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Abstract. Food safety is one of the crucial issues in aquaculture. The metal waste from various activities 
on land can enter the waters and accumulate in aquaculture products, such as seaweed. This study 
aimed to examine the metal content of seaweed Gracilaria changii. This study covered three marine 
areas around South Sulawesi, namely the Gulf of Bone, the Flores Sea and the Makassar Strait, while 
seaweed samples were taken from four seaweed cultivation locations (Regencies of Bone, Sinjai, Takalar 
and Pangkep). The heavy metal concentrations analyzed were copper (Cu), cadmium (Cd), and lead 
(Pb). The results showed that Cu concentrations in G. changii were greater than that in the sea water, 
but the difference was not significant (P>0.05). Cd concentrations in G. changii were significantly greater 
than that in the sea water (P<0.05), while the Pb concentrations in the seaweed were smaller than in the 
sea water, but not significantly different (P>0.05). G. changii was able to accumulate metals, but its 
accumulation ability was inconsistent. The Cu, Cd and Pb may accumulate or be released back into the 
surrounding sea water, which is an advantage from a food safety point of view. Despite the accumulation 
of Cu, Cd and Pb in G. changii thallus, these metals are likely to be released back during the G. changii 
processing as food or when products are stored as food or feed.  
Key Words: inconsistent bioaccumulation, heavy metals, copper, cadmium, lead, food safety. 

 

 

Introduction. Seaweed farming is a central issue in the Ocean Vision 2050, turning 

millions of people around the world to become marine farmers. Seaweed is a future 

mainstay in terms of food security, income generation, environmental health (Fatima et 

al 2018) and a source of renewable energy or biofuel (Wadi et al 2019). From the food 

security perspective, seaweed is a future protein source. On average, seaweed contains 

10% protein lipid, which is 3% of its dry weight. The content of protein and lipids can 

meet the needs of livestock. Seaweed have also been known for a long time as a 

polysaccharide source (Venkatesan et al 2015; Melanie et al 2020; Mulyani et al 2021) 

and pigments (Aryee et al 2018; Ma et al 2019). In environmental health science, 

seaweed is known as an environmental mitigation agent. In addition, seaweed contains 

2% nitrogen by dry weight or the equivalent of 18% of the nitrogen entering the sea and 

0.2% phosphorous by dry weight or the equivalent of 61% of the phosphorous that 

enters the sea (Bjerregaard et al 2016). 

Indonesia is the second largest country as a producer of cultured seaweed. In 

2015, Indonesia produced cultured seaweed of 11.3 million tons of wet weight or about 

38% of the worlds cultured seaweed products. Meanwhile, China produces 14 million tons 

of wet weight or about 47% of the world's cultured seaweed products (Fatima et al 

2018).  
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In 2015, out of 11.3 million tons of cultured seaweed production in Indonesia, 

10.1 million tons were Eucheuma sp., and 1.2 million tons were Gracilaria sp. Eucheuma 

sp. and Gracilaria sp. are red algae. Eucheuma sp. is widely cultivated in the coastal 

area, and Gracilaria sp. is widely cultivated in brackishwater ponds. Gracilaria sp. is the 

third most cultivated species in the world with a production of 3.9 million tons, after 

Eucheuma sp. (10.2 million tons), and Japanese kelp (8 million tons) by dry weight 

(Fatima et al 2018).  

Gracilaria changii is a species of Gracilaria that is cultivated in Indonesia. Its 

molecular analysis shows that what has been called G. verrucosa is actually G. changii 

(Arbit et al 2019). G. changii is a commercially important agarophyte producer in the 

Pacific waters.  

Gracilaria sp. is very nutritious, it contains vitamins and minerals such as vitamin 

A (β-carotene), B1, B2, B6, B12, C, calcium, phosphorus, potassium, sodium, iron, and 

iodine (MacArtain et al 2007; Škrovánková 2011; Nawi 2015) and it contains about 16-

45% agar (Nawi 2015). This important nutritional content makes the food safety aspect 

of G. changii very important, since it is widely used in the beverage, food, cosmetics and 

medicinal industries. Agar functions as a thickener in soups, jelly, ice cream mixture and 

anmitsu (Japanese) (Khalil et al 2018; Nawi 2015). 

Metals are harmful to health. Therefore, metal content in food is generally one of 

the several aspects used in determining food safety. Studies on metal content in G. 

changii are still focused on the island of Java (Afiah et al 2019; Tega et al 2019), 

although Sulawesi is also known as a G. changii producing area. This study is needed to 

ensure that Gracilaria sp. from Indonesia is safe for health, by analyzing the metal 

content of G. changii originating from different seaweed cultivation areas in South 

Sulawesi, Indonesia. 

 

Material and Method. The study was performed in three seaweed cultivation areas 

around South Sulawesi, namely the Gulf of Bone, the Flores Sea and the Makassar Strait. 

Samples were taken fresh from G. changii aquaculture ponds, in the coastal areas of 

Bone, Sinjai, Takalar and Pangkep Regencies (Figure 1). 

 

 
Figure 1. The sampling sites at the seaweed cultivation locations in Bone, Sinjai, Takalar, 

and Pangkep Regency. 

 

The fresh seaweed was taken to the Multitrophic Research Group Laboratory, Hasanuddin 

University, to be washed for removing dirt and epiphytes before drying. Drying was 

carried out in two steps; the first step was drying under the sun with a temperature of 

32-33oC for two days, followed by the second step, which was drying in an oven at a 

temperature of 50oC for 48 hours. The dried sample was then ground using a blender 

until fine. The metal content of Copper (Cu), Cadmium (Cd) and Lead (Pb) was then 
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quantified using the Atomic Absorption Spectrophotometry Technique (Gosh & Singh 

2005; Cui et al 2007). 

 

Results 

 

Copper (Cu). The Cu content in seawater was <0.001-0.162 ppm, with an average of 

0.073±0.053 ppm, while the Cu content in G. changii was <0.001-5.670 ppm, with an 

average of 1.339±2.095 ppm. This study indicates that Cu concentrations in the G. 

changii seaweed were greater than in the seawater but not significantly different 

(P>0.05). 

The concentration of Cu in G. changii is inconsistent. At the sampling stations in 

Takalar and Pangkep regencies, the concentration in the thallus is higher than in the 

surrounding waters, which indicates the possibility of accumulation. However, at the 

other stations (Bone and Sinjai Regencies), the concentration in the thallus is lower than 

in the seawater (Table 1). 

 

Table 1  

Copper (Cu) concentration in seawater and thallus of Gracilaria changii that were taken 

from the cultivation areas of Bone, Sinjai, Takalar and Pangkep Regencies 

 

Regency 
Cu Seawater 

(CuSw) (ppm) 

Cu G. changii 

(CuGc) (ppm) 

Δ (CuGc-CuSw) 

(ppm) 
Annotation 

Bone 0.071 0.030 -0.041 Non-accumulation 

Bone 0.100 0.050 -0.050 Non-accumulation 

Bone 0.056 0.040 -0.016 Non-accumulation 

Mean±STD 0.076±0.022 0.040±0.010 0.036±0.018 Non-accumulation 

Sinjai 0.162 0.020 -0.142 Non-accumulation 

Sinjai 0.106 <0.000 -0.106 Non-accumulation 

Sinjai 0.049 0.030 -0.019 Non-accumulation 

Mean±STD 0.106±0.056 0.017±0.015 0.089±0.063 Non-accumulation 

Takalar 0.109 0.580 0.471 Accumulation 

Takalar 0.130 0.460 0.330 Accumulation 

Takalar 0.097 0.690 0.594 Accumulation 

Mean±STD 0.112±0.017 0.577±0.115 0.465±0.132 Accumulation 

Pangkep <0.001 5.670 5.669 Accumulation 

Pangkep <0.001 4.740 4.739 Accumulation 

Pangkep <0.001 3.760 3.759 Accumulation 

Mean±STD <0.001±0.000 4.723±0.955 4.722±0.955 Accumulation 

 

The correlation curve of Cu concentration in seawater and in the thallus shows that the 

Cu concentration in G. changii did not increase consistently with the increase of Cu 

concentration in the seawater (Figure 2). Correlation curves of Cu concentrations 

between G. changii and seawater from all regencies did not show any progressive 

accumulation. The Cu concentrations in the thallus of G. changii at four sampling 

locations were still below the safe limit for health (30 ppm) (BSN 1995). 

  

Cadmium (Cd). The data show that, in general, there is an accumulation of Cd in the 

thallus of G. changii. The Cd content of seawater was between <0.001-0.301 ppm with 

an average of 0.142±0.111 ppm, while in the thallus it was 0.120-2.250 ppm with an 

average of 0.830±0.767 ppm. This study indicates that Cd concentrations in the G. 

changii seaweed were significantly greater than in the seawater (P<0.05). The 

accumulation of Cd in the thallus of G. changii was observed at all sampled stations, 

except for one replication at Sinjai Regency (Table 2). 
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Figure 2. The correlation curve of Cu concentration in seawater and the thallus of 

Gracilaria changii from four sampling sites (at Bone, Sinjai, Takalar, and Pangkep 

Regencies). Linear Equation (a), Power Equation (b) and Polynomial Equation (c). 

 
Table 2 

 Cadmium (Cd) concentration in Gracilaria changii that were taken from four different 

sites at Bone, Sinjai, Takalar and Pangkep Regencies 

  

Regency 
Cd Seawater  

(CdSw) (ppm) 
Cd G. changii  

(CdGc) (ppm) 
Δ (CdGc-CdSw) 

(ppm) 
Annotation 

Bone 0.046 0.120 0.075 Accumulation 
Bone 0.115 0.470 0.355 Accumulation 

Bone 0.151 0.420 0.269 Accumulation 
Mean±STD 0.104±0.054 0.337±0.189 0.233±0.144 Accumulation 

Sinjai 0.283 0.610 0.327 Accumulation 
Sinjai 0.261 0.150 -0.111 Non-accumulation 
Sinjai 0.301 0.510 0.210 Accumulation 

Mean±STD 0.282±0.020 0.423±0.242 0.142±0.227 Accumulation 

Takalar 0.177 0.260 0.084 Accumulation 
Takalar 0.156 0.440 0.284 Accumulation 
Takalar 0.216 0.810 0.594 Accumulation 

Mean±STD 0.183±0.030 0.503±0.280 0.321±0.257 Accumulation 

Pangkep <0.001 1.950 1.949 Accumulation 
Pangkep <0.001 2.250 2.249 Accumulation 
Pangkep <0.001 1.970 1.969 Accumulation 

Mean±STD <0.001±0.000 2.057±0.168 2.056±0.168 Accumulation 

 

Despite the accumulation, the correlation curve of the Cd concentration in seawater and 

in the thallus did not show any strong correlation (Figure 3). No progressive accumulation 

can be seen in the correlation curves of the Cd concentration between seawater and the 

thallus of G. changii. Based on the SNI 7387:2009 (BSN 2009), the cadmium 

concentrations in the thallus of G. changii at the four sampling locations have exceeded 

the limit allowed for the human health safety (0.2 ppm).  
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Figure 3. The correlation curve of cadmium concentration in seawater and the thallus of 

G. changii from four sampling sites (at Bone, Sinjai, Takalar, and Pangkep Regencies). 

Linear Equation (a), Power Equation (b), and Polynomial Equation (c). 

 
Lead (Pb). In general, there was no indication of Pb accumulation in G. changii. 

Although the Pb concentration in the thallus of G. changii was lower than in the seawater, 

the difference was not significant (P>0.05). The Pb content in seawater was <0.001-

2.604 ppm with an average of 0.816±0.904 ppm, while the Pb content in the thallus was 

<0.001-0.830 ppm with an average of 0.320±0.265 ppm. All stations showed no Pb 

accumulation in G. changii, except for one replication in Takalar Regency and two others 

at Bone Regency (Table 3). 

 

Table 3 

 Lead (Pb) concentration in Gracilaria changii at four sampling sites of Bone, Sinjai, 

Takalar, and Pangkep Regencies 

 

Regency 
Pb seawater 

(PbSw) (ppm) 

Pb G. changii 

(PbGc) (ppm) 

Δ (PbGc-PbSw) 

(ppm) 
Annotation 

Takalar 0.716 0.430 -0.286 Non-accumulation 

Takalar 1.022 0.200 -0.822 Non-accumulation 

Takalar 0.280 0.440 0.161 Accumulation 

Mean±STD 0.673±0.373 0.357±0.136 -0.316±0.492 Non-accumulation 

Bone 1.993 0.660 -1.333 Non-accumulation 

Bone 0.162 0.430 0.268 Accumulation 

Bone 0.318 0.440 0.122 Accumulation 

Mean±STD 0.824±1.015 0.510±0.130 -0.314±0.885 Non-accumulation 

Sinjai 1.993 0.830 -1.163 Non-accumulation 

Sinjai 2.604 0.210 -2.394 Non-accumulation 

Sinjai 0.705 0.200 -0.505 Non-accumulation 

Mean±STD 1.767±0.969 0.413±0.361 -1.354±.959 Non-accumulation 

Pangkep <0.001 <0.001 0.000 Non-accumulation 

Pangkep <0.001 <0.001 0.000 Non-accumulation 

Pangkep <0.001 <0.001 0.000 Non-accumulation 

Mean± <0.001±0.000 <0.001±0.000 0.000±0.000 Non-accumulation 
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The correlation curve showed that the Pb concentration in G. changii did not increase 

consistently with the Pb concentration in the water (Figure 4). The Pb concentrations of 

G. changii at the four sampling locations exceeded the safe limit for health (0.5 ppm) 

(SNI 7383:2009). 

 

 

 
Figure 4. The correlation curve of lead concentration in seawater and in the thallus of 

Gracilaria changii from four sampling sites (at Bone, Sinjai, Takalar and Pangkep 

Regencies). Linear Equation (a), Power Equation (b) and Polynomial Equation (c). 

 

Discussion. Biologically, heavy metals can disrupt the photosynthetic process of 

macroalgae in the form of a decrease in the ability to absorb solar energy (Küpper et al 

2002). Heavy metals can be very reactive and toxic to organisms. The toxic effects of 

heavy metals are related to the production of reactive oxygen species (ROS). At high or 

acute levels of metal pollutants, damage to algal cells occurs when the level of ROS 

exceeds the cells' ability to cope. Ecologically, macroalgae accumulate heavy metals at a 

lower or chronic level and can spread them to organisms of other trophic levels, such as 

mollusks, crustaceans, and fish (Pinto et al 2003). In the blue-spotted ray Dasyatis 

kuhlii, a Pb concentration of 0.2 ppm has caused hypertrophy in the gills (Tresnati & 

Djawad 2012). Such an accumulation can endanger life in the higher food chains because 

mollusks, crustaceans and fish are important sources of animal protein for humans. 

Previous studies have shown that algae have the potential to accumulate heavy metals 

with concentrations that fluctuate from time to time, from one location to another 

(Topcuoğlu et al 2003; Afiah et al 2019) and even between different utilization zones.  

The ability of Gracilaria to absorb and accumulate metals in its thallus had been 

reported for the first time by (Kang & Sui 2010). Since that time, research on this 

subject, using Gracilaria or other species of macroalgae, went increasing. A research on 

the Ulva lactuca living on the Turkish Coast of the Black Sea, conducted between 1998- 

2000, showed its potential for accumulation with a variable content. At the site station in 

these waters, U. lactuca contained Cu of 2.53±0.09 to 13.8±0.05 ppm, Cd 0.10±0.10 to 

<0.20 ppm, and Pb <0.01 to 1.30±0.10 ppm, respectively (Topcuoğlu et al 2003).  

Luo et al (2020) also confirmed that Gracilaria has a strong metal adsorption 

capacity, after finding that Cd, Pb, Cu, and Zn levels were higher in fish farming locations 
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than in Gracilaria cultivation sites. It is not an exaggeration to say that Gracilaria 

cultivation can be used as a bioremediation agent (Badraeni et al 2020) and to mitigate 

the environmental heavy metal pollution (Arbit et al 2018), adding ecological value to the 

coastal marine cultivation areas. Previous studies reported that heavy metals 

accumulation in macroalgae, as biosorbents (adsorbents and absorbents), is not 

permanent (Khusnul et al 2020). The thallus of macroalgae can form selective bonds with 

metal cations Cu, Cd and Pb (Fourest & Volesky 1997). The macroalgae cell walls are rich 

in polysaccharides and have functional carboxylic acid groups that can play an active role 

in metal binding (Yantyana et al 2018).  

Although previous studies have never reported any inconsistent cases of metal 

accumulation (e.g. Pb) in G. changii, such cases have previously been reported in 

Gracilaria sp. living in marine waters, with a Pb concentration of 0.09 ppm. The Pb 

concentration in the thallus of Gracilaria sp. before planting (age 0 days) was 3.38±0.23 

ppm. At harvest time (age 40 days), the Pb concentration fell to 0.84±0.00 ppm (Tega et 

al 2019). Supriyantini et al (2018) found that cultured Gracilaria could accumulate metals 

in its thallus for a certain time after planting and then release it back to the environment. 

The present study also indicates that there was an accumulation of Cu, Cd and Pb in the 

G. changii seaweed, but the accumulations were not consistent. 

The inconsistent or non-permanent accumulation of Cu, Cd and Pb may occur due 

to the simple cell structure of G. changii. The metal can be accumulated or released back 

quickly. Other macroalgae, such as Sargassum, have a similar behavior (Khusnul et al 

2020). This phenomenon preserves the food safety, because even though there is a 

buildup of metal in the thallus, the metal can be released back during the processing of 

G. changii as food or feed ingredient. In previous research, G. changii, both naturally 

grown in mangrove areas or cultivated in ponds, contain heavy metals within limits still 

safe for health (Nawi 2015).  

The non-permanent accumulation makes seaweed derivative products safer, even 

though the metal concentration is higher. For instance, the G. changii Pb concentration of 

0.320±0.265 ppm is higher than in Holothuria scabra, with a concentration of 0.05-0.07 

ppm (Aprianto et al 2020) or in Bohadschia vitiensis, with 0.01 ppm (Amir et al 2020). 

Compared with other macroalgae species, the Pb content of G. changii is below its 

concentration in Sargassum, which is 0.59 ppm (Khusnul et al 2020). This is probably 

due to the simplicity of G. changii cell structure (Arbit et al 2019), compared to 

Sargassum, which allows metals to enter and exit quickly. The simple cell structure and 

the transient nature of the accumulation are thought to make macroalgae more resistant 

than more complex organisms to environments with a high metal content. 

 
Conclusions. The present study shows that G. changii contains Cu and Cd metals in 

higher concentrations than in the seawater. However, the metals do not accumulate 

permanently. Metals can bond or be released back into the water. This means that in 

spite of the accumulation, the metals can be released during the processing of food or 

feed products made from G. changii. 
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