alpha}/r)(S_{\beta}/s)$ $\bar{T}_{22} = a^2 C_\alpha C_\beta - a'^2 (S_\alpha/r) (S_\beta/s)$ $\bar{T}_{23} = \varepsilon C_x \big(S_\beta / s \big)$ $\bar{T}_{24} = -\varepsilon (S_{\alpha}/r)C_{\beta}$ $\bar{T}_{25} = b^{\prime 2} C_{\alpha} C_{\beta} - b^2 (S_{\alpha}/r) (S_{\beta}/s)$

$$\vec{T}_{26} = \vec{T}_{21}$$

$$\vec{T}_{31} = ab'C_{\alpha}(sS_{\beta}) - a'b(S_{\alpha}/r)C_{\beta}$$

$$\vec{T}_{32} = a^{2}C_{\alpha}(sS_{\beta}) - a'^{2}(S_{\alpha}/r)C_{\beta}$$

$$\vec{T}_{33} = \varepsilon C_{\alpha}C_{\beta}$$

$$\vec{T}_{34} = -\varepsilon(S_{\alpha}/r)(sS_{\beta})$$

$$\vec{T}_{35} = b'^{2}C_{\alpha}(sS_{\beta}) - b^{2}(S_{\alpha}/r)C_{\beta}$$

$$\vec{T}_{36} = \vec{T}_{31}$$

$$\vec{T}_{41} = -ab'(rS_{\alpha})C_{\beta} + a'bC_{\alpha}(S_{\beta}/s)$$

$$\vec{T}_{42} = -a^{2}(rS_{\alpha})C_{\beta} + a'^{2}C_{\alpha}(S_{\beta}/s)$$

$$\vec{T}_{43} = -\varepsilon(rS_{\alpha})(S_{\beta}/s)$$

$$\vec{T}_{44} = \varepsilon C_{\alpha}C_{\beta}$$

$$\vec{T}_{45} = -b'^{2}(rS_{\alpha})C_{\beta} + b^{2}C_{\alpha}(S_{\beta}/s)$$

$$\vec{T}_{46} = \vec{T}_{41}$$

$$\vec{T}_{51} = -ab'(rS_{\alpha})(sS_{\beta}) + a'bC_{\alpha}C_{B}$$

$$\vec{T}_{52} = -a^{2}(rS_{\alpha})(sS_{\beta}) + a'^{2}C_{\alpha}C_{\beta}$$

$$\vec{T}_{53} = -\varepsilon(rS_{\alpha})C_{\beta}$$

$$\vec{T}_{54} = \varepsilon(rS_{\beta})C_{\alpha}$$

$$\vec{T}_{55} = -b'^{2}(rS_{\alpha})(sS_{\beta}) + b^{2}C_{\alpha}C_{\beta}$$

$$\vec{T}_{56} = \vec{T}_{51}$$

$$\vec{T}_{61} = a'b'$$

$$\begin{split} \bar{T}_{63} &= 0 \\ \bar{T}_{64} &= 0 \\ \bar{T}_{65} &= bb' \\ \bar{T}_{66} &= ab \\ \bar{U}' &= \mu_1^2 \left[2t_1 - t_1^2 \quad 0 \quad 0 \quad -4 \quad 2t_1 \right] \qquad \bar{V} = \begin{bmatrix} 0 \\ 1 \\ s_{\ell} \\ -r_{\ell} \\ -r_{\ell} \\ 0 \end{bmatrix} \end{split}$$

C. Algoritma Fast Delta Matriks

Algoritma ini mirip dengan algoritma *Fast Schwab-Knopoff*, kecuali bahwa determinan dihitung menggunakan *delta matrix formalism* daripada *Knopoff decomposition*. Algoritma yang dihasilkan secara lebih sederhana dan sekitar 12 persen lebih efisien

Algoritma ini dinyatakan dalam hal vektor baris tunggal X dengan enam komponen. Hanya lima yang benar-benar diperlukan, dan ini sesuai dengan versi algoritma yang 'dikurangi'.

Faktorisasi yang dioptimalkan untuk komputasi numerik dinyatakan dalam hal parameter p_a, q_a, y_b, z_b (a = 1,2,3,4; b = 1,2). Perhatikan bahwa tidak ada faktor yang dihasilkan yang mengandung $C_{\alpha}^2, S_{\alpha}^2, C_{\beta}^2$, atau S_{β}^2 yang akan menimbulkan masalah ketidakstabilan. Misalkan

$$X_i = [x_1, x_2, \dots, x_6] \qquad \qquad X_{i+1} = [\hat{x}_1, \hat{x}_2, \dots, \hat{x}_6]$$

Pada setiap iterasi, $x_6 = x_1$ (dan $\hat{x}_6 = \hat{x}_1$), jadi mengurangi istilah-istilah ini dapaat mengurangi algoritma. Variabel-variabel ini dituliskan di sini hanya demi kelengkapan.

1) Menginisialisasi:

$$X_1 = \mu_1^2 [2t_1 - t_1^2 \ 0 \ 0 - 4 \ 2t_1]; \quad t_1 = 2 - c^2/\beta_1^2$$

- 2) Rekursi Lapisan: (iterasi untuk i = 1, 2, ..., n)
 - $p_{1} = C_{\beta}x_{2} + sS_{\beta}x_{3} q_{1} = C_{\alpha}p_{1} rS_{\alpha}p_{2}$ $p_{2} = C_{\beta}x_{4} + sS_{\beta}x_{5} q_{2} = -\frac{1}{r}S_{x}p_{3} + C_{\alpha}p_{4}$ $p_{3} = \frac{1}{s}S_{\beta}x_{2} + C_{\beta}x_{3} q_{3} = C_{x}p_{3} rS_{a}p_{4}$ $p_{4} = \frac{1}{s}S_{\beta}x_{4} + C_{\beta}x_{5} q_{4} = -\frac{1}{r}S_{\alpha}p_{1} + C_{\alpha}p_{2}$ $y_{1} = a'x_{1} + aq_{1}$ $y_{2} = ax_{1} + a'q_{2}$ $z_{1} = bx_{1} + b'q_{1}$ $z_{2} = b'x_{1} + bq_{2}$ $\hat{x}_{1} = b'y_{1} + by_{2}$ $\hat{x}_{2} = ay_{1} + a'y_{2}$ $\hat{x}_{3} = \varepsilon q_{3}$ $\hat{x}_{4} = \varepsilon q_{4}$ $\hat{x}_{5} = b'z_{1} + bz_{2}$ $\hat{x}_{6} = az_{1} + a'z_{2} = \hat{x}_{1}$
- 3) Fungsi dispersi : $D(c,k) = \hat{x}_2 + s_\ell \hat{x}_3 r_\ell (\hat{x}_4 + s_\ell \hat{x}_5).$