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Abstract
We propose a self-adapted Monte Carlo approach to automatically determine
the critical temperature by simulating two systems with different sizes at the
same temperature. The temperature is increased or decreased by checking the
short-time average of the correlation ratios of the two system sizes. The critical
temperature is achieved using the negative feedback mechanism, which can be
regarded as an Ehrenfest model for diffusion with a central force. Moreover, the
thermal average near the critical temperature can be calculated precisely. The
proposed approach is a general method to treat second-order phase transition,
first-order phase transition, and Berezinskii–Kosterlitz–Thouless transition on
the equal footing.

Keywords: first-order phase transition, second-order phase transition, Berezin-
skii–Kosterlitz–Thouless transition, cluster Monte Carlo algorithm

(Some figures may appear in colour only in the online journal)

1. Introduction

Finite-size scaling (FSS) [1] is a basic concept in the study of phase transitions and critical
phenomena. The Binder ratio [2], essentially the moment ratio, is widely used in the analysis
of the numerical data. The moment ratios of the magnetization m,
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U(T, L) = 〈m(T)4〉/〈m(T)2〉2, (1)

for different sizes scale as

U(T, L) = f (tL1/ν), (2)

where t = (T − Tc)/Tc and ν is the correlation-length exponent. The linear system size
is denoted by L. We can determine the critical temperature Tc of the second-order phase
transition by employing a condition where U(T, L) does not depend on L. By measuring U(T, L)
for different sizes, we can determine Tc from the crossing point of temperature-dependent
curves of different sizes. We note that there are corrections to FSS. There are other quantities
that satisfy the scaling form such as equation (2); the second-moment correlation length divided
by L [3] and the ratio of the correlation functions with different distances [4] are examples of
such quantities.

Moreover, if we consider the ratio of U(T, L) with different sizes, e.g., U(T, L)/U(T, L/2),
the critical value of this ratio becomes one, even if the critical value of U∗(T ∗) itself is not a
universal one, and does depend on the model. The ratios of U(T, L) with different sizes were
studied in the analysis of the Potts model [5, 6]. These ratios were also used in the recent
analysis of the clock model [7].

The FSS analysis is often associated with the Monte Carlo simulation. To overcome the
slow dynamics in the single-spin flip algorithm, a multi-cluster flip algorithm was proposed
by Swendsen and Wang [8]. Wolff [9] proposed another type of cluster algorithm, that is,
a single-cluster flip algorithm. Tomita and Okabe [10] developed a cluster algorithm, called
the probability-changing cluster (PCC) algorithm, for automatically determining the critical
point. It is an extension of the cluster algorithm, but it changes the probability of cluster update
(essentially, the temperature) during the Monte Carlo process.

This paper presents a self-adapted method using two system sizes for automatically deter-
mining the critical temperature, which is referred to as the two-size PCC algorithm. We simul-
taneously perform the Monte Carlo simulations for the two system sizes. We measure some
quantity U, which follows the scaling form shown in equation (2), and calculate the ratio of
U(T , L)/U(T, L/2) for short time. Then, we increase or decrease the temperature by checking
the value of U(T, L)/U(T, L/2).

We start with the two-size PCC algorithm for the second-order transition. As an example,
we treat the two-dimensional (2D) Ising model, and demonstrate how the critical temperature
can be determined in a self-adapted way. We calculate the thermal average of the physical
quantities near the critical temperature. We also study the first-order transition. As a typical
example, we deal with the 2D six-state Potts model. We investigate the first-order transition
temperature and the latent heat. We demonstrate that the same procedure is also effective
for studying the Berezinskii–Kosterlitz–Thouless (BKT) transition, where a fixed line instead
of a fixed point exists. We select the 2D five-state clock model that has two BKT transitions
with higher and lower transition temperatures.

The remaining part of the paper is organized as follows: we describe the two-size
PCC algorithm for the second-order transition in section 2. Two-size PCC studies of the first-
order transition and BKT transition are discussed in sections 3 and 4, respectively. Section 5
is devoted to summarizing the study and discussing results.
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2. Second-order transition

Let us start with the second-order phase transition. As an example, we consider a 2D Ising
model on the square lattice, whose Hamiltonian is given by

H = −J
∑
〈i j〉

σiσ j, σi = ±1. (3)

The summation is taken over the nearest-neighbor pairs, and periodic boundary conditions are
imposed in numerical simulations. Using the Wolff single-cluster flip algorithm for spin update,
we simulate the two system sizes simultaneously. In determining the critical point (line), we
use the ratio of the correlation functions with different distances, i.e., the correlation ratio [4],

R(T, L) = 〈g(r)〉/〈g(r′)〉. (4)

Here, g(r) is a correlation function with the distance r; that is, g(r) = 〈σiσi+r〉. For the values
of r and r′, we choose r = L/2 and r′ = L/4 for numerical calculations.

We briefly describe the property of R(T, L). At T = 0, R(T, L) becomes 1. As T increases,
R(T, L) decreases, and at Tc, R(T, L) does not depend on L. For T < Tc, R(T, L) > R(T, L/2),
whereas for T > Tc, R(T , L) < R(T, L/2). The actual procedure for the two-size PCC algorithm
is as follows. We use two systems of different sizes, say L and L/2. After simulating some steps
at the same temperature, we measure the correlation ratios of both the systems, R(T , L) and
R(T, L/2). We increase or decrease the inverse temperature β (=1/T in units of the coupling
J) according to the following rule:

β =

{
β +Δβ if R(T, L)/R(T, L/2) < 1,

β −Δβ otherwise,
(5)

where Δβ > 0. There are two parameters to choose, the number of Monte Carlo steps (MCS)
for taking a short-time average, Nav, and the difference of β, Δβ. Note that the cluster flip
algorithm is effective because the rapid equilibration is required after a change in temperature.

The plot of the time evolution of β is shown in figure 1. For this plot, we chose Nav = 4000
andΔβ = 0.000 05; that is, after every 4000 MCS, β is changed by ±0.000 05. We will discuss
the choice of Nav andΔβ later. In the figure, the time steps are given in units of 1000 MCS, and
we show the data up to 4 × 106 MCS. The system sizes are L = 64 and L = 512; that is, the set
of system sizes are (64, 32) and (512, 256). We observe that the temperature oscillates around
the average value. The width of fluctuation decreases as the system size increases because of the
effect of self-averaging. For convenience, we denote the exact value of βc (=ln(1 +

√
2)/2 =

0.440 6868) for an infinite system by a dotted line.
Next, we examine the histogram of β, h(β), for the two-size PCC algorithm. We count the

number of visits to each β. We plot h(β) of the 2D Ising model for L = 64, 96, 128, 192, 256,
384, and 512 in figure 2. Measurement is performed for 4 × 106 MCS after equilibration of
10 000 MCS. We made 32 runs for each system size in order to estimate statistical errors. For
smaller sizes (L = 64, 96, and 128), we made 64 runs. The parameters Nav andΔβ were chosen
as 4000 and 0.000 05, respectively. In the plot, the histogram h(β) is normalized by

∫
h(β) dβ = 1.
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Figure 1. The time evolution of β with the two-size PCC algorithm for the 2D Ising
model. The system sizes are L = 64 and L = 512; that is, the set of system sizes are
(64, 32) and (512, 256). The exact value of βc (=ln(1 +

√
2)/2 = 0.440 6868) for an

infinite system is denoted by a dotted line.

Figure 2. The size dependence of the histogram of β, h(β), for the 2D Ising model. The
system sizes are L = 64, 96, 128, 192, 256, 384, and 512; the condition for averaging is
Nav = 4000, Δβ = 0.000 05. The exact value of βc (=ln(1 +

√
2)/2 = 0.440 6868) for

an infinite system is denoted by a dotted line.

The obtained histogram is similar to normal distribution, and we see that the histogram
becomes sharper with an increase in system size. Furthermore, the peak position approaches
the exact value of βc for the infinite system.

Here, we examine the choice of Nav and Δβ. Figure 3 shows a comparison of h(β) of
the 2D Ising model with L = 128 for five conditions; (a) Nav = 4000, Δβ = 0.000 05,
(b) Nav = 4000, Δβ = 0.000 025, (c) Nav = 4000, Δβ = 0.0001, (d) Nav = 2000,
Δβ = 0.000 05, (e) Nav = 8000, Δβ = 0.000 05. The histogram becomes sharper with a
decrease in Δβ and an increase in Nav. The systematic size dependence is obtained when the
conditions of Nav and Δβ are fixed. In the following, we will show the data for condition (a)
Nav = 4000, Δβ = 0.000 05.

The transition (inverse) temperature for each size, βc(L), was estimated using the averaged
value of β. The plot of the size dependence of βc(L) as a function of 1/L is shown in figure 4,
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Figure 3. The comparison of the histogram of β, h(β), for the 2D Ising model. The
system sizes is set to be L = 128, and the conditions for averaging are (a) Nav = 4000,
Δβ = 0.000 05, (b) Nav = 4000, Δβ = 0.000 025, (c) Nav = 4000, Δβ = 0.0001,
(d) Nav = 2000, Δβ = 0.000 05, (e) Nav = 8000, Δβ = 0.000 05.

Figure 4. The plot of βc(L) of the 2D Ising model. The linear system sizes L are 64, 96,
128, 192, 256, 384, and 512. The exact value is denoted by a dotted line.

where the statistical errors were estimated by 2σ of the distribution of βc. We can observe
from figure 4 that βc(L) rapidly approaches the exact value ln(1 +

√
2)/2 = 0.440 6868, which

is denoted by a dotted line, even for small sizes. The rapid convergence of the present algorithm
is apparent when we compare the size-convergence rate of βc(L) with that of the original
PCC (figure 1 of reference [10]). In the original version of the PCC algorithm, although the
size-dependent βc(L) is automatically tuned, we still have to consider the size dependence of
βc(L) based on the FSS. Instead, with the two-size PCC algorithm, the infinite-size critical
temperature is easily achieved even for small sizes.

The energy distribution p(E/N) is plotted in figure 5 for L = 64, 96, 128, 192, 256, 384,
and 512. The energy distribution is normalized by

∫
p(E/N) d(E/N) = 1.
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Figure 5. The plot of p(E/N) for the 2D Ising model. The system sizes are L = 64, 96,
128, 192, 256, 384, and 512; the condition for averaging is Nav = 4000, Δβ = 0.000 05.

There is a single peak, which will be compared with the case of the first-order transition later.
We see that the distribution becomes sharper as the system size increases. The peak position
approaches the exact energy at the critical temperature, that is, E/N =−

√
2 = −1.414 21. The

exact critical value is denoted by a dotted line in the figure.
Because each system wanders around temperature, we can take a thermal average of

physical quantities at each temperature. It is similar to the situation encountered in the
replica exchange method, or the parallel tempering [11]. There, the temperatures of replicas
are exchanged following the transition probabilities based on the Boltzmann weight; the ther-
mal average at a fixed β is obtained by averaging over different replicas. The system is globally
at equilibrium for the replica exchange method. Although the global equilibration is not guar-
anteed in the present system, the thermal average is calculated with short-time average, as
will be shown in the following. Before showing the data of the thermal average of physical
quantities, we present the energy distribution for a fixed value of β. The energy distribution is
decomposed as

p(E) =
∑
β

p(E;β). (6)

The data of p(E/N;β) at two typical temperatures, β = 0.440 85 and 0.4405, together with
the whole distribution of p(E/N), is shown in figure 6. The system size is fixed at L = 128.
The value of the β-decomposed distribution is magnified twenty times for clarity. Two energy
distributions with different values of β are related to each other through the equation

p(E;β′) ∝ e−(β′−β)E p(E;β). (7)

It is a reweighting of the Boltzmann factor, which is the basis of the histogram method by
Ferrenberg and Swendsen [12]. The thermal average of a physical quantity A at β ′ is obtained
by the measurement at β through the relation

〈A〉β′ =
[A e−(β′−β)E]β
[e−(β′−β)E]β

, (8)
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Figure 6. The plot of the β-decomposed energy distribution p(E/N;β) for the 2D Ising
model. The system size is L = 128. The data of two β’s are compared. The whole
distribution p(E/N) is shown by a dotted line.

where [. . .]β stands for the Monte Carlo average at β. We note that the β-decomposed energy
distribution, p(E/N;β), does not depend on h(β). Thus, we obtain the thermal average of a
physical quantity A, 〈A〉β , without considering Nav and Δβ.

As an example of the physical quantities, we show the correlation ratio R(β) as a function of
temperature for various system sizes in figure 7. We see that the data of different sizes intersect
at the critical point within statistical errors. The critical value of the correlation ratio, Rc, for
the L × L square lattice is calculated as follows:

〈g(L/2)〉
〈g(L/4)〉 =

|θ1(1/2)|−1/4
4∑

ν=1
|θν(1/4)|

|θ1(1/4)|−1/4
4∑

ν=1
|θν(1/8)|

= 0.943 905, (9)

using the Jacobi θ-functions [13] (see also references [4, 14]). This value is denoted by a dotted
line in figure 7. Our simulation reproduces the exact value of Rc with an accuracy up to four
digits.

Now let us consider the FSS. Because the critical temperature and the critical exponents
are known for the 2D Ising model, R(β) are plotted as a function of (β − βc)L1/ν , as shown in
figure 8, where βc = ln(1 +

√
2)/2 and 1/ν = 1. We see that the FSS works quite well.

We have presented the method of two-size PCC algorithm for the second-order transition.
It is noteworthy to comment on the mechanism of algorithm. We increase or decrease the
temperature based on the negative feedback mechanism given by equation (5). The histogram
of the inverse temperature will be centered at β such that R(T, L)/R(T, L/2) is one. Because
R(T, L)/R(T, L/2) is linear around this inverse temperature, as shown in figure 7, this process
is regarded as an Ehrenfest model for diffusion with a central force [15, 16]. In the calculation
of the thermal average, such as shown in figure 7, there is no appreciable difference between
the constant-temperature calculation and the present calculation, although the system is not
globally at equilibrium. Moreover, from figure 2, the effective temperature range is wide for
small sizes, whereas it is narrower for larger sizes, when the parameters Nav and Δβ are fixed.

7
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Figure 7. The plot of R(β) for the 2D Ising model. The system sizes are L = 64, 96, 128,
192, 256, 384, and 512. The exact values of βc and Rc are given by a dotted line.

Figure 8. The FSS plot of R(β) for the 2D Ising model. The system sizes are L = 64,
96, 128, 192, 256, 384, and 512.

That is, the temperature range for studying the FSS analysis is automatically selected, which
is another advantage of the present algorithm.

3. First-order phase transition

We now consider the case of the first-order phase transition. The 2D ferromagnetic q-state Potts
model [17–19] is taken into account. The Hamiltonian is given by

H = J
∑
〈i j〉

(1 − δsis j), si = 1, 2, . . . , q, (10)

where δab is the Kronecker delta. This model is known to show the second-order phase
transition for q � 4 and first-order phase transition for q � 5.

Here, we provide the data for a two-size PCC calculation of the 2D six-state Potts model.
Hysteresis in the first-order transition systems should be considered, which is different from

8
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Figure 9. The plot of h(β) for the 2D q = 6 Potts model. The system sizes are
L = 64, 96, 128, 192, 256, 384, and 512; the condition for averaging is Δβ = 0.000 01,
Nav = 4000. The exact value of βc (=ln(1 +

√
6) = 1.238 23) for the infinite system is

given by a dotted line.

the conditions of the second-order transition. It is more feasible to employ the multi-cluster
update of the Swendsen–Wang type [8] because a spin configuration changes extensively with
such an update. For the systems with the second-order transition, there is no appreciable differ-
ence in the choice of the cluster update. The number of the steps for calculating the short-time
average, Nav, and the difference in β, Δβ, were chosen as 4000 and 0.000 01, respectively. We
used smaller values of Δβ as this could help reduce the effect of hysteresis. We conducted
measurements for 4 × 106 steps after equilibration of 10 000 steps; such measurements were
repeated 64 times for L = 64 and 96, and 32 times for L = 128, 192, 256, 384, and 512. We
note that the correlation function of the q-state Potts model is given as

g(r) =
q
∑

i δsisi+r − N

q − 1
. (11)

The histogram of β, h(β), for the system sizes L = 64, 96, 128, 192, 256, 384, and 512
is shown in figure 9. The histogram exhibits sharp peaks, and the peak position gradually
approaches the exact value. The exact value of the first-order transition inverse temperature
for the infinite system is given by ln(1 +

√
q) = 1.238 23 (for q = 6), in units of J, which is

shown by the dotted line.
The average value of β, βc(L), is plotted as a function of 1/L in figure 10. The exact value

of the first-order transition inverse temperature (1.238 23) is given by the dotted line. We can
observe that the calculated estimate of the transition temperature approaches the exact value
with five-digit accuracy.

The distribution of E, p(E/N), is shown in figure 11 for various sizes. We observe double
peaks, which are specific to the first-order transition. In figure 12, we plot the β-decomposed
energy distribution, p(E/N;β). The system size is set to be L = 128. Here, we show the data
of two typical temperatures, β = 1.238 09 and 1.237 94, which are on both sides of the peak
value of h(β) shown in figure 9, together with the entire distribution of p(E/N). The value of
the β-decomposed distribution is magnified twenty times for clarity. We can observe that the
weight of high energies increases for the high-temperature (low-β) energy distribution.

We now examine the peak positions of energy. Baxter [20] (see also [21]) calculated the
exact difference in the higher energy peak E2 and the lower energy peak E1, i.e., the latent

9
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Figure 10. The plot of βc(L) of the 2D q = 6 Potts model. The linear system sizes L are
64, 96, 128, 192, 256, 384, and 512. The exact value is denoted by a dotted line.

Figure 11. The plot of p(E/N) for the 2D q = 6 Potts model. The system sizes are
L = 64, 96, 128, 192, 256, 384, and 512. Baxter’s results [20] for two peak positions are
given by dotted lines.

heat. The exact result is

(E2 − E1)/N = 2

(
1 +

1
√

q

)
tanh

Θ

2

∞∏
n=1

(tanh nΘ)2, (12)

where Θ = arcosh(
√

q/2). The middle point (E1 + E2)/2N is also given as

(E1 + E2)/2N = 1 − 1/
√

q. (13)

Thus, for q = 6, E1/N and E2/N are calculated as 0.491 02 and 0.692 48, respectively. These
values are given in figure 11. We can observe that the positions of the energy peaks approach
the exact infinite values as the system size increases. The size dependences of the numeri-
cal estimates of E1/N and E2/N are plotted as a function of 1/L in figure 13. The statistical
errors are within the size of marks. They converge to the exact values [20]. We estimated
the size-dependent values of E1/N and E2/N from the maximum positions of p(E/N) shown in

10



J. Phys. A: Math. Theor. 53 (2020) 505002 T Surungan and Y Okabe

Figure 12. The plot of the β-decomposed energy distribution p(E/N;β) for the 2D
q = 6 Potts model. The system size is L = 128. The data of two β’s are compared.
The whole distribution p(E/N) is shown by a dotted line.

Figure 13. The plot of E1 and E2 as a function of 1/L for the 2D q = 6 Potts model.
The system sizes are L = 64, 96, 128, 192, 256, 384, and 512. Baxter’s results [20] for
two peak positions are given by dotted lines.

figure 11. This distribution has contributions from various β’s. As shown in figure 12, although
the weights of two peaks depend on β, the positions of the maximum are less dependent on β.
It reflects the energy density of states.

We have shown the application of the two-size PCC algorithm to the first-order transi-
tion. The canonical simulation of the first-order transition sometimes suffers from the hys-
teresis effects; it is difficult to tunnel from the low-energy configuration to the high-energy
configuration, and vice versa, at the coexistence region. The extended ensemble algorithm,
such as the multicanonical method [22], is known to be effective for the first-order transi-
tion. The tunneling is difficult in the constant-temperature simulation. In the two-size PCC
algorithm, however, the temperature is forced to decrease if the system is in the high-energy
configuration, and forced to increase if the system is in the low-energy configuration. More-
over, if the temperature is away from the transition point, it will be back to the opposite

11
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Figure 14. The plot of p(E/N) for the 2D q-state Potts model with q = 2, 3, 4, 5, 6,
8, and 10. The system sizes are fixed as L = 128. Baxter’s results [20] for two peak
positions are given by dotted lines with the same colors.

Figure 15. The plot of h(β) for the 2D q = 5 clock model. The system sizes are
L = 64, 96, 128, 192, 256, 384, and 512. The numerical estimates of β1 and β2 are
given by dotted lines.

direction due to the negative feedback mechanism. When the system size becomes larger,
some deviations arise. In figure 10, the data of the largest size (L = 512) already reaches the
value of the infinite size. It is a precise argument of the five-digit accuracy. The 2D six-state
Potts model exhibits a weak first-order transition. When q becomes larger, a first-order tran-
sition becomes strong. We briefly show the results of the 2D q-state Potts models of various
q’s. The plots ofp(E/N) are given in figure 14 for 2 � q � 10; the system size is fixed as 128.
Transitions for q � 5 are first-order, whereas they are second-order for q � 4. The exact values
of E1 and E2 for the infinite sizes calculated by equations (12) and (13) are indicated by dotted
lines with the same colors. For moderate size (L = 128), we can obtain the double-peak energy
structure of the first-order transition even for large enough q (=10).

12
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Figure 16. The plot of p(E) for the 2D q = 5 clock model. The system sizes are L = 64,
96, 128, 192, 256, 384, and 512.

4. BKT transition

The 2D spin systems with continuous XY symmetry exhibit a unique phase transition called
the BKT transition [23–25]. There exists a BKT phase of a quasi long-range order (QLRO),
where the correlation function decays as a power law. Here, we consider the q-state clock
model, which is a discrete version of the classical XY model [26]. The Hamiltonian is given by

H = −J
∑
〈i j〉

cos (θi − θ j), θi = 2πi/q, i = 1, 2, . . . , q. (14)

The 2D q-state clock model experiences the BKT transition for q � 5, whereas the q = 4 clock
model is two sets of the Ising model and the three-state clock model is equivalent to the three-
state Potts model. The q = 2 clock model is simply the Ising model.

For q � 5, there is an interplay between the plane-rotator symmetry, which attempts to
preserve the BKT phase, and the discreteness, which tends to create a long-range order (LRO)
at low temperatures. Two transition temperatures, T1 < T2, are observed; each corresponds to
the transition between LRO and QLRO and between QLRO and a disordered phase.

We conducted a simulation of the two-size PCC algorithm for the 2D q = 5 clock model.
We have chosen this model because we consider a model which has a critical line, and ordered
and disordered states for both outsides. A narrower temperature range of the intermediate
state with a fixed line is preferable. Recent large-scale Monte Carlo studies confirmed the
existence of two BKT transitions; however, there was some controversy on the type of phase
transitions of q = 5 clock model, especially for the behavior of helicity modulus. Kumano et al
[27] elucidated the situation and confirmed the universality of two BKT transitions. Surun-
gan et al [7] made comprehensive studies for both cosine-type and Villain-type interactions,
including the discussion on the duality relation for the Villain-type interaction.

For the simulation of the 2D q = 5 clock model, we selected a larger Δβ, 0.002, because
the system has a wide temperature range in the critical state. Again, we selected Nav = 4000.
A histogram of β, h(β), of the q = 5 clock model is shown in figure 15. The data in the his-
togram are widely distributed, which is contrast to the case of the second-order and first-order
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Figure 17. The plot of the β-decomposed energy distribution p(E/N;β) for the 2D q = 5
clock model. The system size is L = 128. We show the data for three β’s; from left,
β = 1.10, 1.08, and 1.06. The whole distribution p(E/N) is shown by a dotted line.

Figure 18. The plot of R(β) for the 2D q = 5 clock model. The system sizes are
L = 64, 96, 128, 192, 256, 384, and 512. The numerical estimates of β1 and β2 are
given by dotted lines.

transitions. This is related to the fact that there is a fixed line instead of a fixed point for the sys-
tem with the BKT transition. In the figure, the numerical estimates of β1 (1/T1 = 1/0.911(5))
and β2 (1/T2 = 1/0.940(5)) [7] are shown by dotted lines for convenience.

The distribution of E, p(E/N), is shown in figure 16 for various sizes. In figure 17, we plot
the β-decomposed energy distribution p(E/N;β). The system size is L = 128. Data for three
β’s are shown; from left, β = 1.10, 1.08, and 1.06. The value of the β-decomposed distribution
is magnified ten times for clarity. Energy peaks are observed at certain values depending on
the temperature.

We calculate the temperature dependence of physical quantities using the same procedure
as the one followed by the Ising model. Although the histogram h(β) shown in figure 15 is
not very smooth, fairly accurate estimates of the thermal average of physical quantities at
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a fixed β can be obtained as was discussed in the case of the Ising model; at each temper-
ature the temperature average is evaluated using h(β). The temperature dependence of the
correlation ratio for various sizes is plotted in figure 18, which corresponds to figure 2(a) of
reference [7] of the constant-temperature calculation. The numerical estimates of β1 and β2

reported in [7] are shown by dotted lines for convenience. In the intermediate temperature
range, the correlation ratios of different sizes take the same value, whereas they start to exhibit
variations below β2 and above β1. To locate the BKT transition temperatures precisely, a care-
ful FSS treatment with exponential divergence behavior is required [7]. When the present
method is used directly, the systems remain in the intermediate state for a long time. We may set
windows for the allowed temperature range. In the case of the 2D q = 5 clock model, the tem-
perature range may, for example, be restricted as β < 1.07 for the β2 transition, and β > 1.09
for the β1 transition.

5. Summary and discussion

In this paper, we described the two-size PCC algorithm. We simultaneously simulate two
systems of different sizes at the same temperature. Comparing the short-time average of the
correlation ratios of the two sizes, we increase or decrease the temperature based on the nega-
tive feedback mechanism. When the spin configuration is in the disordered state, the tempera-
ture is lowered, whereas it is in the ordered state, the temperature increases probabilistically.

For the continuous second-order transition, the temperature peaks sharply at the critical tem-
perature. Thus, we can locate the critical temperature in a self-adapted manner. The algorithm
is robust in the sense that it does not strongly depend on the choice of parameters, such as Nav

and Δβ. As the system wanders around the temperature, we can calculate the thermal average
of physical quantities for each temperature. We showed the results of the correlation ratios
of the 2D Ising model, which demonstrated a satisfactory FSS behavior. For the first-order
transition, because of the forced negative feedback mechanism, the hysteresis is overcome.
The energy distribution is doubly peaked in the case of the first-order transition. We deter-
mined the double-peak positions E1 and E2 for the 2D q = 6 Potts model. The results were
compared with the exact values obtained by Baxter [20]. There are some deviations for larger
system sizes or strong first-order transitions, such as the large q-state Potts model.

In the case of the systems with the BKT transition, the temperature is widely distributed
in the two-size PCC algorithm, which is owing to the existence of a fixed line in the BKT
transition. We have chosen the 2D clock model as a model of fixed line, because there
exist the ordered and disordered states for both sides of the state with a fixed line. An inves-
tigation of the temperature dependence of the correlation ratio for the 2D q = 5 clock model
showed that correlation ratios of different sizes take the same value in the intermediate BKT
state, whereas they start to vary below β2 and above β1. We can obtain the specific behavior of
the BKT transition compared to the second-order transition or the first-order transition. When
the system is in the intermediate state, the temperature wandering becomes a random walk
because R(T, L)/R(T, L/2) becomes one. Thus, the time for staying in the intermediate state
becomes longer, which requires larger Δβ.

To summarize, we have proposed a unified method of numerical simulation that can treat
the second-order phase transition, the first-order phase transition, and the BKT transition with
equal footing. By simultaneously simulating two systems of different sizes, say L and L/2, we
could measure the correlation functions, which are essential when investigating phase tran-
sition. Thus, we could easily determine the type of the phase transition. Practically, we may
start with examining the type of transitions by the simulations of smaller sizes with larger Δβ.
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For the precise estimates of the BKT transition temperatures, other methods may be favorable
[7, 28].

The proposed algorithm is general. We can apply this algorithm to various problems of any
dimension. For example, the 2D ferromagnetic q-state Potts model with r invisible (redundant)
states exhibits a change in the phase transition from the second order to the first order owing
to the entropy effect of invisible states [29]. A study on the two-size PCC algorithm is now in
progress for such a transition change problem.
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[26] José J V, Kadanoff L P, Kirkpatrick S and Nelson D R 1977 Phys. Rev. B 16 1217
[27] Kumano Y, Hukushima K, Tomita Y and Oshikawa M 2013 Phys. Rev. B 88 104427
[28] Nomura K 1995 J. Phys. A: Math. Gen. 28 5451
[29] Tamura R, Tanaka S and Kawashima N 2010 Prog. Theor. Phys. 124 381

17

https://doi.org/10.1088/0022-3719/6/7/010
https://doi.org/10.1088/0022-3719/6/7/010
https://doi.org/10.1088/0022-3719/7/6/005
https://doi.org/10.1088/0022-3719/7/6/005
https://doi.org/10.1103/physrevb.16.1217
https://doi.org/10.1103/physrevb.16.1217
https://doi.org/10.1103/physrevb.88.104427
https://doi.org/10.1103/physrevb.88.104427
https://doi.org/10.1088/0305-4470/28/19/003
https://doi.org/10.1088/0305-4470/28/19/003
https://doi.org/10.1143/ptp.124.381
https://doi.org/10.1143/ptp.124.381

	Two-size probability-changing cluster algorithm
	1.  Introduction
	2.  Second-order transition
	3.  First-order phase transition
	4.  BKT transition
	5.  Summary and discussion
	Acknowledgments
	ORCID iDs
	References


