DAFTAR PUSTAKA

- Anderson, J. D. (2010). Fundamental Of Aerodynamics. In *Schweizerische medizinische Wochenschrift*. McGraw hill.
- Andino, M. Y., Lin, J. C., Roman, S., Graff, E. C., Gharib, M., Whalen, E. A., & Wygnanski, I. J. (2019). Active flow control on vertical tail models. *AIAA Journal*, 57(8), 3322–3328. https://doi.org/10.2514/1.J057876
- Angeline Rerung, Z., Sofyan, E., & Setiawan, F. (2020). Analisis Kestabilan Statik Dan Dinamik Pada Pesawat Lsu-05 Ng (Lapan Surveillance Uav 05 New Generation) Dengan Menggunakan Perangkat Lunak Xflr5. *Teknika STTKD: Jurnal Teknik, Elektronik, Engine, 6*(2), 76–83. https://doi.org/10.56521/teknika.v6i2.215
- B. Barlow, J., H. Rae Jr, W., & Pope, A. (1999). Low-speed Wind Tunnel Testing (Third, pp. 301–425).
- Biadgo, A. M., Simonovic, A., Svorcan, J., & Stupar, S. (2014).
 Aerodynamic characteristics of high speed train under turbulent cross Winds: A numerical investigation using unsteady-RANS method. *FME Transactions*, 42(1), 10–18. https://doi.org/10.5937/fmet1401010B
- Cao, X., Dong, H., Gu, Y., Cheng, K., & Zhang, F. (2023). Experimental Study of Vertical Tail Model Flow Control Based on Oscillating Jet. *Applied Sciences (Switzerland)*, 13(2). https://doi.org/10.3390/app13020786
- Cengel, Y. A., & Cimbala, J. M. (2014). *Fluid mechanics*: *Fundamental and Aplication*. McGraw-Hill.
- Ciliberti, D., Della Vecchia, P., Nicolosi, F., & De Marco, A. (2017). Aircraft directional stability and vertical tail design: A review of semi-empirical methods. *Progress in Aerospace Sciences*, 95(November), 140–172.

https://doi.org/10.1016/j.paerosci.2017.11.001

- Corcione, S., Cusati, V., Memmolo, V., Nicolosi, F., & Llamas Sandin, R. (2023). Impact at aircraft level of elastic efficiency of a forwardswept tailplane. *Aerospace Science and Technology*, 140, 108461. https://doi.org/10.1016/j.ast.2023.108461
- Corte, B. Della, Sluis, M. Van, Rao, A. G., & Veldhuis, L. (2019). Experimental Investigation of the Flow Past an Axisymmetric Body at Low Speed. *Proceedings of the International Society of Air*

Breathing Engines, *September*, 1–22. https://www.semanticscholar.org/paper/Experimental-Investigation-of-the-Flow-Past-an-Body-Corte-Sluis/a696c906c47580b696e8e2f48f123ced69c03de4

- Das, S. B., Rajiv, R., Menon, R., & Deodhar, R. (2021). Analysis and simulation of different empenage configurations for an aircraft. *AIP Conference Proceedings*, 2316(February). https://doi.org/10.1063/5.0038266
- Elger, D. F., Williams, B. C., Crowe, C. T., & Roberson, J. A. (2012). Engineering fluid mechanics (10th ed.). WileyPLUS.
- Erturk, S. A., & Dogan, A. (2017). Trim analyses of mass-actuated airplane in cruise and steady-state turn. *Journal of Aircraft*, 54(4), 1585–1592. https://doi.org/10.2514/1.C034200
- Fu, J., Shi, Z., Gong, Z., Lowenberg, M. H., Wu, D., & Pan, L. (2022). Virtual flight test technique to predict a blanded wing-body aircraft in-flight depature characteristic. *Chinese Journal of Aeronautics*, 35(1), 215–225. https://doi.org/10.1016/j.cja.2021.01.006
- FU, J., SHI, Z., GONG, Z., LOWENBERG, M. H., WU, D., & PAN, L. (2022). Virtual flight test techniques to predict a blended-wing-body aircraft in-flight departure characteristics. *Chinese Journal of Aeronautics*, 35(1), 215–225. https://doi.org/10.1016/j.cja.2021.01.006
- Grauer, J. A., & Boucher, M. J. (2019). Identification of aeroelastic models for the X-56A longitudinal dynamics using multisine inputs and output error in the frequency domain. *Aerospace*, 6(2). https://doi.org/10.3390/aerospace6020024
- Guo, L., Zhu, M., Nie, B., Kong, P., & Zhong, C. (2017). Initial virtual flight test for a dynamically similar aircraft model with control augmentation system. *Chinese Journal of Aeronautics*, 30(2), 602– 610. https://doi.org/10.1016/j.cja.2016.12.034
- Hartwich, P. M., Camacho, P. P., El-Gohary, K., Gonzales, A. B., Lawson, E. L., & Shmilovich, A. (2017). System-level trade studies for transonic transports with active flow control (AFC) enhanced high-lift systems. AIAA SciTech Forum - 55th AIAA Aerospace Sciences Meeting. https://doi.org/10.2514/6.2017-0321
- Houghton, E. L., Carpenter, P. W., Collicott, S. H., & Valentine, D. (2012). Aerodynamics for Engineering Students. Elsevier. http://journal.um-surabaya.ac.id/index.php/JKM/article/view/2203
- Hu, Y., Song, J., & Wu, M. (2024). A Review of Control Methods for Tailless Aircraft. *Guidance, Navigation and Control, 2430002.*

https://doi.org/10.1142/S2737480724300026

- Ignatyev, D. I., Zaripov, K. G., Sidoryuk, M. E., Kolinko, K. A., & Khrabrov, A. N. (2016). Wind tunnel tests for validation of control algorithms at high angles of attack using autonomous aircraft model mounted in 3DOF gimbals. *AIAA Atmospheric Flight Mechanics Conference*, 2016-Janua(June), 1–18. https://doi.org/10.2514/6.2016-3106
- Jansen, K. E., Rasquin, M., Farnsworth, J. A., Rathay, N., Monastero, M. C., & Amitay, M. (2018). Interaction of a synthetic jet with separated flow over a vertical tail. *AIAA Journal*, 56(7), 2653– 2668. https://doi.org/10.2514/1.J056751
- Khan, M. U., Khan, M. D., Din, N. A., Babar, M. Z., & Hussain, M. F. (2019). Aerodynamic comparison of unconventional aircraft tail setup. *Proceedings 22nd International Multitopic Conference*, *INMIC* 2019, 1–5. https://doi.org/10.1109/INMIC48123.2019.9022788
- Kreith, F. (2012). *Principles Of Heat Transfer* (Third Edit). New York and London.
- Kreith, F., & Guswami, D. Y. (2005). The CRC Handbook Of Engineering Mechanica, Second Edition. In Interior Finishes & Fittings for Historic Building Conservation (Second). CRC Press. https://doi.org/10.1002/9781444344837.ch10
- Leelaburanathanakul, P., Virangkur, V., Wangsiripaisarn, T., Pitakarnnop, J., & Bunyajitradulya, A. (2021). Steady tangential control jet for improving the effectiveness of a rudder under oneengine inoperative condition. *Journal of Physics: Conference Series*, 1733(1). https://doi.org/10.1088/1742-6596/1733/1/012001
- Liu, Y., & Xie, C. (2018). Aeroservoelastic stability analysis for flexible aircraft based on a nonlinear coupled dynamic model. *Chinese Journal of Aeronautics*, 31(12), 2185–2198. https://doi.org/10.1016/j.cja.2018.08.019
- Liu, Z., Luo, L., & Zhang, B. (2021). An aerodynamic design method to improve the high-speed performance of a low-aspect-ratio tailless aircraft. *Applied Sciences (Switzerland)*, 11(4), 1–25. https://doi.org/10.3390/app11041555
- Löffler, S., Staats, M., Grund, T., & Weiss, J. (2018). Increasing the effectiveness of a vertical stabilizer by combining pulsed jet actuation at the leading edge and the rudder hinge line. 2018 Applied Aerodynamics Conference. https://doi.org/10.2514/6.2018-2854

- Merryisha, S., & Rajendran, P. (2019). Experimental and cfd analysis of surface modifiers on aircraft wing: A review. *CFD Letters*, *11*(10), 46–56.
- Mi, B. gang. (2021). Simulation on the dynamic stability derivatives of battle-structure-damaged aircrafts. *Defence Technology*, 17(3), 987–1001. https://doi.org/10.1016/j.dt.2020.06.005
- Mokhtari, A., Shahrian, A., Langroodi, P. J., & Ghodrat, M. (2020). Investigation of the effects of angle of attack and tail deflection angle on the controlling tail flow field. *Aerospace Systems*, *3*(4), 309–326. https://doi.org/10.1007/s42401-020-00063-w
- Morelli, E. A. (2012). Flight test maneuvers for efficient aerodynamic modeling. *Journal of Aircraft*, 49(6), 1857–1867. https://doi.org/10.2514/1.C031699
- Muchammad. (2019). Analisis momen poros dan gaya samping horn rudder bidang kendali pesawat N-XXX menggunakan computational fluid dynamic. *Paper Knowledge*. *Toward a Media History of Documents*, 15(1), 64–69.
- Munson, B. R., Young, D. F., Okiishi, T. H., & Huebsch, W. W. (2009). Fundamental Of Fluid Mechanics. In *John Wiley & Sons, Inc.* http://civilcafe.weebly.com/uploads/2/8/9/8/28985467/fluid_mech anics.pdf
- Nelson, R. C. (1998). *Flight Stability and Automatic Control*. http://home.eng.iastate.edu/~shermanp/AERE355/lectures/Flight_ Stability_and_Automatic_Control_N.pdf
- Nguyen Van, E., Alazard, D., Döll, C., & Pastor, P. (2021). Co-design of aircraft vertical tail and control laws with distributed electric propulsion and flight envelop constraints. *CEAS Aeronautical Journal*, *12*(1), 101–113. https://doi.org/10.1007/s13272-020-00481-8
- Nicolosi, F., Ciliberti, D., Della Vecchia, P., & Corcione, S. (2020). Experimental analysis of aircraft directional control effectiveness. *Aerospace Science and Technology*, 106(July). https://doi.org/10.1016/j.ast.2020.106099
- Obert, E. (2009). Aerodynamic Design of Transport Aircraft. Aerodynamic Design of Transport Aircraft. https://books.google.co.id/books?id=V1DuJfPov48C&lpg=PP1& hl=id&pg=PR4#v=onepage&q&f=false
- Oleinik, O. A., & Samokhin, V. N. (1999). *Mathematical Models in Boundary Layer Theory* (1st ed., Vol. 15). CRC Press. http://journal.um-surabaya.ac.id/index.php/JKM/article/view/2203

- Parancheerivilakkathil, M. S., Pilakkadan, J. S., Ajaj, R. M., Amoozgar, M., Asadi, D., Zweiri, Y., & Friswell, M. I. (2024). A review of control strategies used for morphing aircraft application. *Chinese Journal of Aeronautics*, 37(4), 436–463. https://doi.org/10.1016/j.cja.2023.12.035
- Rabeta, B., Arifin, M., & Fairuza, S. (2017). Analisis Linear Statik Pada Vertical Tail dengan Variasi Defleksi Rudder. *Jtk: Jurnal Teknologi Kedirgantaraan*, 2(2), 8–16.
- Ricco, P., Skote, M., & Leschziner, M. A. (2021). A review of turbulent skin-friction drag reduction by near-wall transverse forcing. *Progress in Aerospace Sciences*, 123. https://doi.org/10.1016/j.paerosci.2021.100713
- Sanchez-Carmona, A., & Cuerno-Rejado, C. (2019). Vee-tail conceptual design criteria for commercial transport aeroplanes. *Chinese Journal of Aeronautics*, 32(3), 595–610. https://doi.org/10.1016/j.cja.2018.06.012
- Schlichting, H., & Gersten, K. (2017). Boundary-Layer Theory. In *Laboratory Animal Science* (9th editio, Vol. 42, Issue 3). Springer.
- Scholz, P., Singh, V. M., Gebhardt, A., Kirz, J., Löffler, S., & Weiss, J. (2020). The efficiency of different flow control methods on a vertical tail. AIAA Scitech Forum, 1–16. https://doi.org/10.2514/6.2020-1537
- Shi, Z. (2024). Improved FPA for aircraft conceptual design. *Journal* of Engineering Research (Kuwait), November 2023. https://doi.org/10.1016/j.jer.2024.05.002
- Soler, M. (2014). *Fundamentals Of Aerospace Engineering*. Creative Commons.
- Sonwane, P., Yadav, M., Bunker, N., Sonwane, S., & Shirsath, V. (2024). Economical Design Perspective for Aircraft by Optimizing Airfoil S1223. *E-Prime - Advances in Electrical Engineering, Electronics and Energy*, 8(March), 100531. https://doi.org/10.1016/j.prime.2024.100531
- Tai, S., Bu, C., Wang, Y., Yue, T., Liu, H., & Wang, L. (2024). Identification of aircraft longitudinal aerodynamic parameters using an online corrective test for wind tunnel virtual flight. *Chinese Journal of Aeronautics*. https://doi.org/10.1038/srep32868
- Tai, S., Wang, L., Wang, Y., Lu, S., Bu, C., & Yue, T. (2023). Identification of Lateral-Directional Aerodynamic Parameters for Aircraft Based on a Wind Tunnel Virtual Flight Test. Aerospace, 10(4). https://doi.org/10.3390/aerospace10040350

- Wang, L., Tai, S., Yue, T., Liu, H., Wang, Y., & Bu, C. (2022). Longitudinal Aerodynamic Parameter Identification for Blended-Wing-Body Aircraft Based on a Wind Tunnel Virtual Flight Test. *Aerospace*, 9(11). https://doi.org/10.3390/aerospace9110689
- Wang, L., Zhang, N., Liu, H., & Yue, T. (2022). Stability characteristics and airworthiness requirements of blended wing body aircraft with podded engines. In *Chinese Journal of Aeronautics* (Vol. 35, Issue 6, pp. 77–86). https://doi.org/10.1016/j.cja.2021.09.002
- Wei, Z., Li, J., Tang, S., & Yang, Z. (2022). Investigation and Improvement of T-Tail Junction Flow Separation for a Demonstration Aircraft. Aerospace, 9(10). https://doi.org/10.3390/aerospace9100567
- Welty, J. R., Wilson, R. E., Wicks, C. E., & Rorrer, G. L. (2008). Fundamentals of Momentum, Heat, and Mass Transfer. Wiley & Sons.
- Whalen, E. A., Shmilovich, A., Spoor, M., Tran, J., Vijgen, P., Lin, J. C., & Andino, M. (2018). Flight test of an active flow control enhanced vertical tail. *AIAA Journal*, 56(9), 3393–3398. https://doi.org/10.2514/1.J056959
- White, F. M. (2002). Fluid Mechanics (Fourth Edi). McGraw-Hill.
- Wu, Z., Cao, Y., & Ismail, M. (2019). Gust loads on aircraft. *Aeronautical Journal*, 123(1266), 1216–1274. https://doi.org/10.1017/aer.2019.48
- Xi, X., Liu, Y., Xue, P., Liu, X., Bai, C., Zhang, X., & Gao, L. (2024). High-speed multi-camera videogrammetric measurement of fullfield 3D motion and deformation in full-scale crash testing of typical civil aircraft. *Aerospace Science and Technology*, 109375. https://doi.org/10.1016/j.ast.2024.109375
- Zhao, Z., Luo, Z., Deng, X., Zhang, J., Dong, Z., Liu, J., & Li, S. (2023). Novel yaw effector of a flying wing aircraft based on reverse dual synthetic jets. *Chinese Journal of Aeronautics*, 36(12), 151–163. https://doi.org/10.1016/j.cja.2023.06.023

LAMPIRAN

Lampiran A

Tabel A. 1 Perrubahan kecepatan upstream

No	U (m/s)
1	10
2	12
3	14
4	16
5	18
6	20
7	22

Tabel A. 2 Perubahan sudut defleksi rudder

No	Sudut defleksi <i>rudder</i> (δ)
1	0°
2	5°
3	10°
4	15°
5	20°
6	25°
7	30°
8	35°
9	40°
10	45°

Tabel A. 3 Luas proyeksi stabilizer dan rudder untuk tiap perubahan sudut

Sudut defleksi <i>rudder</i> (δ) A (m^2)
0 ° 0.000806
5° 0.001189
10° 0.001573
15° 0.001953
20° 0.002325
25° 0.002686
30° 0.003034
35° 0.003365
40° 0.003676
45° 0.003967

δ	b (m)
00	0,006
5°	0,010
10°	0,013
15°	0,017
20°	0,020
25°	0,024
30 °	0,027
35°	0,030
40°	0,033
45°	0,035

Tabel A. 4 Rentang karakteristik vertikal stabilizer dan *rudder* untuk tiap per<u>ubahan sudut defleksi</u>

Tabel A. 5 Kecepatan *upstream* (U) dan bilangan Reynolds (Re) untuk tiap perubahan sudut defleksi *rudder*

δ		L		U (m/s)			
-	10	12	14	16	18	20	22
-			Bila	angan Reyn	olds		
0 °	3687	4425	5162	5900	6637	7375	8112
5°	5956	7147	8338	9529	10720	11912	13103
10 °	8193	9832	11471	13109	14748	16387	18025
15°	10382	12459	14535	16612	18688	20765	22841
20°	12506	15008	17509	20010	22512	25013	27514
25°	14634	17561	20487	23414	26341	29268	32194
30°	16591	19910	23228	26546	29865	33183	36501
35°	18330	21996	25662	29328	32994	36660	40326
40 °	20039	24047	28055	32063	36071	40078	44086
45°	21610	25932	30254	34576	38898	43220	47542

U	 (δ)									
(m/s)										
	0°	5°	10 °	15°	20°	25°	30 °	35°	40 °	45°
10	0.030	0.048	0.070	0.095	0.120	0.150	0.180	0.204	0.230	0.250
12	0.040	0.064	0.093	0.127	0.163	0.205	0.247	0.283	0.320	0.350
14	0.050	0.080	0.120	0.162	0.210	0.270	0.320	0.370	0.420	0.460
16	0.062	0.100	0.150	0.200	0.260	0.340	0.400	0.460	0.520	0.580
18	0.075	0.120	0.180	0.240	0.310	0.410	0.490	0.560	0.640	0.720
20	0.087	0.140	0.210	0.280	0.360	0.480	0.570	0.660	0.770	0.860
22	0.100	0.160	0.240	0.330	0.420	0.550	0.660	0.780	0.900	1.010

Tabel A. 6 Nilai gaya drag (F_D) pendekatan eksperimental untuk tiap tingkat perubahan sudut defleksi *rudder* pada 7 tingkat kecepatan

Tabel A. 7 Nilai gaya *side* (F_S) pendekatan eksperimental untuk tiap tingkat perubahan sudut defleksi *rudder* pada 7 tingkat kecepatan

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Fs								
0° 5° 10° 15° 20° 25° 30° 35° 40° 44° 10 0.000 0.030 0.080 0.130 0.196 0.240 0.260 0.300 0.320 0.3									
10 0.000 0.030 0.080 0.130 0.196 0.240 0.260 0.300 0.320 0.3	50								
	40								
12 0.000 0.050 0.120 0.200 0.290 0.360 0.390 0.440 0.480 0.5	00								
14 0.000 0.080 0.170 0.280 0.400 0.500 0.540 0.620 0.670 0.7	10								
16 0.000 0.110 0.230 0.380 0.550 0.680 0.740 0.840 0.900 0.9	70								
18 0.000 0.150 0.310 0.500 0.710 0.900 0.980 1.100 1.180 1.2	60								
20 0.000 0.200 0.400 0.640 0.900 1.130 1.240 1.390 1.500 1.6	00								
22 0.000 0.250 0.500 0.800 1.120 1.430 1.550 1.740 1.880 2.0	08								

Tabel A. 8 Nilai koefisient $drag(C_D)$ pendekatan eksperimental untuk tiap tingkat perubahan sudut defleksi *rudder* pada 7 tingkat kecepatan

U		Nilai koefisien <i>drag</i> (C _D) stabiliser dan <i>rudder</i>								
(m/s)	δ									
	0	5	10	15	20	25	30	35	40	45
10	0,644	0,698	0,770	0,842	0,893	0,963	1,023	1,049	1,082	1,090
12	0,596	0,647	0,710	0,781	0,842	0,914	0,975	1,010	1,046	1,060
14	0,548	0,594	0,673	0,732	0,797	0,884	0,928	0,971	1,009	1,024
16	0,520	0,568	0,644	0,692	0,756	0,853	0,888	0,924	0,956	0,988
18	0,497	0,539	0,611	0,656	0,712	0,812	0,859	0,889	0,930	0,969
20	0,467	0,509	0,577	0,620	0,670	0,770	0,810	0,848	0,906	0,938
22	0,443	0,481	0,545	0,604	0,646	0,729	0,775	0,829	0,875	0,910

U	Nilai koefisien <i>side</i> (C _s) stabiliser dan <i>rudder</i>									
(m/s)	δ									
	0	5	10	15	20	25	30	35	40	45
10	0,000	0,437	0,880	1,152	1,458	1,541	1,478	1,542	1,506	1,483
12	0,000	0,505	0,917	1,230	1,499	1,605	1,539	1,571	1,569	1,514
14	0,000	0,594	0,954	1,266	1,519	1,637	1,566	1,626	1,609	1,580
16	0,000	0,625	0,988	1,315	1,599	1,705	1,643	1,687	1,655	1,653
18	0,000	0,674	1,052	1,367	1,631	1,783	1,719	1,746	1,714	1,696
20	0,000	0,728	1,100	1,417	1,674	1,813	1,762	1,787	1,765	1,744
22	0,000	0,752	1,136	1,464	1,722	1,897	1,820	1,848	1,828	1,809

Tabel A. 9 Nilai koefisient $drag(C_D)$ pendekatan eksperimental untuk tiap tingkatperubahan sudut defleksi *rudder* pada 7 tingkat kecepatan

Tabel A. 10 Visualisasi aliran melintasi *stabilizer* dan *rudder* untuk sudut ($\delta = 0^{\circ}$) dengan kecepatan U = 12 m/s, 14 m/s, 18 m/s, dan 20 m/s

Lanjutan tabel A. 10 Visualisasi aliran melintasi *stabilizer* dan *rudder* untuk sudut $(\delta = 0^{\circ})$ dengan kecepatan U = 12 m/s, 14 m/s, 18 m/s, dan 20 m/s

Tabel A. 11 Karakteristik aliran melintasi *stabilizer* dan *rudder* untuk sudut ($\delta = 5^{\circ}$) dengan kecepatan U = 12 m/s, 14 m/s, 18 m/s, dan 20 m/s**U (m/s)Profil Aliran Sesaat**

Lanjutan tabel A. 12 Karakteristik aliran melintasi *stabilizer* dan *rudder* untuk
sudut $(\delta = 5^{\circ})$ dengan kecepatan U = 12 m/s, 14 m/s, 18 m/s, dan 20 m/sU (m/s)Profil Aliran Sesaat

Tabel A. 12 Karakteristik aliran melintasi *stabilizer* dan *rudder* untuk sudut ($\delta = 10^{\circ}$) dengan kecepatan U = 12 m/s, 14 m/s, 18 m/s, dan 20 m/sU (m/s)Profil Aliran Sesaat

Lanjutan tabel A. 12 Karakteristik aliran melintasi stabilizer dan rudder untuk sudut $(\delta = 10^{\circ})$ dengan kecepatan U = 12 m/s, 14 m/s, 18 m/s, dan 20 m/sU (m/s)Profil Aliran Sesaat

Tabel A. 13 Karakteristik aliran melintasi *stabilizer* dan *rudder* untuk sudut $(\delta = 15^{\circ})$ dengan kecepatan U = 12 m/s, 14 m/s, 18 m/s, dan 20 m/s

Tabel A. 14 Karakteristik aliran melintasi *stabilizer* dan *rudder* untuk sudut ($\delta = 20^{\circ}$) dengan kecepatan U = 12 m/s, 14 m/s, 18 m/s, dan 20 m/sU (m/s)Profil Aliran Sesaat

Lanjutan tabel A. 14 Karakteristik aliran melintasi *stabilizer* dan *rudder* untuk
sudut ($\delta = 20^{\circ}$) dengan kecepatan U = 12 m/s, 14 m/s, 18 m/s, dan 20 m/sU (m/s)Profil Aliran Sesaat

Tabel A. 15 Karakteristik aliran melintasi *stabilizer* dan *rudder* untuk sudut ($\delta = 25^{\circ}$) dengan kecepatan U = 12 m/s, 14 m/s, 18 m/s, dan 20 m/sU (m/s)Profil Aliran Sesaat

Lanjutan tabel A. 15 Karakteristik aliran melintasi *stabilizer* dan *rudder* untuk
sudut ($\delta = 25^{\circ}$) dengan kecepatan U = 12 m/s, 14 m/s, 18 m/s, dan 20 m/sU (m/s)Profil Aliran Sesaat

Tabel A. 16 Karakteristik aliran melintasi *stabilizer* dan *rudder* untuk sudut ($\delta = 30^{\circ}$) dengan kecepatan U = 12 m/s, 14 m/s, 18 m/s, dan 20 m/s

Tabel A. 16 Karakteristik aliran melintasi *stabilizer* dan *rudder* untuk sudut ($\delta = 30^{\circ}$) dengan kecepatan U = 12 m/s, 14 m/s, 18 m/s, dan 20 m/sU (m/s)Profil Aliran Sesaat

Tabel A. 17 Karakteristik aliran melintasi *stabilizer* dan *rudder* untuk sudut ($\delta = 35^{\circ}$) dengan kecepatan U = 12 m/s, 14 m/s, 18 m/s, dan 20 m/sU (m/s)Profil Aliran Sesaat

Lanjutan tabel A. 17 Karakteristik aliran melintasi *stabilizer* dan *rudder* untuk
sudut ($\delta = 35^{\circ}$) dengan kecepatan U = 12 m/s, 14 m/s, 18 m/s, dan 20 m/sU (m/s)Profil Aliran Sesaat

Tabel A. 18 Karakteristik aliran melintasi *stabilizer* dan *rudder* untuk sudut ($\delta =$ 40°) dengan kecepatan U = 12 m/s, 14 m/s, 18 m/s, dan 20 m/s U (m/s) **Profil Aliran Sesaat**

Lanjutan tabel A. 18 Karakteristik aliran melintasi *stabilizer* dan *rudder* untuk
sudut ($\delta = 40^{\circ}$) dengan kecepatan U = 12 m/s, 14 m/s, 18 m/s, dan 20 m/sU (m/s)Profil Aliran Sesaat

Tabel A. 19 Karakteristik aliran melintasi *stabilizer* dan *rudder* untuk sudut ($\delta = 45^{\circ}$) dengan kecepatan U = 12 m/s, 14 m/s, 18 m/s, dan 20 m/s

Tabel A. 20 Profil kontur tekanan pada *stabilizer* dan *rudder* untuk sudut ($\delta = 0^{\circ}$) dengan kecepatan U = 12 m/s, 14 m/s, 18 m/s, dan 20 m/s

Lanjutan tabel A. 20 Profil kontur tekanan pada *stabilizer* dan *rudder* untuk sudut $(\delta = 0^{\circ})$ dengan kecepatan U = 12 m/s, 14 m/s, 18 m/s, dan 20 m/s

Tabel A. 21 Profil kontur tekanan pada *stabilizer* dan *rudder* untuk sudut ($\delta = 5^{\circ}$) dengan kecepatan U = 12 m/s, 14 m/s, 18 m/s, dan 20 m/s

Lanjutan tabel A. 21 Profil kontur tekanan pada *stabilizer* dan *rudder* untuk sudut $(\delta = 5^{\circ})$ dengan kecepatan U = 12 m/s, 14 m/s, 18 m/s, dan 20 m/s

Tabel A. 22 Profil kontur tekanan pada *stabilizer* dan *rudder* untuk sudut ($\delta = 10^{\circ}$) dengan kecepatan U = 12 m/s, 14 m/s, 18 m/s, dan 20 m/s

Lanjutan tabel A. 22 Profil kontur tekanan pada *stabilizer* dan *rudder* untuk sudut $(\delta = 10^{\circ})$ dengan kecepatan U = 12 m/s, 14 m/s, 18 m/s, dan 20 m/s

Tabel A. 23 Profil kontur tekanan pada *stabilizer* dan *rudder* untuk sudut ($\delta = 15^{\circ}$) dengan kecepatan U = 12 m/s, 14 m/s, 18 m/s, dan 20 m/s

Lanjutan tabel A. 23 Profil kontur tekanan pada *stabilizer* dan *rudder* untuk sudut $(\delta = 15^{\circ})$ dengan kecepatan U = 12 m/s, 14 m/s, 18 m/s, dan 20 m/s

Tabel A. 24 Profil kontur tekanan pada *stabilizer* dan *rudder* untuk sudut ($\delta = 20^{\circ}$) dengan kecepatan U = 12 m/s, 14 m/s, 18 m/s, dan 20 m/s

Lanjutan tabel A. 24 Profil kontur tekanan pada *stabilizer* dan *rudder* untuk sudut $(\delta = 20^{\circ})$ dengan kecepatan U = 12 m/s, 14 m/s, 18 m/s, dan 20 m/s

Tabel A. 25 Profil kontur tekanan pada *stabilizer* dan *rudder* untuk sudut ($\delta = 25^{\circ}$) dengan kecepatan U = 12 m/s, 14 m/s, 18 m/s, dan 20 m/s

Lanjutan tabel A. 25 Profil kontur tekanan pada *stabilizer* dan *rudder* untuk sudut $(\delta = 25^{\circ})$ dengan kecepatan U = 12 m/s, 14 m/s, 18 m/s, dan 20 m/s

Tabel A. 26 Profil kontur tekanan pada *stabilizer* dan *rudder* untuk sudut ($\delta = 30^{\circ}$) dengan kecepatan U = 12 m/s, 14 m/s, 18 m/s, dan 20 m/s

Lanjutan tabel A. 26 Profil kontur tekanan pada *stabilizer* dan *rudder* untuk sudut $(\delta = 30^{\circ})$ dengan kecepatan U = 12 m/s, 14 m/s, 18 m/s, dan 20 m/s

Tabel A. 27 Profil kontur tekanan pada *stabilizer* dan *rudder* untuk sudut ($\delta = 35^{\circ}$) dengan kecepatan U = 12 m/s, 14 m/s, 18 m/s, dan 20 m/s

Lanjutan tabel A. 27 Profil kontur tekanan pada *stabilizer* dan *rudder* untuk sudut $(\delta = 35^{\circ})$ dengan kecepatan U = 12 m/s, 14 m/s, 18 m/s, dan 20 m/s

Tabel A. 28 Profil kontur tekanan pada *stabilizer* dan *rudder* untuk sudut ($\delta = 40^{\circ}$) dengan kecepatan U = 12 m/s, 14 m/s, 18 m/s, dan 20 m/s

Lanjutan tabel A. 28 Profil kontur tekanan pada *stabilizer* dan *rudder* untuk sudut $(\delta = 40^{\circ})$ dengan kecepatan U = 12 m/s, 14 m/s, 18 m/s, dan 20 m/s

Tabel A. 29 Profil kontur tekanan pada *stabilizer* dan *rudder* untuk sudut ($\delta = 45^{\circ}$) dengan kecepatan U = 12 m/s, 14 m/s, 18 m/s, dan 20 m/s

Contours of Static Pressure (pascal)

Oct 31, 2024 FLUENT 6.3 (3d, pbns, ske)

Lanjutan tabel A. 29 Profil kontur tekanan pada stabilizer dan rudder untuk sudut $(\delta = 45^{\circ})$ dengan kecepatan U = 12 m/s, 14 m/s, 18 m/s, dan 20 m/s

Lampiran B

Gambar B. 1 Model spesimen pwngujian wind tunnel

Gambar B. 2 Model spesimen pwngujian smoke flow

Gambar B. 3 Proses pengujian wind tunnel

Gambar B. 4 Proses pengujian smoke flow

Gambar B. 5 Proses pengujian CFD

Gambar B. 6 Proses presentasi artikel Conference; The 2 nd International Conference on Research in Engineering Science Technology (IC-REST) 2024