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ABSTRACT 

LA ODE RIDWAN RINALDY TONDA. Estimation of Coal Prices Using Hybrid 

ARIMA-GARCH Models (supervised by Rini Novrianti Sutardjo Tui dan Rizki 

Amalia). 

The estimation of coal prices is an important aspect in Indonesia's energy industry, 

considering that significant price fluctuations can have an impact on business decisions and 

economic policies. This research aims to estimate the best hybrid ARIMA-GARCH model 

and predict coal prices using the hybrid ARIMA-GARCH model for September 2024 to 

January 2025. The ARIMA method is used to catch trend and seasonal patterns in coal 

price data, while the GARCH method is used to properly model price volatility that often 

appears in financial data. This method combination is expected to produce more accurate 

predictions compared to a single method. The Hybrid ARIMA-GARCH model is a 

combination model of the ARIMA and GARCH models, which can be used to overcome 

the residual problems of ARIMA models that indicate heteroscedasticity in residual 

variance (volatility). The steps in this analysis and discussion are descriptive statistics, 

stationarity testing, forming the best ARIMA model, forming the best GARCH model, 

combining hybrid ARIMA-GARCH models, determining the best hybrid ARIMA-

GARCH model, measuring the accuracy of hybrid ARIMA-GARCH forecasting, and 

forecasting. This research was performed using Eviews in analyzing reference coal price 

data. The outcome of this research is that the best model for coal price is hybrid 

ARIMA(3,1,1)-GARCH(1,1) with MAPE value = 9.76%. According with the formula of 

the ARIMA(3,1,1)-GARCH(1,1) model is D(HBA) = 4.474 𝑙𝑜𝑔 𝑧𝑡−1 + 4.973 𝑙𝑜𝑔 𝑧𝑡−2 +

0.001 +  0.146𝛼𝑡−1 +  0,0,596𝛼𝑡−2 − 0.005 +  0,057𝜀𝑡−1
2 +  0,221𝜎𝑡−1

2 . Based on the 

best model, the forecasting outcomes for September 2024 to January 2025 are $115,7; 

$120,83; $118,99; $129,2; $117,31, respectively, which indicates that coal prices in June 

to October 2024 have decreased in price. 

Key Words: Coal, Hybrid, ARIMA, GARCH, E-views.  
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ABSTRAK 

LA ODE RIDWAN RINALDY TONDA. Estimasi Harga Batubara Mengunakan 

Metode Hybrid ARIMA-GARCH (dibimbing oleh Rini Novrianti Sutardjo Tui dan Rizki 

Amalia). 

Estimasi harga batubara merupakan aspek penting dalam industri energi, mengingat 

fluktuasi harga yang signifikan dapat berdampak pada keputusan bisnis dan kebijakan 

ekonomi. Penelitian ini bertujuan mengestimasi model terbaik hybrid ARIMA-GARCH dan 

Memprediksi harga batubara menggunakan model hybrid ARIMA-GARCH  untuk periode 

September tahun 2024 sampai Januari 2025. Metode ARIMA digunakan untuk menangkap 

pola tren dan musiman dalam data harga batubara, sementara metode GARCH digunakan 

untuk memodelkan volatilitas harga yang sering muncul dalam data keuangan. Kombinasi 

kedua metode ini diharapkan dapat menghasilkan prediksi yang lebih akurat dibandingkan 

dengan penggunaan metode tunggal. Model Hybrid ARIMA-GARCH merupakan model 

penggabungan dari model ARIMA dan GARCH, yang dapat digunakan untuk mengatasi 

masalah residual model ARIMA yang terindikasi adanya heteroskedastik dalam variansi 

residual (volatilitas). Tahapan dalam analisis dan pembahasan yaitu statistika deskriptif, 

pengujian stasioneritas, pembentukan model terbaik ARIMA, pembentukan model terbaik 

GARCH, penggabungan model hybrid ARIMA-GARCH, menentukan model terbaik hybrid 

ARIMA-GARCH, melakukan pengukuran akurasi peramalan hybrid ARIMA-GARCH, dan 

peramalan. Penelitian ini dilakukan dengan menggunakan software Eviews dalam 

menganalisis data harga batubara acuan. Hasil dari penelitian ini diperoleh model terbaik 

untuk harga batubara acuan adalah hybrid ARIMA(3,1,1)-GARCH(1,1) dengan nilai 

MAPE = 9,76%. Sehingga persamaan model ARIMA(3,1,1)-GARCH(1,1) adalah 

D(𝐻𝐵𝐴) = 4.474 𝑙𝑜𝑔 𝑧𝑡−1 + 4.973 𝑙𝑜𝑔 𝑧𝑡−2 + 0.001 +  0.146𝛼𝑡−1 +  0,0,596𝛼𝑡−2 −
0.005 +  0,057𝜀𝑡−1

2 +  0,221𝜎𝑡−1
2 . Berdasarkan model terbaik tersebut diperoleh hasil 

peramalan untuk periode September 2024 sampai Januari 2025 berturut–turut adalah 

$115,7; $120,83; $118,99; $129,2; $117,31, yang menunjukkan bahwa harga batubara 

pada bulan September 2024 sampai dengan Januari 2025 mengalami fluktuasi harga. 

Kata kunci: Hybrid, ARIMA, GARCH, E-views 
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CHAPTER I 

INTRODUCTION 

1.1 Research Background 

Indonesia's economy has shown significant growth during recent decades. At the 

moment, Indonesia is the largest economy in Southeast Asia and the 7th largest 

economy worldwide in terms of Gross Domestic Product (GDP) on purchasing 

power parity (PPP) basis. The limited resources of petroleum energy require every 

country especially Indonesia, to save petroleum energy usage. Coal as one of the 

alternative energy sources that began to be viewed by the industrial world, which 

made this energy quite strategic. The usage of coal in fulfillment of national energy 

demands, including for steam power plants (PLTU) and as an alternative energy 

source which can be used as a substitute for fuel oil (BBM). In 2016, the total 

domestic coal consumption was 90.78 million tons, 69 million tons or 76% of which 

were used by PLTU (Haryadi and Suciyanti, 2018). 

Indonesia's large coal reserves paired with high coal prices in international 

markets have forced coal companies to increase their production. As seen from the 

increase in exports by 31.3 million tons from 272.7 million tons to 304 million tons 

in 2018. Meanwhile, domestic coal demand also increased by 4.4 million tons from 

57.2 million tons to 61.6 million tons in 2018 (BPS, 2019). The amount of exports 

and domestic demand creates problems such as the unbalanced distribution of coal 

between the fulfillment of national energy needs and global demand. In 2021, the 

Ministry of Energy and Mineral Resources implemented a coal export ban policy 

due to the gap between exports and fulfillment of DMO (Domestic Market 

Obligation) for PLTU needs (Haryanto, 2022). Domestic Market Obligation 

(DMO) is a policy made by the government that aims to ensure adequate coal supply 

for domestic needs. Regarding the DMO, each company is required to sell at least 

25% of the planned production (KEPMEN ESDM, 2019). 

At the moment, global coal usage is getting out of control, even major 

countries such as China, India, United States, and Australia, which are the largest 

coal users, have not signed an agreement at the UN COP26 Climate Summit in 

Glasgow to discontinue coal usage because the amount of coal used is considered 
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to have exceeded the normal limit of world coal use. This has resulted in the world 

experiencing a global crisis that affects many economic sectors. Indonesia was also 

affected, especially in the mining sector. This certainly caused a decrease in coal 

demand which resulted in an oversupply of coal itself in the market. Such 

oversupply has an impact on unstable coal prices (Haryadi and Suciyanti, 2018). 

The projected coal price as the basis for decisions when exporting coal is 

based on historical coal price data. In case this prediction changes drastically to a 

higher one, the price of coal will increase quickly. Therefore, proper price planning 

or forecasting will affect the long-term success in exporting coal. The time series 

analysis is a quantitative forecasting analysis method that considers time, where 

data is collected periodically based on time sequence to determine patterns from 

past data collected regularly. Time series forecasting techniques are divided into 

two parts. First, forecasting models based on statistical mathematical models such 

as moving average, exponential smoothing, regression, and ARIMA (Box Jenkins). 

Second, artificial intelligence-based forecasting models such as artificial neural 

networks, genetic algorithms, classification, and hybrids (Wijayanti, 2012). 

Autoregressive Integrated Moving Average (ARIMA) method is the method 

most often used as a financial data forecasting method, because the estimation 

results of this method are the best model for some cases. The usage of the ARIMA 

method has great short-term forecasting accuracy, as it has a high level of accuracy. 

However, the ARIMA method itself has shortcomings in terms of identifying data 

that has heteroscedastic properties. As said by Hyndman (2021) that ARIMA takes 

into account past values (autoregressive) as well as past errors (moving average), 

so that it can capture patterns in the data dynamically. ARIMA may not be able to 

capture complex or non-linear patterns in the data, making it less effective if the 

data pattern is too complex or has a non-linear relationship and also ARIMA does 

not handle volatility or variance changes in the data well, so it is not suitable for 

data with high volatility. GARCH (Generalised Autoregressive Conditional 

Heteroskedasticity) models are usually better suited under these conditions. 

Therefore, to estimate heteroscedastic data, the GARCH (Generalized 

Autoregressive Conditional Heteroskedasticity) method is used. In this method, 

there is also another method that can be used to estimate data that has 
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heteroscedasticity, called EWMA (Exponential Weighted Moving Average). 

Sukma (2012) shows that the GARCH method is able to produce a smaller error 

value than the EWMA (Exponential Weighted Moving Average) method. Both 

methods can be a solution for forecasting coal prices and can also see price 

anomalies, in order for companies to take the right steps in determining coal prices. 

Therefore, it is necessary to conduct research on combining ARIMA and GARCH, 

which is then called hybrid ARIMA-GARCH to forecast coal prices. 

1.2 Research Problem 

One of the main challenges in estimating coal prices is the price fluctuations that 

often cannot be predicted easily, considering many factors that influence, either of 

demand and supply side. To address this issue, this research focuses on the 

application of hybrid ARIMA-GARCH model in coal price estimation. The 

ARIMA model is used to catch linear patterns in coal price data, while the GARCH 

model is applied to handle volatility that often appears unexpectedly. By combining 

both models, it is hoped that the estimation results can be more accurate to the 

market changes. This research will see how much coal prices change during 

September 2024 until January 2025 by using hybrid ARIMA-GARCH. 

1.3 Research Objective 

The objectives of this research are including: 

1. Estimating the best model hybrid ARIMA-GARCH. 

2. Forecasting coal prices using hybrid ARIMA-GARCH models for 

September 2024 until January 2025. 

1.4 Research Benefit 

The benefits of this research are including: 

1. The outcomes of this research are useful for the government in decision-

making as well as regulators to quantify an cost-effective strategies for 

energy and coal sector management. 
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2. The outcomes of this research contribute to improving insight about coal 

price dynamics and increasing the available instrument for the management 

of coal commodities market risks. 

1.5 Reseach Scope 

This research will focus on coal prices which have fluctuated in recent years. This 

research will analyze historical data on Indonesian coal prices start from 2009 

January till 2024 August. Quantitative methods, such as Autoregressive Intergrated 

Moving Average (ARIMA) and Generalized Autoregressive Conditional 

Heteroskedasticity (GARCH) econometric modeling, are combined to resolve the 

ARIMA model residual problem which is indicated by heteroscedasticity in the 

residual variance.  
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CHAPTER II 

LITERATURE STUDY 

2.1 Overview of Coal Markets 

Economic recovery and growth were gaining traction throughout 2022, supported 

by strong export, investment and household spending growth. However, downside 

risks, such as weak global demand, capital outflow, currency pressures and tight 

global financial conditions could potentially hinder growth momentum over the 

next four years. However, there has been a slowdown in the country’s economic 

growth in 2023. As of now, the country’s GDP growth is projected to be stable at 

an average of 5% (IMF,2023). Nevertheless, the figure is encouraging considering 

that the world’s economies are expected to experience a major slowbalisation in 

2023 as the battle against inflation continues. This robust and steady economic 

growth may drive Indonesia to be the fifth-largest economy in the world by 2030 

and the fourth-largest one by 2050 on purchasing power parity basis (PwC, 2023). 

Indonesia’s economic growth can also be measured through GNI per capita. 

It is usually related to inflation, productivity, infrastructure growth, as well as social 

factors: such as the country’s population health, education, and skill. World Bank 

categorizes Indonesia as a lower-middle income country (based on GNI per capita 

using the Atlas method (current USD). Despite the stable economic growth, the 

growth of GNI per capita in Indonesia has stagnated around $3,500 over the last six 

years. It experienced a short downtrend after 2013 which coincided with the end of 

the commodity boom period. However, a closer look at the GNI per capita with 

constant price of 2011 shows a steady increase instead. This showcases that the 

average income of the residents in the country still experienced improvement along 

with economic growth. The stagnated GNI per capita could then be attributed to 

devaluation of IDR toward USD since the commodity boom period ended. 

Historically, Indonesia’s primary energy mix shows a different story. Coal 

is on the rise in the primary energy mix in the last decade due to the acceleration of 

the power plant development program. Renewable mix is also increasing although 
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at a much slower pace. The renewables increase is mainly contributed by the biofuel 

usage to replace fuel diesel in industry and transportation sectors and by geothermal 

for electric power.  

In addition to its role in energy sector, coal also contributes to national 

development as a revenue stream for the State Budget. According to government 

regulation no. 9/2012, there are three ways on how coal sector can contribute to 

state revenue: land rent, royalty/tax, and sales of mining product. For the last four 

years, coal revenue collected is averaging around IDR 31 trillion (2.17 billion USD) 

or averaging close to 80% of total non-oil & gas revenue. However, coal revenue 

contribution to the state budget is relatively low, around 1.5 to 2 % of total revenue 

which can be seen in figure 1 (Mariatul Aini, 2018).  

 
Figure 1 Revenue from the coal sector (Mariatul Aini, 2018; Ministry of Finance, 2019). 

The government’s reasoning over the exploitation of coal is to increase trade 

revenue and help in counterbalancing deficit coming from oil and gas trade.  
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Indonesia’s import has risen by 22.2 % from 2017’s figure, mainly dominated by 

the increasing of raw material import for industry and fuel (Ministry of Trade, 

2019). Nevertheless, Indonesia experienced the worst net trade record in 2018, 

reaching minus 8.57 billion USD. The record is worse compared to the 2013 and 

2014 trade deficit value of 4.08 and 1.89 billion USD, respectively (Fajriah, 2019). 

It is more than likely that the trend will continue in 2019 and thus the government 

will still look to coal export as one of the options for trade deficit balancing (given 

that the international price of coal stays high at >90 USD/ton) while building a 

strategy on reducing imports of consumer goods. 

 
Figure 2 Comparison of GDP of South Kalimantan and East Kalimantan (BPS, 2018). 
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Indonesia’s coal resources and production are mainly distributed over only 

four provinces out of 34: East Kalimantan, South Sumatera, South Kalimantan, and 

Central Kalimantan. Kutai, Tarakan, and Barito coal basins located in East 

Kalimantan have medium-quality coal (calorific value between 5100-6100 kcal/kg) 

while the Central and South Sumatera Basins have low-quality coal reserves 

(calorific value <5100 kcal/kg). Coal has a substantial contribution to the local 

economy of the four provinces. In East Kalimantan, coal sector contributed up to 

35% of the provincial GDP in 2017. By adding oil and gas to the figure, the number 

almost reach half of the provincial GDP. This indicates that East Kalimantan 

economy relies heavily on fossil fuel. A similar condition can be found in South 

Kalimantan province. Although South Kalimantan has lower GDP value compared 

to East Kalimantan, South Kalimantan’s coal sector contribution is rather high, 

ranging between 19-26% of the provincial GDP in the last five years. Considering 

the high share of GDP from coal sector and also the discrepancy between coal and 

other sectors’ development in both provinces, coal transition may have more 

impacts on their economics, social, and political environment (Adiatma et al., 

2018). 

East Kalimantan’s economy is four times larger than South Kalimantan’s. 

The sources of South Kalimantan’s economy are diverse (e.g., coal mining, 

industry, trade, and transportation) and are comparable in size. On the other hand, 

the East Kalimantan’s economy depends mostly on coal sector with more than a 

third of its GDP contribution coming from coal. The next largest GDP contributor 

in this province is the manufacturing/processing industry, agriculture, and 

construction with a considerable difference of value compared to coal sector’s 

contribution. Overcoming this gap would be more challenging and would be a 

crucial strategy for East Kalimantan to shift away from its coal-dominated industry. 

2.2 Factors Influencing Coal Prices 

In the third quarter of 2021, due to tight supply and unabated demand, the price of 

thermal coal rose sharply. After the National Development and Reform 

Commission implemented intervention measures in late October, the price of 

thermal coal declined and operated at a low level. Coal accounts for the highest 
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proportion of primary energy use in China. The ratio of coal consumption to total 

energy consumption in 2021 was 56%. From 1994 to 2021, coal consumption 

accounted for 75% at the highest. Coal can be divided into two categories according 

to its use: thermal coal and coke. The iron and steel industries and the non-ferrous 

metal-smelting industry mainly use coke, since coke is effective and efficient in 

metal smelting. The main demand side of thermal coal is power plants. The 

fluctuation of the thermal coal price will affect the economic benefits of 

downstream industries such as power plants and steel, etc. Therefore, the stability 

of thermal coal prices is crucial to the stability of the economic situation. The 

national planning and intervention measures for the energy market will have an 

impact on the price of thermal coal. 

The value of coal is subject to many constraints, including coal mine costs, 

international coal transportation prices, macroeconomic policies of countries 

around the world, global coal prices, coal stocks, the rise in the price of alternative 

resources, etc., because there are commodities have prices, and the most 

fundamental reason affecting the world commodity prices is the issue of supply and 

demand, with the introduction of various environmental protection measures in 

recent years, the price of coal as a non-clean resource will also be subject to 

(Xingchi et al, 2023). 

2.2.1 Supply and Demand 

Coal mine production capacity is the most important reason for coal supply and 

demand, it is the core of supply side to determine coal supply and demand. At 

present, due to the excessive production of coal in China, it is easy to cause 

overcapacity, and also easy to lead to the downward movement of coal prices. 

The net import of coal is another element to reflect the supply level of coal, 

which is by directly reflecting the supply of coal, thus affecting the price of coal 

products. 

Coal demand is a fundamental factor on the supply and demand side that 

governs the direction of coal prices, and determines coal price trends on a larger 

scale. High coal consumption will cause a tight market supply, which will lead to 

higher coal prices; conversely, the market is depressed, and coal prices will fall. 
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2.2.2 Cost Factors 

Coal production costs directly affect the supply side of coal. Coal production costs 

are mainly divided into mining costs and transportation costs, production costs rise, 

coal companies can hardly afford, will inevitably share the risk to consumers by 

increasing the price of coal, and this leads to an increase in price. 

2.2.3 Industry Concentration 

Industrial concentration refers to the degree of dominance of a few enterprises in a 

certain industry in the market in terms of production volume, sales volume, total 

assets, etc. Coal industry concentration, is another important factor affecting the 

price of coal, and play an important role in the role of coal supply and demand 

factors. With too many coal producers, in a highly fragmented market structure, any 

coal company is a passive recipient of market prices, and the high or low price of 

coal is determined entirely by supply and demand. On the contrary, under a 

completely monopolistic market structure, the only coal enterprise will be the 

dominant price taker, while under a fully competitive market structure, coal prices 

face a certain degree of uncertainty (Wang, 2021). 

2.2.4 Other Energy Prices Influence 

Coal, oil and natural gas have become the main components of China's economy 

and the world's energy structure, and to some extent, the three may be substitutes 

for each other. Especially with the increasing global climate change issues, optimize 

the energy consumption structure, reduce human dependence on coal resources, has 

become an important initiative in energy conservation. Therefore, as the traditional 

coal alternative products such as oil, natural gas and other new energy products 

price changes, will also have an important impact on global coal prices. 

2.2.5 The Impact of Government Policies 

In order to promote economic development and energy conservation and emission 

reduction, improve the urban atmosphere, China has introduced various aspects of 
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environmental protection preferential policies, but with the expansion of China's 

regulatory scope, coal prices have been greatly affected, especially at present, 

China's environmental protection capacity has reached or even close to the upper 

limit, so the price of coal by China's energy conservation and emission reduction 

preferential policies and carbon emission reduction measures are also more 

influential. 

Supply and demand is the main factor affecting coal prices, coal prices are 

below cost period, coal mines into losses, naturally will reduce investment, supply 

reduced to a certain extent, there will be an oversupply, prices rise; coal prices are 

above cost period, investors profitable, naturally increase investment, supply 

increased to a certain extent, there will be more than demand, prices fall (Zhu, 

2017). 

2.3 Time Series Data 

Time series data is a series of observations ordered by time with the same distance. 

This type of data is often encountered in everyday life because the data is collected 

at intervals, namely daily, weekly or monthly. Based on the collected data, it can 

be seen that there is a pattern in it. The time series data pattern is divided into three, 

namely trend, cyclical and seasonal patterns. Seasonal patterns are patterns that 

experience the same repetition many times at certain intervals. Based on domain 

division, time series data is divided into two domains, namely time domain and 

frequency domain. The time area examines the significance of autocorrelation, data 

stationarity, parameter estimation of time series regression models and forecasting. 

Meanwhile, the frequency area examines hidden frequencies in difficult seasonal 

data obtained in the time area. The aim is to find out special things or certain 

conditions in the data (Al'afi et al., 2020). 

 Time series data is data that consists of an object but covers several time 

periods, for example daily, monthly, weekly and yearly. It can be seen from 

examples of time series data on reference prices for several commodities, stock 

prices, production data, and so on. If you observe that each data is related to time 

and occurs sequentially, it will be very helpful so that it is easy to recognize the 

type of data. Time series data is also very useful for decision making to predict 
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future events. While its because the pattern of changes in time series data from 

previous periods will repeat itself in the present. Time series data also usually 

depends on lag or difference. For example, in several cases, such as the supply and 

demand for coal commodities in previous years, this will influence coal prices in 

the following year, thus lag data on coal reference prices will be needed (Kusuma 

and Solihin, 2020). 

 Each value of an observation can always be related to the time of 

observation. Only at the time of the analysis, the connection variable time with 

observations is not a problem, because time series data is a collection of data based 

on time and one aspect of time series data is the involvement of a quantity called 

autocorrelation, which has the same concept as correlation for bivariate data. 

Another aspect of time series data is the stationarity of the data which is classified 

into strong stationary (first order stationary) and weak stationary (second order 

stationary), and this stationarity is a necessary condition in the analysis of time 

series data, because it will reduce standard errors (Kusumah and Solihin , 2020). 

 Time series data in the financial sector, especially return data, has a 

tendency to have a certain character, where this term is known as stylized fact. 

Sewell (2011) believes that stylized fact is a term commonly used in economics 

which refers to empirical evidence that there is the same consistency in a particular 

field so that it is accepted as truth. Some stylized facts found in time series data 

include unit roots, heteroscedasticity, volatility clustering and probability 

distributions that are fat tails relative to the normal distribution. In time series there 

are four types of data patterns, namely (Kusumah and Solihin, 2020): 

1. Horizontal, When the data in an observation varies around a level or with a 

constant average. For example, monthly sales of a product do not increase 

or decrease consistently at any given time. 

2. Seasonality is a data pattern when observations are influenced by 

seasonality which is characterized by a pattern of change that repeats itself 

automatically from 10 years to the next. An example is the data pattern of 

purchasing new books in the new school year. 
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3. By date Cyclical, is a form of data pattern characterized by wavy 

fluctuations in data that occur around the trend line. An example is data on 

economic and business activities. 

4. Trend is a form of data pattern when observations increase or decrease over 

an extended period of time. An example is an example of population data. 

Time series data is a more efficient and cheaper option for producing 

accurate forecasts. There are several things that need to be considered when 

processing time series data, namely (Wardhono et al, 2019): 

1. Based on the assumption of stationarity. 

2. If the stationarity assumption is not met, autocorrelation will arise. 

3. Regression with R value2 higher than 0.9 indicates an insignificant 

relationship.  

4. There is a random walk phenomenon. For example, tomorrow's stock price 

is the same as today's stock price plus random errors. 

5. Regression with time series data often used for forecasting. 

6. Testing for stationarity is carried out before the causality test. 

Data stationarity is the main issue related to spurious regression problems 

in time series analysis. The unit roots test is one tool for testing data stationarity. If 

any variable consists of a unit root, is non-stationary and combines with variable If 

anything else is not stationary, the two series will form stationarity in the 

cointegration relationship. Testing stationarity on a variable aims to see if there is 

a linear combination of terintegrasi forming stationarity or balance relationships 

(Wardhono et al., 2019). 

Stationarity is related to the consistency of time series data movements. If 

stationary data has a constant mean and variance throughout time followed by the 

value of the variance between two periods only depends on the distance. Stationary 

data will move stably and converge around the average value with small deviations 

without positive or negative trend movements. The cointegration test is a long-term 

relationship between a variable which is not stationary and produces a linear 

combination so as to create a stationary condition or in the long term reach an 

equilibrium condition. Error Correction Model (ECM) dynamic model for correct 

regression equation variable which is not stationary so that it returns to a condition 
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of equilibrium in the long term provided that there is a cointegration relationship 

between variables. As explained, the stationarity test is used to test stationarity, 

which can be seen as follows (Wardhono et al., 2019): 

1. Graphical analysis  

a. Data movement deviation  

b. Trend truth  

If the data is not stationary, it indicates that the deviation tends to be 

further away from the average and has a certain trend. 

2. Autocorrelation Function (ACF) and Correlogram Indication are not 

stationary 

a. AC (Autocorrelation) and Partial Autocorrelation (PAC) correlogram 

graphs pass the limit values. 

b. The AC and PAC statistical values are above 0.5.  

3. Unit Root Test 

The unit root test is one component in testing data stationarity. If any 

variable consists of a unit root, is non-stationary and combines with variable 

If anything else is not stationary then the two series will form stationarity in 

the cointegration relationship. Testing stationarity on a variable The aim is 

to see whether the data contains a linear combination terintegrasi establish 

stationarity or equilibrium relationships.  

a. Dickey-Fuller Test 

The Dickey Fuller test is used to test whether a time series is stationary 

or not. The concept of this test is closely related to random walks. One 

important thing to know about this test is that the random walk in 

question is a situation where the series is not stationary. Consider the 

following AR(1) process. 

yt = Φyt-1 + ℰt               (1) 

If Φ = 1, then the series becomes a random walk. Then the AR(1) 

process above is expressed in the Dickey-Fuller equation by subtracting 

both sides of  yt-1. 

yt- yt-1 = Φyt-1 + ℰt - yt-1 

Δyt = (Φ – 1)yt-1 + ℰt 
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Δyt = Φyt-1 – yt-1 + ℰt          (2) 

Then it can be seen that the hypothesis of this equation is as follows: 

    H0 : Φ = 0 (there is a unit root) 

    H1 : Φ < 0 (there is no unit root) 

The Dickey-Fuller test has a one-way hypothesis. The unit root test 

results can be seen by comparing the t-statistic results with the 

McKinnon critical value, where: 

yt = independent variable  

Phi = independent variable coefficient 

 ℰ = residual value 

H = hypothesis  

b. Augmented Dickey-Fuller Test 

Perbandingan Augmented Dickey-Fuller test dengan Dickey-Fuller test 

is by adding the number of lags to the first difference of variable 

dependent to overcome the autocorrelation of variable which was 

removed. Augmented Dickey-Fuller model test for the null hypothesis 

that has train stochastic and alternative with deterministic trends. 

c. Phillip-Perron Test 

An important assumption in the Dickey-Fuller test is that the error term 

values are independent and identically distributed. The Augmented 

Dickey-Fuller test adapts the Dickey_fuller test to overcome the 

possibility of serial correlation in the error term by adding a lag to the 

difference in the explanatory variables. 

Philip-Perron test is a nonparametric statistical mode to overcome the 

occurrence of serial correlation in the error term without adding lag to 

the difference in the explanatory variables. Philip's approach-Perron test 

adds a correction factor to the Dickey-Fuller test. 

4. Unit Root Test and Structural Break  

A stationary series that is along a deterministic trend and experiences 

permanent shifts over a period sometimes gives rise to some failure in slope 

changes when using the Augmented Dickey-Fuller test. Unit root tests that 

do not include breaks will have weak power. 
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If the break in a series is known, adjustments in the Augmented Dickey-

Fuller test relatively guarantee the presence of a deterministic component in 

the data generating process. One approach to testing the possibility of a 

break in a series is a sequential approach which is calculated based on usage 

samples in full. 

2.4 Autoregressive Integrated Moving Area (ARIMA) 

Autoregressive Integrated Moving Average (ARIMA) model is a model that 

completely ignores independent variables in making forecasts. ARIMA uses the 

past and present values of the dependent variable to produce accurate short-term 

forecasts. ARIMA is suitable if observations from a time series are statistically 

related to each other (dependent). The aim of this model is to determine a good 

statistical relationship between the predicted variables and the historical values of 

these variables so that forecasting can be done using this model (Hendranata, 2003; 

Pradana et al., 2020).  

Advantages and Disadvantages of ARIMA (Autoregressive Integrated 

Moving Average) Method (Hyndman, 2021): 

1. Advantages of ARIMA Models 

1) ARIMA is a relatively simple model to apply, so it can be used for time 

series data without requiring in-depth knowledge of probability theory. 

2) ARIMA is very effective for forecasting data that is stationary or can be 

made stationary through the differencin process. 

3) ARIMA takes into account past values (autoregressive) as well as past 

errors (moving average), so it can capture patterns in the data 

dynamically. 

4) ARIMA models can be applied to data with different time scales (e.g. 

daily, monthly, or yearly) by adjusting the model parameters. 

5) ARIMA can be extended to SARIMA to accommodate seasonal 

patterns, making it suitable for data that has both trends and seasonality. 

2. Disadvantages of ARIMA Models 

1) One of the main limitations of ARIMA is the assumption that the data 

must be stationary. If the data is not stationary, differencing or other 
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transformations need to be performed, which may reduce the precision 

of the results. 

2) ARIMA may not be able to capture complex or non-linear patterns in 

the data, making it less effective if the data pattern is too complex or has 

a non-linear fulfilment. 

3) ARIMA is mainly used for univariate (one variable), so it is less suitable 

for models with multiple variables. ARIMA models do not take into 

account the influence of external variables directly. 

4) The selection of ARIMA (p, d, q) parameters must be done carefully. 

Errors in parameter selection can result in poor prediction results. 

5) ARIMA does not handle volatility or variance changes in the data well, 

so it is not suitable for data with high volatility. GARCH (Generalised 

Autoregressive Conditional Heteroskedasticity) models are usually 

better suited under these conditions. 

The ARIMA model consists of three basic steps, namely the identification 

stage, the assessment stage and testing and inspection diagnostics. Furthermore, the 

ARIMA model can be used to forecast if the model obtained is adequate. The stages 

that must be carried out in the ARIMA Model are (Pradana et al., 2020): 

 

2.4.1 Stationarity and Nonstationarity 

The thing to note is that most periodic series are non-stationary. The AR and MA 

aspects of the ARIMA model only concern stationary periodic series. Stationarity 

means there is no growth or decline in the data. The data should be roughly 

horizontal along the time axis. In other words, data fluctuations are around a 

constant average value, independent of time and the variance of these fluctuations 

remains essentially constant at all times.  

The non-stationary time series must be converted into stationary data by 

doing differencing. What is meant by differencing is calculating changes or 

differences in observation values. The difference value obtained is checked again 

whether it is stationary or not. If it is not stationary then do it differently Again. If 

the variance is not stationary, then a logarithmic transformation is carried out.  
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2.4.2 ARIMA Model Classification  

The Box-Jenkins model (ARIMA) is divided into 3 groups, namely: model 

autoregressive (AR), moving average (MA), and ARIMA mixed models 

(autoregressive moving average) which has the characteristics of the first two 

models.  

1. Autoregressive Model (AR), a model that explains the movement of a 

variable through the variable itself period previous time. General form of 

the model autoregressive with order p (AR(p)) or ARIMA model (p,0,0) 

expressed as follows: 

Zt = µ’ + φ1 Zt-1 + φ2 Zt-2 +…+ φp Zt-p + at           (3)  

Information:  

µ'  = a constant  

φp  = autoregressive parameter to -p  

at  = error value at time t  

2. Moving Average Model (MA), a moving average that looks at the 

movement of the variable through residuals in the past. General form of the 

model moving average order q (MA(q)) or ARIMA (0,0,q) is expressed as 

follows:  

Zt = µ’ + at - θ1 at-1 – θ2 at-2 – θq at-k            (4) 

Information:  

µ'  = a constant  

1-q  = moving average parameters 

at-k  = error value at time t – k 

3. Mixed Model  

a) ARMA Process 

The general model for a mixture of AR(1) and MA(1) processes, for 

example ARIMA (1,0,1) is expressed as follows:  

Zt = µ’ + φ1 Zt-1 + φ2 Zt-2 +…+ φp Zt-p - θ1 at-1 – θ2 at-2 – θq at-q         (5) 

or 

(1-φ1B-φ2B
2 -…-φpB

p) Zt = µ’+(1-θ1 B-θ2 B
2-…-θq B

q) at         (6) 

            AR(1)        MA(1)  

b) ARIMA Process 
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When the non-stationarity model is added to the ARMA process 

mixture, so the general ARIMA model (p,d,q) is satisfied. The equation 

for the simple case of ARIMA (1,1,1) is:  

ΦP (B)(1-B)d Zt = θq (B) at                (7)  

Information:  

p = AR Orde 

d = Non Seasonal Differencing Orde 

q = MA Orde  

 

2.4.3 Seasonality and ARIMA Models  

Seasonality is defined as a pattern that repeats itself over a fixed time interval. For 

stationary data, seasonal factors can be determined by identifying autocorrelation 

coefficients at two or three time-lag which is significantly different from zero. 

Autocorrelation that is significantly different from zero indicates the presence of a 

pattern in the data. To recognize the presence of seasonal factors, one must look for 

high autocorrelation. To handle seasonality, a short common notation is:  

ARIMA (p,d,q) (P,D,Q)S 

Information:  

(p,d,q)  = non-seasonal part of the model  

(P,D,Q) = seasonal part of the model  

S   = number of periods in season  

2.4.4 Identification  

The identification process of a seasonal model depends on statistical tools in the 

form of autocorrelation and partial autocorrelation, as well as knowledge of the 

system being studied.  

2.4.5 Parameter Estimation  

Ada dua cara yang mendasar untuk mendapatkan parameter-parameter tersebut:  
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1. By trial and error, testing several different values and select one value (or 

set of values, if there is more than one parameter to be estimated) that 

minimizes the sum of the squares of the residual values.  

2. Iterative refinement, choosing an initial estimate and then letting a computer 

program refine the estimate iteratively. 

  

2.4.6 Model Parameter Testing 

  

1. Testing each model parameter partially (t-test)  

2. Overall model testing (Overall F test)  

The model is said to be good if the error value is random, which means that 

is no longer has a specific pattern. In other words, the obtained model can 

capture the existing data patterns. To see the randomness of the value error 

Testing was carried out on the autocorrelation coefficient value of error 

using one of the following two statistics:  

a) Q Box and Pierce Testing:  

Q = n’ ∑ 𝑟^2𝑘𝑚
𝑘=1               (8)  

b) Ljung-Box Test:  

Q = n’(n’+2) ∑ 𝑟2𝑘𝑚
𝑘=1 /(𝑛′ − 𝑘)            (9)  

Chi Squared Spread ( x2 ) with random degrees  

(db) = (k-p-q-P-Q)             (10)   

Information:  

n’ = n-(d+SD)  

d  = differentiation ordo it is not a seasonal factor  

D = differentiation ordo a seasonal factor  

S  = number of periods in season  

m  = lag maximum time 

rk  = autocorrelation for time lags 1, 2, 3, 4,..., k  

Test criteria:  

If Q ≤ x2 (α ,db) , means: value error nature random (acceptable model).  

If Q > x2 (α ,db) , means: value error non-native random (unacceptable 

model). 
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2.4.7 Selection of The Best Models  

To determine the best model that can be used standard error estimate as follow:  

 

  

           (11)  

 

 

 

Information:  

Yt = actual value at time t 

Ytˆ  = estimated value at time t  

The best model is the one that has the value standard error estimate (S) is 

the smallest. Apart from value standard error estimate, the average percentage 

forecasting error (MAPE) value can also be used as consideration in determining 

the best model, namely:  

MAPE = (
1

𝑛
∑ |

𝑌𝑡−𝑌̂𝑡

𝑌𝑡
|

𝑛

𝑡=1
) x 100%            (12) 

Information: 

MAPE = average value of forecasting error percentage 

Yt = actual value at time t 

Ytˆ   = estimated value at time t 

T   = number of forecasting in estimated periods. 

  

2.4.8 Forecasting with the ARIMA Model  

The notation used in ARIMA is an easy and general notation, but to use it in 

forecasting requires elaborating the equation and making it a more general 

regression equation. 

2.5 Generalized Autoregressive Conditional Heteroskedasticity 

(GARCH) 

The Autoregressive Moving Average (ARCH) was first introduced by Engle (1982) 

it was developed to answer the problem of volatility in financial data. This model 
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was developed into Generalized Autoregressive Moving Average (GARCH) by 

Bollerslev in 1986. Sukma (2012) showed that the GARCH method was able to 

produce smaller error values compared to the EWMA (Exponential Weighted 

Moving Average) model. The advantages of the GARCH model compared to other 

time series models are: 

1. This model does not view heteroscedasticity as a problem, but instead uses 

it to a form model. 

2. This model not only produces forecasts of variable Y, but also forecasts of 

variance. Changes in variance are very important example for understanding 

coal price movements. 

According to Bollerslev (1986), the ACF and PACF patterns, apart from 

being used to identify time series behavior from ARIMA in the form of conditional 

mean, can also be used to assist the square process in identifying GARCH behavior 

in conditional variance equations (Heteroskedastic). Some applications that use 

linear ARCH(p) models require large p values. However, this creates problems in 

determining the number of parameters α0, α1, …, αp, which is describe the time 

evolution of the economic time series. The GARCH process is defined by the 

following equation: 

𝜎1
2 = α0 + α1ℰt-1

2 + … + αpℰt-p
2 + β1𝜎t-1

2 + … + βp𝜎t-p
2 + βqℰt-q

2                 (13) 

α0 > 0, α1, …, αp, β1, …, βq ≥ 0 

Information:  

α1, …, αp, β1, …, βq = Parameter control 

ℰ1        = Random variable with zero mean 

𝜎t2        = Variance 

While conventional time series and econometric models operate under an 

assumption of constant variance, the ARCH (Autoregressive Conditional 

Heteroskedastic) process introduced in Engle (1982) allows the conditional 

variance to change over time as a function of past errors leaving the unconditional 

variance constant.  

This type of model behavior has already proven useful in modelling several 

different economic phenomena. In Engle (1982), Engle (1983) and Engle and Kraft 

(1983), models for the inflation rate are constructed recognizing that the uncertainty 
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of inflation tends to change over time. In Coulson and Robins (1985) the estimated 

inflation volatility is related to some key macroeconomic variables. Models for the 

term structure using an estimate of the conditional variance as a proxy for the risk 

premium are given in Engle, Lilien and Robins (1985). The same idea is applied to 

the foreign exchange market in Domowitz and Hakkio (1985). In Weiss (1984) 

ARMA models with ARCH errors are found to be successful in modelling thirteen 

different U.S. macroeconomic time series. Common to most of the above 

applications however, is the introduction of a rather arbitrary linear declining lag 

structure in the condi tional variance equation to take account of the long memory 

typically found in empirical work, since estimating a totally free lag distribution 

often will lead to violation of the non-negativity constraints.  

2.5.1 The GARCH(p,q) process 

The ARCH process introduced by Engle (1982) explicitly recognizes the difference 

between the unconditional and the conditional variance allowing the latter to change 

over time as a function of past errors. The statistical properties of this new 

parametric class of models has been studied further in Weiss (1982) and in a recent 

paper by Milhoj (1984). In empirical applications of the ARCH model a relatively 

long lag in the conditional variance equation is often called for, and to avoid 

problems with negative variance parameter estimates a fixed lag structure is 

typically imposed. In this light it seems of immediate practical interest to extend 

the ARCH class of model to allow for both a longer memory and a more flexible 

lag structure. 

Let εt denote a real-valued discrete-time stochastic process, and Ψt, the 

information set (σ-field) of all information through time t. The GARCH(p,q) 

process (Generalized Autoregressive Conditional Heteroskedasticity) is given by  

εt Ψt-1~N(θ,ht),              (14) 

ht = 𝑎0 + ∑ 𝛼𝑖𝜀𝑡−𝑖
2𝑞

𝑖−1 + ∑ 𝛽𝑖ℎ𝑡−𝑖
𝑝
𝑖−1   

 = 𝑎0 + 𝐴(𝐿)𝜀𝑡
2 + 𝐵(𝐿)ℎ𝑡           (15) 

Where 

 p ≥ 0, q > 0 

 α0 > 0, αi > 0, i = 1,…,q, 

 βt ≥ 0, i = 1,…,q. 
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For p = 0 the process reduces to the ARCH(q) process, and for p = q = 0 εt 

is simply white noise. In the ARCH(q) process the conditional variance is specified 

as a linear function of past sample variances only, whereas the GARCH(p,q) 

process allows lagged conditional variances to enter as well. This corresponds to 

some sort of adaptive learning mechanism. 

The GARCH(p,q) regression model is obtained by letting the εt‘s be 

innovations in a linear regression, 

𝜀𝑡 = 𝑦𝑡 −  𝑥𝑡
′𝑏             (16) 

where 𝑦𝑡 is the dependent variable, 𝑥𝑡 a vector of explanatory variables, and b is a 

vector of unknown parameters. This model is studied in some detail in section 5. If 

all the roots of 1 - B (z) = 0 lie outside the unit circle, (2) can be rewritten as a 

distributed lag of past εt‘s, 

ht =  𝑎0(1 − 𝐵(1))−1 + 𝐴(𝐿)(1 − 𝐵(𝐿))−1 𝜀𝑡
2  

 =  𝑎0(1 − ∑ 𝛽i𝑝
𝑖=1 )−1 + ∑ 𝛿𝑖∞

𝑖=1  𝜀𝑡
2          (17) 

which together with (1) may be seen as an infinite-dimensional ARCH(oo) process. 

The 8i's are found from the power series expansion of D(L) = 𝐴(𝐿)(1 − 𝐵(𝐿))−1, 

𝛿𝑖 =  𝛼𝑖  +  ∑ 𝛽𝑗𝛿𝑖∞
𝑖=1 ,  i = 1,…,q, 

     = ∑ 𝛽𝑗𝛿𝑖∞
𝑖=1 ,  i = q + 1,…,          (18) 

where n = min( p, i - 1}. It follows, that if B(1) < 1, 6i will be decreasing for i greater 

than m = max{p, q}. Thus if D(1) < 1, the GARCH(p,q) process can be 

approximated to any degree of accuracy by a stationary ARCH(Q) for a sufficiently 

large value of Q. But as in the ARMA analogue, the GARCH process might 

possibly be justified through a Wald's decomposition type of arguments as a more 

parsimonious description. 

 From the theory on finite-dimensional ARCH(q) processes it is to be 

expected that D(1) < 1, or equivalently A(1) + B(1) < 1, suffices for wide-sense 

stationarity; cf. Milhoj (1984). This is indeed the case. 

 Theorem 1. The GARCH(p,q) process as defined in (1) and (2) is wide-

sense stationary with E(εt) = 0, var(εt)= α0 (1 - A(1) - B(1)) -1  and cov(εt, εs) = 0 for 

t ≠ s if and only if A(1) + B(1) < 1. 

 

 



25 
 

 
 

2.5.2  The GARCH(1,1) process 

The simplest but often very useful GARCH process is of course the GARCH(1,1) 

process given by (1) and 

ht =  𝛼0𝑎1𝜀𝑡−1
2  + 𝛽1ℎ𝑡−1,  α0 > 0, α1 ≥ 0, β1 ≥ 0.      (19) 

From Theorem 1, a 1 +/31 < 1 suffices for wide-sense stationarity, and in general 

we have: 

Theorem 2, For the GARCH(1, 1) process given by (1) and (6) a necessary and 

sufficient condition for existence of the 2mth moment is 

 𝜇 (𝛼1, 𝛽1, 𝑚)  =  ∑ ( 𝑗
𝑚

) ∞
𝑗=0 𝛼𝑗 𝛼1

𝑗 𝛽1
𝑚−𝑗  <  1,        (19) 

where 

 𝛼0  =  1,     𝛼𝑗  =  ∏ (2𝑗 −  1),𝑗
𝑖=1      𝑗 =  1. .. .              

The 2mth moment can be expressed by the recursive formula 

𝐸(𝜀𝑡
2𝑚)  =  𝛼𝑚 [ ∑ 𝛼𝑛

−1

𝑚−1

𝑛 = 0

𝐸(𝜀𝑡
2𝑛)𝛼0

𝑚−𝑛 (
𝑚

𝑚 −  𝑛
) 𝜇(𝛼1, 𝛽1, 𝑛)] × [1 −  𝜇(𝛼1, 𝛽1, 𝑚)]−1  

The conditions for existence of the first twelve moments are illustrated in 

fig. 3. It follows by symmetry that if the 2 ruth moment exists, E(𝜀𝑡
2𝑚−1) = 0. For 

𝛽1 = 0, () reduces to the well-known condition for the ARCH(l) process, 𝛼𝑚 𝛼1
𝑚 > 

1. Thus if 𝛼1 >  (𝛼𝑚)−1/𝑚 in the ARCH(l) process, the 2mth moment does not 

exist, whereas even if ∑ 𝛿𝑖∞
𝑖=1  =  𝛼1(1 −  𝛽1)−1 >  (𝛼𝑚)−1/𝑚 in the GARCH(1,1) 

process, the 2mth moment might very well exist because of the longer memory in 

this process. 

 In the GARCH(1,1) process the mean lag in the conditional variance 

equation is given by 

𝛾 =  ∑ 𝑖𝛿𝑖

∞

𝑖=1

/ ∑ 𝛿𝑖

∞

𝑖=1

 = (1 − 𝛽1)−1,                                                                          (20) 
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Figure 3 Moment Conditions for GARCH(1,1)(Engle, 1982). 

and the median lag is found to be 

𝛾 =  − 𝑙𝑜𝑔2/𝑙𝑜𝑔𝛽1, 

Where ∑ 𝑖𝛿𝑖
∞
𝑖=1 / ∑ 𝛿𝑖

∞
𝑖=1 =  

1

2
 and the 𝛿𝑖’s. 

If 3𝛼1
2  +  2𝛼1𝛽1  + 𝛽1

2  <  1, the fourth-order moment existed by Theorem 2 

E(𝜀𝑡
2)  =  𝛼1(1 − 𝛼1  −  𝛽1)−1, 

and 

E(𝜀𝑡
4)  =  3𝛼0

2(1 +  𝛼1  + 𝛽1)[(1 −  𝛼1  − 𝛽1)(1 − 𝛽𝑡
2  −  2𝛼1𝛽1  −  3𝛼1

2)]−1 

The coefficient of kurtosis is therefore 

K =  (E(𝜀𝑡
4) − 3E(𝜀𝑡

2)2)E(𝜀𝑡
2)−2 

K =  6𝛼1
2(1 −  𝛽𝑡

2  −  2𝛼1𝛽1  −  3𝛼1
2)−1 , 

which is greater than zero by assumption. Hence the GARCH(1,1) process is 

leptokurtic (heavily tailed), a property the process shares with the ARCH(q) proces 

 

2.5.3 Autocorrelation (AC) and Prtial Autocorrelation (PACF) Structure 

 
The use of autocorrelation and partial autocorrelation functions to identify 

and check time series behaviour of the ARMA form in the conditional mean is well 

established. In this section, the autocorrelation and partial autocorrelation functions 

for the squared process are shown to be useful in identifying and checking time 
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series behaviour in the conditional variance equation of the GARCH form. The idea 

of using the squared process to check for model adequacy is not new, where it is 

found that some of the series modelled in Box and Jenkins (1976) exhibit 

autocorrelated squared residuabs even though the residuals themselves do not seem 

to be correlated over time. 

Consider the general GARCH(p,q) process as specified in (1) and (2), and 

let us assume the process has finite fourth-order moment. Let the covariance 

function for 𝜀𝑡
2 be denoted. 

𝛾𝑛  =  𝛾−𝑛  =  𝑐𝑜𝑣(𝜀𝑡
2, 𝜀𝑡−𝑛

2 )           (21) 

The general conditions for the existence of finite fourth-order moment are 

unknown. However, given a specific order of the model the conditions may be 

derived following the same line of arguments as lead to Theorem 2 for the 

GARCH(1,1) process. For instance the necessary and sufficient condition for the 

GARCH(1,2) process is found to be 

𝛼2 + 3𝛼1
2 + 3𝛼2

2 + 𝛽1
2 + 2𝛼1𝛽1 − 3𝛼2

3 + 3𝛼1
2𝛼2 + 6𝛼1𝛼2𝛽1 + 𝛼1𝛽1

2 < 1 

and for the GARCH(2,1) the condition is 

𝛽2 + 3𝛼1
2 + 𝛽1

2 + 𝛽2
2 + 2𝛼1𝛽1 − 𝛽2

3 − 𝛼1
2𝛽2 + 2𝛼1𝛽1𝛽2 + 𝛽1

2𝛽2 < 1 

Thus, the first p autocorrelations for 𝜀𝑡
2 depend 'directly' on the parameters 

𝛼1, . . . , 𝛼𝑞, 𝛽1, . . . , 𝛽𝑝, but given 𝜌𝑝, . . . , 𝜌𝑝+1−𝑚 the above difference equation 

uniquely determines the autocorrelations at higher lags. This is similar to the result 

for the autocorrelations for an ARMA(m,p) process. Note also, that (24) depends 

on the parameters 𝛼1, . . . , 𝛼𝑞, 𝛽1, . . . , 𝛽𝑝, only through 𝜑1, . . . , 𝜑𝑚. 

Let ɸ𝑘𝑘 denote the kth partial autocorrelation for 𝜀𝑡
2 found by solving the 

set of k equations in the k unknown ɸ𝑘1, . . . , ɸ𝑘𝑘. 

𝜌𝑛  = ∑ ɸ𝑘𝑖𝜌𝑛−𝑖

𝑘

𝑖=1

,       𝑛 = 1, . . . , 𝑘.                                                                         (22) 

By (24) ɸ𝑘𝑘 cuts off after lag q for an ARCH(q) process 

ɸ𝑘𝑘  ≠  0, 𝑘 ≤  𝑞  

ɸ𝑘𝑘  =  0, 𝑘 >  𝑞. 
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This is identical to the behaviour of the partial autocorrelation function for 

an AR(q) process. Also from (24) and well known results in the time series 

literature, the partial autocorrelation function for 𝜀𝑡
2, for a GARCH(p,q) process is 

in general non-zero but dies out. In practice, of course, the 𝜌𝑛's and ɸ𝑘𝑘'S will be 

unknown. However, the sample analogue, say𝜌𝑛, yields a consistent estimate for 

𝜌𝑛, and ɸ𝑘𝑘 is consistently estimated by the k th coefficient, say ɸ𝑘𝑘, in a kth-order 

autore- gression for 𝜀𝑡
2. These estimates together with their asymptotic variance 

under the null of no GARCH 1/T can be used in the preliminary identification stage, 

and are also useful for diagnostic checking. 

 

2.5.4 Estimation of The GARCH Regression Model 

In this section we consider maximum likelihood estimation of the GARCH 

regression model (1), (2), (3). Because the results are quite similar to those for the 

ARCH regression model, our discussion will be very schematic. 

 Let 𝑧𝑡
, = (1, 𝜀𝑡−1

2 , . . . , 𝜀𝑡−𝑞
2 , ℎ𝑖−1, . . . , ℎ𝑖−𝑝), 𝑧𝑡

, = (𝛼0,

𝛼1, . . . , 𝛼𝑞, 𝛽1, . . . , 𝛽𝑝)  and 𝜃 ∈ Θ, where 𝜃 = (𝑏′, 𝑤′) and Θ is a compact subspace 

of a Euclidean space such that 𝜀𝑡
2  possesses finite second moments.  

The log likelihood function for a sample of T observations is apart from some 

constant 

𝐿𝑇(𝜃)  = 𝑇−1 ∑ l𝑡(𝜃)

𝑇

𝑡=1

,                                                                                               (23) 

l𝑡(𝜃) = −
1

2
log ℎ𝑡 −

1

2
𝜀𝑡

2ℎ𝑡
−1. 

 

2.5.5 Testing for GARCH 

Because of the complication involved in estimating a GARCH process, it seems of 

interest to have a formal test for the presence of GARCH instead of just relying on 

the more informal tools. Consider the GARCH(p,q) regression model (27). As in 

Engle and Kraft (1983) let us partition the conditional variance equation 

ℎ𝑡 = 𝑧′𝑡𝜔 = 𝑧′1𝑡𝜔1 + 𝑧′2𝑡𝜔2,                                                                                     (24) 

The Lagrange multiplier test statistic for H0: 𝜔2 = 0 is then given by 
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𝜀𝐿𝑀 =
1

2
∫ 𝑍0(𝑍′0𝑍0)−1

,

0

𝑍′0                                                                                          (25) 

The alternative as represented by 𝑧2𝑡 needs some consideration. Straight 

forward calculations show that under the null of white noise, 𝑍′0𝑍0 is singular if 

both p > 0 and q > 0, and therefore a general test for GARCH(p,q) is not feasible. 

In fact if the null is an ARCH(q) process, 𝑍′0𝑍0 is singular for GARCH (rl, q+r2) 

alternatives, where r1 > 0 and r2 > 0. It is also interesting to note that for an ARCH(q) 

null, the LM test for GARCH(r,q) and ARCH(q + r) alternatives coincide. This is 

similar to the results in Godfrey (1978), where it is shown that the LM tests for 

AR(p) and MA(q) errors in a linear regression model coincide and that the test 

procedures break down when a full ARMA(p, q) model is considered. These test 

results are, of course, not peculiar to the LM test, but concern the Likelihood Ratio 

and the Wald tests as well.  


