DAFTAR PUSTAKA

- Amalia, F., & Emalia, Z. (2022). Fenomena Kelimpahan Sumber Daya Alam dan Natural Resource Curse Dalam Perspesktif Ekonomi Di Pulau Sumatera. Jurnal Multidisiplin Ilmu, 1(5)
- Andani, Y., & Octova, A. (2020). Eksplorasi Pasir Besi Kawasan Pasia Paneh Nagari Tiku Selatan Kecamatan Tanjung Mutiara Sebagai Bahan Baku Industri di Sumatera Barat. *Jurnal Tambang*. 5(3). ISSN: 2302-3333. 88-101.
- Arsyad, M., Tiwow, V, A., & Rampe, M, J. (2018). Analisis Mineral Magnetik Deposit Pasir Besi di Pnatai Sampulungan, Kabupaten Takalar, Sulawesi Selatan dengan Metode Difraksi Sinar-X. Jurnal Fisika: Seri Konferensi. doi:10.1088/1742-6596/1120/1/012059.
- Asri, Laelatul., Didik, L, A., & Bahtiar. (2021). Sintesis dan Analisis Kandungan Mineral dan Karakteristik Sifat Listrik Nanopartikel Pasir Besi Pantai Telindung Kabupaten Lombok Timur. *Jurnal Sains dan Teknologi*. 10(1), 85-91.
- Badan Pusat Statistik Kabupaten Takalar. (2023). Kabupaten Takalar Dalam Angka 2023. Badan Pusat Statistik.

Bahfie, F., Harahap, E, A., Alfarisy, M, I., & Arham, L, O. (2022). Pengolahan
 Pasir Besi Untuk Meningkatkan Kadar Titanium (Ti) Dengan Metode
 * misahan Magnetik Secara Basah. *Jurnal Kalitbangan*. 10(3). P-ISSN 354-5704. E-ISSN 2622-190X. jurnal.batilbangda.lampungprov.go.id/

- Bakri, s., Nawir, A., Farid, M., Nurhawaisyah, S, R., Juradi, M, I., Firdaus, F.,
 Wakila, M, H., Umar, E, P., Nurwaskito, A., Munir, A, S., Bakri, H.,
 Thamsi, A, B. (2021). Karakteristik Kandungan Mineral dan Sifat
 Kerentanan Magnetik Pasir Besi Pantai Galesong Takalar Sulawesi
 Selatan. Jurnal Geomine. 9(3), 275-284.
- Bambang, N, W. (2011). Penyelidikan Endapan Pasir Besi di Daerah Pesisir Selatan Ende-Flores Provinsi Nusa Tenggara Timur: Sub Dit. Mineral Logam.
- Cullity, B, D. (1978). *Elements* Of *X-Ray Diffraction*. Adison-Wesley Publishing Company Inc: USA.
- Ferial, D., Natalisanto, A, I., &Lazar, P, AD. (2019). Identifikasi Sebaran Mineral Bijih Besi Dengan Menggunakan Metode Resistivitas Dan Induction Polarization (IP) Di Kecamatan Muara Uya, Kabupaten Tabalong, Provinsi Kalimantan Selatan. Juenal Geosains Kutai Basai. 2(2). E-ISSN 2615-5176.
- Giacovazzo, C. (2002). Chrystallgraphy An Introduction. Springer : United Kongdom.
- Hakim, L., Dirgantara, M., & Nawir, M. ((2019). Karakteristik Struktur Material
 Pasir Bongkahan Galian Golongan C Dengan Menggunakan X-Ray
 Diffraction (XRD0 Di Kota Palangkaraya. Jurnal Jejearing Matematika
 dan Sains. 1(1).

d, C. (2009). *The Basic of Crystallography and Diffraction, Third dition*. Oxford University Press : USA.

- Howard, M., & Howard, D. (1998). Introduction to Crystallography and Mineral Crystal Systems. United States : Arkansas.
- Irsyad, A., Junaedi, S., & Malago, J, D. (2020). Sintesis dan Karakteristik Senyawa Hematit Berbahan Dasar Pasir Besi Bonto Kanang Takalar Kabupaten Takalar. *Jurnal Ilmu Fisika*. 2(2). P-ISSN 2622-5468.
- Jensen, M, L., & Bateman, A, M. (1981) Economic Mineral Deposits. Jhon Wiley & sons : New York.
- Juwita, L. (2003). Karakterisasi Material Menggunakan XRF, XRD dan SEM-EDX. Jurnal Teknik. 2(2).
- Kamila, S, S., Milenia, R., & Royani, T, T. (2023). Analisis Sifat Kemagnetan Pasir Besi Di Indonesia. Jurnal Ilmiah Multi Disiplin Indonesia. 2(8), 1761-1766.
- Kementerian Energi dan Sumber Daya Mineral. (2018). *PERMEN ESDM Nomor* 25 Tahun 2018. Kementerian Energi dan Sumber Daya Mineral.
- Kotarumalos, S, H., Limehuwey, R., & Multi, W. (2023). Genesa dan Karakteristik Endapan Pasir Besi. *Jurnal Tanah Goyang*. 1(1).
- Lahijani, H. & Tavakoli, V. (2012). Identifying Provenance Of Shout Caspian Costal Sediments Using Mineral Distribution Pettern. *Quaternary International*, 261, 128-137.

Meirawaty, M., Nugraheni, R, D., & Riyandhani, C, P. (2021). *Mineralogi*. CV. ZT CORPORA : Purwokerto.

- Muttaqin, R., Prayitno, W, S, W., & Nurbaitu,U. (2023). Pengembangan Buku
 Panduan Teknik Karakteristik Material: *X-Ray Diffraction* (XRD)
 Panalytical Xpert3 Powder. *Indonesia Jurnal of Labaratory*. 6(1). 9-16.
- Purnawan, S., Azizah., & Zaki, M. (2018). Karakteristik Sedimen dan Kandungan Mineral Pasir Besi di Labuan Haji Timur, Kabupaten Aceh Selatan. Jurnal Rekayasa Kimia dan Lingkungan.13(2). 110-119.
- Ratnawulan. (2013). Karakteristik Bijih Besi Alam Sebagai Bahan Baku Magnetit Pada Tinta Kering. *Jurnal Sains dan Matematika*. 6(1).
- Sandria, F., Juanzah, A., Rahmatia, F, R., & Arofat, G. (2015). *Genesa Bahan Galian Pasir Besi*. Bandung Institute of Technology: Bandung
- Saniah., Purnawan, S., & Karina, S. (2014). Karakteristik dan kandungan mineral pasir pantai Lhok Mee, Beureunut dan Laungah, Kabupaten Aceh berat. Jurnal Ilmu Perairan, Pesisir dan Perikanan. 3(3)
- Sukandarrumidi. (2018). *Geologi Mineral Logam*. Gadjah Mada University Press : Yogyakarta.
- Sukamto, R., & Supriatna, S. (1982). Geologi Lembar Ujung Pandang, Bantaeng dan Sinjai. Geologi. Directorate General of Mines : Bandung.
- Tiandho, Y. (2016). Analisis Pola Difraksi Sinar-X dengan Metode Rietveld Menggunakan Rietica. Bandung Institute of Technology : Bandung.

Tiwow, V, A., Rampe, M, J., & Arsyad, M. (2018). Kajian Suseptibilitas Magnetik Bergantung Frrekuensi terhadap Pasir Besi Kabupaten Takalar. *Jurnal* insmat. 7(2), 136-146.

- Trisunaryanti, W. (2015). Material Katalis dan Karakteristiknya. Gadjah Mada University Press : Yogyakarta.
- Wicaksono., & Sandi, H. (2011). Analisis Ukuran Partikel Campuran (Pasir Besi, Batu Bara CaO) dan Lama Penyinaran Gelombang Mikro Pada Reduksi Besi Oksida. Jurnal Teknik Material dan Metalurgi. h.2.
- Yulianto, A., Bijaksana, S., & Loeksmanto, W. (2003). Comparative Study on Magnetic Characterization on Iron Sand From Several Locations in Central Java. *Indonesia Journal of Physics*. 14(2).
- Zulkifli, M, D., Tholib, A., Franklin, A., Sofyan., & Sudiaman. (2002). Inventarisasi dan Evaluasi Mineral Logam di Kabupaten Takalar dan Kabupaten Gowa Provinsi Sulawesi Selatan. Kolokium Direktorat Inventarisasi Sumber Daya Mineral.

LAMPIRAN

DOKUMENTASI PENGAMBILAN SAMPEL

PROSES ANALISIS MENGGUNAKAN X-RAY DIFFRACTION

SAMPEL PENELITIAN

ALAT DAN BAHAN BAHAN

1. Hasil metode XRD untuk sampel titik 1

Match! Phase Analysis Report

Sample: sand ()

Sample Data

File name File path Data collected Data range Original data range Number of points 2501 Step size Rietveld refinement converged No Alpha2 subtracted No Background subtr. No Data smoothed No 2theta correction Radiation Wavelength 1.540600 Å

titik#1.RAW C:/Program Files/Match3/geofisika/titik#1 Jan 25, 2024 16:11:26 20.440° - 70.440° 20.000° - 70.000° 2501 0.020 No No No No No No No X-rays

ndex Amount Name

Formula sum

(%) Potassium [iron(II)/magnesium] iron(III) bis(orthophosphate)Fe1.91 K Mg0.09 O8 P2 Δ 26.6 В 73.4 Ba Fe2 H6 017 P4 38.5 Unidentified peak area Element Amount (weight %) 40.7%(*) 0 Fe 21.0% Ρ 18.8% Ba 15.5% Κ 3.1% Mg 0.2% *LE (sum) 41.4%

Details of identified phases

A: Potassium [iron(II)/magnesium] iron(III) bis(orthophosphate) (26.6 %)* Formula sum Entry number Figure-of-Merit (FoM) Total number of peaks Peaks in range Peaks matched Intensity scale factor 2theta correction Space group tem

ty

trial version www.balesio.com

Fe1.91 K Mg0.09 O8 P2 96-223-5287 0.731264* 500 282 192 0.19 0.063° P 1 21/n 1 Monoclinic a= 7.8444 Å b= 10.0033 Å c= 9.0371 Å β= 114.838 ° 2.36 3.488 g/cm³ light pink Yatskin Michael M., Zatovsky Igor V., Baumer Vyacheslav N., Ogorodnyk Ivan V., Slobodyanik Nikolay S.,

"KMg~0.09~Fe~1.91~(PO~4~)~2~", Acta Crystallographica Section E **68(6)**, i51 (2012)

B: Ba Fe2 H6 O17 P4 (73.4 %)*

Formula sum Entry number Figure-of-Merit (FoM) Total number of peaks Peaks in range Peaks matched Intensity scale factor 2theta correction Space group Crystal system Unit cell I/Ic Calc. density Color Reference

Ba Fe2 H6 O17 P4 96-156-3020 0.781148* 499 271 181 0.46 -0.002° P 1 21/c 1 Monoclinic a= 9.4956 Å b= 7.8990 Å c= 9.4444 Å β= 117.498 ° 2.06 3.441 g/cm³ Yellow Sun Wei, Huang Ya-Xi, Pan Yuanming, Mi Jin-Xiao, "Investigation on pseudosymmetry, twinning and disorder in crystalstructure determinations: Ba(H2O)M2III[PO3(OH)]4 (M=Fe, V) as examples", Journal of Solid State Chemistry 187, 89-96 (2012)

^(*)2theta values have been shifted internally for the calculation of the amounts, the intensity scaling factors as well as the figure-of-merit (FoM), due to the active search-match option 'Automatic zero point adaption'.

Search-Match

Settings

Reference database used COD-Inorg 2023.12.05 Automatic zeropoint adaptation Yes Downgrade entries with low scaling factorsYes Minimum figure-of-merit (FoM) 0.60 2theta window for peak corr. 0.30 deg. Minimum rel. int. for peak corr. 0 Parameter/influence 2theta 0.50 Parameter/influence intensities 0.50 Parameter multiple/single phase(s) 0.50

Selection Criteria

Elements:

Elements that must be present: Elements that may be present:

All elements not mentioned above

Peak List

No.	2theta [º]	d [Å]	l/l0 (peak height)	Counts (peak area)	FWHM	Matched
	24.62	3.6130	52.50	6.44	0.1200	A,B
TTTT PDF	26.46	3.3658	9.43	1.16	0.1200	А
	26.70	3.3361	10.62	2.61	0.2400	А
	27.36	3.2571	6.06	0.99	0.1600	
	27.58	3.2316	5.23	0.21	0.0400	
AD1	27.78	3.2088	7.90	0.32	0.0400	В
	28.66	3.1122	46.45	15.20	0.3200	

Fe

8	29.06	3 0703	59 52	4 87	0.0800	AR
0	20.00	3.0550	62.76	10 92	0.0000	, D D
9	29.20	3.0559	02.70	12.03	0.2000	D
10	30.36	2.9417	7.68	0.31	0.0400	
11	30.70	2.9099	14.62	2.39	0.1600	A,B
12	31.24	2.8608	1000.00	122.71	0.1200	A,B
13	31.78	2.8135	12.91	1.06	0.0800	В
14	32.24	2.7744	3.44	0.28	0.0800	
15	32.68	2.7380	6.68	0.55	0.0800	А
16	33.24	2.6931	6.25	0.26	0.0400	А
17	34.00	2.6347	4.25	0.17	0.0400	A.B
18	35.84	2 5035	11.06	0.90	0.0800	AB
19	36.02	2 4914	6 5 8	0.27	0.0400	ΔR
20	36.36	2 /689	58.03	7 12	0.1200	Λ,Β
20	36.66	2.4003	15 55	2.54	0.1200	
21	27.20	2.4434	2 71	0.15	0.1000	
22	37.30	2.4000	3.71	0.15	0.0400	A,D
23	37.56	2.3915	3.49	0.29	0.0600	A
24	38.64	2.3283	4.31	0.88	0.2000	A,B
25	39.22	2.2952	3.59	0.44	0.1200	A,B
26	39.76	2.2652	3.64	0.30	0.0800	A,B
27	41.50	2.1742	3.25	0.40	0.1200	A,B
28	41.76	2.1613	36.86	4.52	0.1200	A,B
29	42.44	2.1282	4.76	0.39	0.0800	A
30	43.58	2.0751	8.19	0.67	0.0800	В
31	43.82	2.0643	3.91	0.16	0.0400	Α
32	47.32	1.9195	3.70	0.15	0.0400	A,B
33	49.02	1.8568	3.61	0.15	0.0400	A,B
34	49.28	1.8476	35.30	2.89	0.0800	A.B
35	49.68	1.8337	4.11	0.50	0.1200	A.B
36	50.00	1 8227	2 99	0.37	0 1200	A B
37	50.16	1 8172	5.62	0.23	0.0400	R
38	50.10	1.8085	8 55	0.20	0.0400	ΔR
20	51 56	1 7711	7.96	0.00	0.0400	
39	51.50	1.7711	14.01	1.02	0.0400	
40	51.70	1.7040	14.91	1.03	0.1200	
41	52.02	1.7500	10.64	0.44	0.0400	A,B
42	52.22	1.7503	4.77	0.20	0.0400	A,B
43	52.42	1.7441	16.44	1.34	0.0800	A
44	52.58	1.7392	13.54	0.55	0.0400	A,B
45	53.14	1.7221	3.01	0.49	0.1600	A,B
46	57.92	1.5909	5.36	1.10	0.2000	A,B
47	58.12	1.5859	4.22	0.35	0.0800	A,B
48	58.30	1.5814	4.49	0.73	0.1600	A,B
49	58.90	1.5667	53.31	6.54	0.1200	A,B
50	59.08	1.5624	22.86	0.94	0.0400	А
51	59.34	1.5561	3.75	0.15	0.0400	A,B
52	60.04	1.5397	3.66	0.15	0.0400	A,B
53	60.90	1.5200	4.65	0.19	0.0400	A.B
54	61.26	1.5119	3.95	0.16	0.0400	А.́В
55	61.80	1 5000	2.98	0.49	0 1600	AB
56	62.06	1 4943	7 77	0.64	0.0800	ΔR
57	62.00	1 / 000	1 12	0.04	0.0000	
59	62.20	1.4000	6.40	0.57	0.0000	
50	62.56	1.4031	11 00	0.52	0.0800	
59	62.70	1.4793	11.00	0.90	0.0600	
60	62.90	1.4704	11.70	1.93	0.1600	
	03.04	1.4734	9.04	1.18	0.1200	A,B
62	63.38	1.4663	9.77	1.20	0.1200	A,B
DDE	63.94	1.4548	4.91	0.20	0.0400	A,B
PDF	64.10	1.4516	5.52	0.23	0.0400	A
2	64.26	1.4484	6.41	0.79	0.1200	A,B
AX	64.52	1.4432	10.57	0.86	0.0800	A
AN	64.66	1.4404	8.10	1.66	0.2000	A,B
E U	64.94	1.4348	7.74	0.32	0.0400	A,B
	65.10	1.4317	5.06	0.21	0.0400	A,B

70	65.26	1.4286	3.73	0.15	0.0400	А
71	65.44	1.4251	6.19	0.51	0.0800	А
72	65.68	1.4204	7.61	0.31	0.0400	В
73	66.00	1.4143	8.60	0.70	0.0800	A,B
74	66.26	1.4094	5.55	0.23	0.0400	A,B
75	66.42	1.4064	7.24	0.30	0.0400	A,B
76	66.56	1.4038	6.56	1.34	0.2000	A,B
77	66.84	1.3986	5.88	0.48	0.0800	A,B
78	66.98	1.3960	7.03	0.29	0.0400	В
79	67.28	1.3905	5.72	0.23	0.0400	A,B
80	67.78	1.3815	5.68	0.23	0.0400	A,B
81	68.00	1.3775	5.11	0.21	0.0400	A,B
82	68.22	1.3736	5.87	0.48	0.0800	A,B
83	68.40	1.3704	9.28	1.14	0.1200	A,B
84	68.68	1.3655	7.30	0.90	0.1200	A,B
85	68.92	1.3614	8.10	0.33	0.0400	A,B
86	69.10	1.3583	5.75	0.24	0.0400	A,B
87	69.36	1.3538	17.09	2.10	0.1200	A,B
88	69.54	1.3507	9.91	1.22	0.1200	A,B
89	69.78	1.3467	3.79	0.46	0.1200	В
90	70.00	1.3430	3.32	0.41	0.1200	A,B

Integrated Profile Areas

Based on calculated profile

Profile area	Counts	Amount
Overall diffraction profile	28797	100.00%
Background radiation	9286	32.25%
Diffraction peaks	19511	67.75%
Peak area belonging to selected phases	8412	29.21%
Peak area of phase A (Potassium [iron(II)/magnesium] iron(III)	2363	8.20%
bis(orthophosphate))		
Peak area of phase B (Ba Fe2 H6 O17 P4)	6050	21.01%
Unidentified peak area	11098	38.54%

Peak Residuals

Peak data	Counts	Amount
Overall peak intensity	235	100.00%
Peak intensity belonging to selected phases	217	92.39%
Unidentified peak intensity	18	7.61%

Diffraction Pattern Graphics

2. Hasil metode XRD untuk sampel titik 2

Match! Phase Analysis Report

Sample: sand ()

Sample Data

File name File path Data collected Data range Original data range Number of points Step size Rietveld refinement converged Alpha2 subtracted Background subtr. Data smoothed 2theta correction Radiation Wavelength IndexAmountName (%)

titik#2.RAW C:/Program Files/Match3/geofisika/titik#2 Jan 25, 2024 16:11:26 20.130° - 70.130° 20.000° - 70.000° 2501 0.020 No No No No 0.13º X-rays

1.540600 Å Formula sum

Magnetite

6

Fe3 O4

Ferrocolumbite

Ca0.001 Fe0.747 Mn0.215 Nb1.894 O6 Sc0.003 Sn0.001 Ta0.094 Ti0.027 W0.003

Optimized using trial version www.balesio.com

А

34.4

8 Unidentified peak area Amount (weight %) 33.5% 32.8% 27.8%(*)

Та	3.2%
Mn	2.2%
Ti	0.2%
W	0.1%
Sc	0.0%
Sn	0.0%
Ca	0.0%
*LE (sum)	27.8%

Details of identified phases

A: Magnetite (34.4 %)*

Formula sum	Fe3 O4
Entry number	96-900-2318
Figure-of-Merit (FoM)	0.699860*
Total number of peaks	36
Peaks in range	11
Peaks matched	8
Intensity scale factor	0.16
2theta correction	0.073°
Space group	F d -3 m
Crystal system	Cubic
Unit cell	a= 8.3837 Å
l/lc	5.65
Calc. density	5.220 g/cm ³
Reference	Haavik C., Stolen S., Fjellvag H., Hanfland M., Hausermann
	D., "Equation of state of magnetite and its high-pressure
	modification:Thermodynamics of the Fe-O system at high
	pressureSample at P = 1.4 GPa", American Mineralogist 85,

514-523 (2000)

B: Ferrocolumbite (65.6 %)* Formula sum

Entry number Figure-of-Merit (FoM) Total number of peaks Peaks in range Peaks matched Intensity scale factor 2theta correction Space group Crystal system Unit cell I/Ic Calc. density Reference

Ca0.001 Fe0.747 Mn0.215 Nb1.894 O6 Sc0.003 Sn0.001 Ta0.094 Ti0.027 W0.003 96-900-7253 0.720608* 475 80 41 0.38 0.008° Pbcn orthorhombic a= 14.3191 Å b= 5.7482 Å c= 5.0713 Å 6.95 5.484 g/cm³ Tarantino S C, Zema M, Pistorino M, Domeneghetti M C, "High-temperature X-ray investigation of natural columbitesNote: sample BRA3 at T = 300 CLocality: San Jose de Safira, Minas Gerais, Brazil", Physics and Chemistry of Minerals 30, 590-598 (2003)

^(*)2theta values have been shifted internally for the calculation of the amounts, the intensity scaling factors as well as the figure-of-merit (FoM), due to the active search-match option 'Automatic zero point adaption'.

Optimized using trial version www.balesio.com

Candidates

Formula	Entry No.	FoM
Cu2 Fe2 Ge4 O13	96-210-2753	0.6602
Cu2 Fe2 Ge4 O13	96-210-2754	0.6597

	Cu2 Fe2 Ge4 O13	96-210-2752	0.6550
	Cu2 Fe2 Ge4 O13	96-210-2751	0.6536
	Cu2 Fe2 Ge4 O13	96-210-2749	0.6464
Cu2 Fe2 (Ge4 O13)	Cu2 Fe2 Ge4 O13	96-210-2750	0.6464
	Cu2 Fe2 Ge4 O13	96-153-2854	0.6456
	Cu2 Fe2 Ge4 O13	96-210-2755	0.6426
iron tungsten nitride Y Fe (Ge2 O7)	Cu2 Fe2 Ge4 O13 Fe3 N W3 Fe Ge2 O7 Y	96-210-2756 96-200-6776 96-400-2474	0.6411 0.6137 0.6125

Search-Match

Settings

Reference database used COD-Ir	norg 2023.12.05
Automatic zeropoint adaptation Yes	
Downgrade entries with low scaling factors Yes	
Minimum figure-of-merit (FoM) 0.60	
2theta window for peak corr. 0.30 de	eg.
Minimum rel. int. for peak corr. 0	
Parameter/influence 2theta 0.50	
Parameter/influence intensities 0.50	
Parameter multiple/single phase(s) 0.50	

Selection Criteria

Elements:

Elements that must be present:	Fe
Elements that may be present:	All

All elements not mentioned above

Peak List

No.	2theta [º]	d [Å]	l/l0 (peak height)	Counts (peak area)	FWHM	Matched
1	21.67	4.0977	9.68	4.20	0.1600	
2	21.89	4.0571	13.06	1.42	0.0400	
3	22.09	4.0208	17.72	5.77	0.1200	
4	22.27	3.9887	15.98	20.81	0.4800	
5	22.41	3.9641	4.54	2.46	0.2000	
6	23.23	3.8260	7.41	2.41	0.1200	
7	24.09	3.6913	91.76	39.85	0.1600	В
8	24.45	3.6378	4.69	1.02	0.0800	
9	24.79	3.5886	51.96	16.92	0.1200	В
10	25.07	3.5492	3.57	1.55	0.1600	
11	26.05	3.4178	27.40	11.90	0.1600	
12	26.59	3.3496	9.99	2.17	0.0800	В
13	26.97	3.3033	5.54	0.60	0.0400	
14	27.21	3.2747	5.56	1.81	0.1200	
15	27.95	3.1897	90.80	78.86	0.3200	
16	28.57	3.1218	22.57	9.80	0.1600	
17	30.09	2.9675	1000.00	325.70	0.1200	A,B
18	30.53	2.9257	27.92	27.28	0.3600	
PDF	30.97	2.8852	38.71	21.01	0.2000	В
THE REAL	31.43	2.8440	6.09	0.66	0.0400	
221	31.99	2.7955	4.19	0.45	0.0400	
	32.73	2.7339	3.32	0.36	0.0400	
AN	32.87	2.7226	3.25	0.35	0.0400	
3	33.47	2.6752	6.16	0.67	0.0400	В

25	35.23	2.5454	9.02	0.98	0.0400	В
26	35.37	2.5357	11.26	7.33	0.2400	A,B
27	35.91	2.4988	31.21	23.72	0.2800	B
28	36.27	2.4748	4.01	1.31	0.1200	В
29	36.95	2.4308	6.51	2.12	0.1200	А
30	40.49	2.2261	6.29	0.68	0.0400	В
31	42.07	2.1461	6.90	0.75	0.0400	
32	42.23	2.1383	5.07	0.55	0.0400	
33	43.07	2.0985	3.95	0.86	0.0800	A,B
34	45.03	2.0116	22.35	7.28	0.1200	В
35	46.93	1.9345	4.91	1.60	0.1200	
36	47.15	1.9260	4.76	1.03	0.0800	A,B
37	48.75	1.8665	7.18	0.78	0.0400	
38	50.11	1.8189	14.00	6.08	0.1600	
39	51.15	1.7844	10.07	3.28	0.1200	В
40	51.37	1.7772	8.43	0.92	0.0400	В
41	51.51	1.7727	9.41	1.02	0.0400	
42	51.65	1.7683	8.91	4.84	0.2000	В
43	52.57	1.7395	4.42	0.48	0.0400	В
44	52.71	1.7352	4.29	0.47	0.0400	В
45	54.87	1.6719	8.02	2.61	0.1200	В
46	57.05	1.6131	40.97	13.34	0.1200	A,B
47	57.23	1.6084	17.08	5.56	0.1200	
48	57.39	1.6043	4.12	0.89	0.0800	В
49	60.99	1.5179	6.95	1.51	0.0800	В
50	61.15	1.5144	3.42	0.74	0.0800	
51	62.57	1.4834	8.79	0.95	0.0400	A,B
52	62.85	1.4774	3.80	1.24	0.1200	В
53	64.09	1.4518	6.91	2.25	0.1200	В
54	64.35	1.4466	4.52	0.98	0.0800	
55	66.73	1.4006	13.79	4.49	0.1200	A,B

Integrated Profile Areas

Based on calculated profile

Profile area	Counts	Amount
Overall diffraction profile	87096	100.00%
Background radiation	42105	48.34%
Diffraction peaks	44991	51.66%
Peak area belonging to selected phases	10285	11.81%
Peak area of phase A (Magnetite)	2210	2.54%
Peak area of phase B (Ferrocolumbite)	8075	9.27%
Unidentified peak area	34706	39.85%

Peak Residuals

Peak data	Counts	Amount
Overall peak intensity	679	100.00%
Peak intensity belonging to selected phases	638	94.07%
Unidentified peak intensity	40	5.93%

Diffraction Pattern Graphics

3. Hasil metode XRD untuk sampel titik 3

Match! Phase Analysis Report

Sample: sand ()

Sa	mple Data			
File	e name		titik#3.RAW	
File	e path		C:/Program	
			Files/Match3/geofisil	ka/titik#3
Da	ta collected		Jan 25, 2024 16:11:2	26
Da	ita range		20.000° - 70.000°	
Or	iginal data range		20.000° - 70.000°	
Nu	imber of points		2501	
Ste	ep size		0.020	
Rie	etveld refinement co	nverged	No	
Alp	oha2 subtracted		No	
Ba	ckground subtr.		No	
Da	ita smoothed		Yes	
Ra	diation		X-rays	
Wa	avelength		1.540600 Å	
de	ex Amount (%)	Name		Formula sum
ŀ	A 12.3	Magneti	te	Fe2.719 O4 Si0.289
	45.9	Magnesi	um oxide Periclase	Mg O
PD	F 5.7	Hexaferi	rum	Fe0.69 Ir0.05 Ni0.02 Os0.18 Ru0.06
	7 17.7	Hematite	Э	Fe2 O3
	18.4	Copper		Cu
	IV 46.8	Unidenti	fied peak area	
	🕙 Amount (w	reight %)		
	27.7	%		
Optimized us trial versio	ing n com			

0	27.0%(*)
Fe	23.1%
Cu	18.4%
Os	2.2%
Ir	0.6%
Si	0.4%
Ru	0.4%
Ni	0.1%
*LE (sum)	27.0%

Details of identified phases

A: Magnetite (12.3 %)*

Formula sum Entry number Figure-of-Merit (FoM) Total number of peaks Peaks in range Peaks matched Intensity scale factor 2theta correction Space group Crystal system Unit cell I/Ic Calc. density Reference

B: Magnesium oxide

Periclase (45.9 %)* Formula sum Entry number Figure-of-Merit (FoM) Total number of peaks Peaks in range Peaks matched Intensity scale factor 2theta correction Space group Crystal system Unit cell l/lc Meas. density Calc. density Reference

*C: Hexaferrum (5.7 %)** Formula sum Entry number

PDF

Optimized using trial version www.balesio.com lerit (FoM) er of peaks nge :hed ale factor ection Fe2.719 O4 Si0.289 96-900-6923 0.655044* 36 10 6 0.30 -0.026° F d -3 m Cubic a= 8.3740 Å 5.28 5.067 g/cm3 Yamanaka T., Shimazu H., Ota K., "Electric conductivity of Fe2SiO4-Fe3O4 spinel solid solutionsSample: Fe(3-x)SixO4, x = 0.288, synthesized at 1200 C, 10 GPa", Physics and Chemistry of Minerals 28, 110-118 (2001)

Mg O 96-101-1119 0.752039* 10 3 2 0.69 0.005° F m -3 m Cubic a= 4.2000 Å 3.22 3.560 g/cm³ 3.613 g/cm³ Schiebold E, "Crystal Structure", Zeitschrift fuer Kristallographie, Kristallgeometrie, Kristallphysik, Kristallchemie (-144, 1977) 56, 430-430 (1927)

Fe0.69 Ir0.05 Ni0.02 Os0.18 Ru0.06 96-901-7842 0.731130^{*} 18 4 3 0.37 -0.021[°] Space group Crystal system Unit cell I/Ic Calc. density Reference

D: Hematite (17.7 %)*

Formula sum Entry number Figure-of-Merit (FoM) Total number of peaks Peaks in range Peaks matched Intensity scale factor 2theta correction Space group Crystal system Unit cell I/Ic Calc. density Reference

E: Copper (18.4 %)*

Formula sum Entry number Figure-of-Merit (FoM) Total number of peaks Peaks in range Peaks matched Intensity scale factor 2theta correction Space group Crystal system Unit cell I/Ic Calc. density Reference P 63/m m c Hexagonal a= 2.5910 Å c= 4.1680 Å 13.70 12.283 g/cm³ Mochalov A. G., Dmitrenko G. G., Rudashevsky N. S., Zhernovsky I. V., Boldyreva M. M., "Hexaferrum (Fe,Ru),(Fe,Os),(Fe,Ir) - a new mineralNote: sample 117-8", Zapiski Vserossijskogo Mineralogicheskogo Obshchestva **127**, 41-51 (1998)

Fe2 O3 96-901-5504 0.703120* 75 14 10 0.31 0.029° R -3 c trigonal (hexagonal axes) a= 5.0020 Å c= 13.6202 Å 3.73 5.391 g/cm3 Finger L. W., Hazen R. M., "Crystal structure and isothermal compression of Fe2O3, Cr2O3, and V2O3 to 50 kbarsNote: P = 52.4 kbar", Journal of Applied Physics 51, 5362-5367 (1980)

Cu 96-901-3021 0.733142* 8 2 2 1.01 0.017° F m -3 m Cubic a= 3.6670 Å 11.74 8.560 g/cm3 Suh I.-K., Ohta H., Waseda Y., "High-temperature thermal expansion of six metallic elements measuredby dilatation method and X-ray diffractionSample: at T = 1076 K", Journal of Materials Science 23, 757-760 (1988)

^(*)2theta values have been shifted internally for the calculation of the amounts, the intensity scaling factors as well as the figure-of-merit (FoM), due to the active search-match option 'Automatic zero point adaption'.

Candidates

Formula	Entry No.	FoM
Cu0.8 Fe0.2	96-152- 4702	0.7270
Ag16 As4 Fe0.526 Hg0.474 S15	96-901- 5731	0.7255

Fluorarrojadite-(KFe)	Al Ca0.84 F2 Fe10.52 K0.83 Mg3.48	96-901- 5723	0.7162
Barium diiron tetraoxide	Ba Fe2 O4	96-200-	0.7009
Franklinite	Fe2 O4 Zn	2359 96-900-	0.7007
K Na5 Ca (Fe10 Mn3) Al F2 (P O4)12	Al Ca F2 Fe10 K Mn3 Na5 O48 P12	96-152-	0.7005
(Fe0.75 Pd0.25)	Fe0.75 Pd0.25	96-152- 3351	0.6983
Arrojadite-(KFe)	Al Ca F2 Fe14 K Na4 O48 P12	96-900-	0.6954
Arrojadite-(KNa)	Al Ba0.06 Ca0.23 Fe11.69 K0.68	96-901- 5152	0.6919
potassium iron germanate	Fe Ge K O4	96-200- 8723	0.6832
ferric perchlorate nonahydrate	Cl3 Fe H18 O21	96-224- 0190	0.6813
hexaaquairon(III) tris(perchlorate) trihydrate	Cl3 Fe H18 O21	96-220- 8606	0.6804
	Bi3 Fe Mo2 O12	96-723- 2466	0.6803
Fluorarrojadite-(KFe)	Al Ca1.168 F2 Fe12.26 K0.908 Mg2.52 Na3.152 O48 P11.916	96-901- 5467	0.6775
Grandaite	Al0.68 As1.77 Ba0.079 Ca0.452 Fe0.14 H Mg0.13 Mn0.12 O9 Sr1.469 V0.23	96-901- 7668	0.6775
Bi5.789 Nb10.01 Fe0.99 O35.492	Bi5.789 Fe0.99 Nb10.01 O35.492	96-152- 8540	0.6747
Diopside	Al0.27 Ca0.52 Fe0.24 Mg0.66 Mn0.01 Na0.29 O6 Si2 Ti0.01	96-900- 1338	0.6671
	Fe2 O3	96-152- 8613	0.6670
	Fe2 O3 C0 F8 Fe2 N6 O8 P2	96-152- 8613 96-411- 4284	0.6670 0.6661
Diopside	Fe2 O3 C0 F8 Fe2 N6 O8 P2 Al0.029 Ca0.509 Cr0.223 Fe0.011 Mg0.488 Mn0.001 Na0.491 O6 Si1.99 Ti0 001V0 257	96-152- 8613 96-411- 4284 96-900- 2723	0.6670 0.6661 0.6641
Diopside Diopside	Fe2 O3 C0 F8 Fe2 N6 O8 P2 Al0.029 Ca0.509 Cr0.223 Fe0.011 Mg0.488 Mn0.001 Na0.491 O6 Si1.99 Ti0.001V0.257 Al0.035 Ca0.51 Cr0.247 Fe0.007 Mg0.484 Mn0.001 Na0.49 O6 Si1.982	96-152- 8613 96-411- 4284 96-900- 2723 96-900- 2722	0.6670 0.6661 0.6641 0.6637
Diopside Diopside Diopside	Fe2 O3 C0 F8 Fe2 N6 O8 P2 Al0.029 Ca0.509 Cr0.223 Fe0.011 Mg0.488 Mn0.001 Na0.491 O6 Si1.99 Ti0.001V0.257 Al0.035 Ca0.51 Cr0.247 Fe0.007 Mg0.484 Mn0.001 Na0.49 O6 Si1.982 V0.244 Al0.22 Ca0.61 Fe0.2 Mg0.72 Na0.25 O6 Si2	96-152- 8613 96-411- 4284 96-900- 2723 96-900- 2722 96-900- 1336	0.6670 0.6661 0.6641 0.6637 0.6635
Diopside Diopside Diopside Diopside	Fe2 O3 C0 F8 Fe2 N6 O8 P2 Al0.029 Ca0.509 Cr0.223 Fe0.011 Mg0.488 Mn0.001 Na0.491 O6 Si1.99 Ti0.001V0.257 Al0.035 Ca0.51 Cr0.247 Fe0.007 Mg0.484 Mn0.001 Na0.49 O6 Si1.982 V0.244 Al0.22 Ca0.61 Fe0.2 Mg0.72 Na0.25 O6 Si2 Al0.323 Ca0.661 Cr0.005 Fe0.206 Mg0.771 Mn0.001 Na0.153 O6 Si4 951 Ti0.020	96-152- 8613 96-411- 4284 96-900- 2723 96-900- 2722 96-900- 1336 96-900- 5010	0.6670 0.6661 0.6641 0.6637 0.6635 0.6630
Diopside Diopside Diopside Diopside Omphacite	Fe2 O3 C0 F8 Fe2 N6 O8 P2 Al0.029 Ca0.509 Cr0.223 Fe0.011 Mg0.488 Mn0.001 Na0.491 O6 Si1.99 Ti0.001V0.257 Al0.035 Ca0.51 Cr0.247 Fe0.007 Mg0.484 Mn0.001 Na0.49 O6 Si1.982 V0.244 Al0.22 Ca0.61 Fe0.2 Mg0.72 Na0.25 O6 Si2 Al0.323 Ca0.661 Cr0.005 Fe0.206 Mg0.771 Mn0.001 Na0.153 O6 Si1.851 Ti0.029 Al0.51 Ca0.5 Fe0.06 Mg0.46 Na0.5 O6 Si1.97	96-152- 8613 96-411- 4284 96-900- 2723 96-900- 1336 96-900- 5010 96-901- 1810	0.6670 0.6661 0.6641 0.6637 0.6635 0.6630 0.6614
Diopside Diopside Diopside Diopside Omphacite (Na.118 Ca.553 Mg1.087 Fe.125 Fe.025 Al.119) Si1.973 O6	Fe2 O3 C0 F8 Fe2 N6 O8 P2 Al0.029 Ca0.509 Cr0.223 Fe0.011 Mg0.488 Mn0.001 Na0.491 O6 Si1.99 Ti0.001V0.257 Al0.035 Ca0.51 Cr0.247 Fe0.007 Mg0.484 Mn0.001 Na0.49 O6 Si1.982 V0.244 Al0.22 Ca0.61 Fe0.2 Mg0.72 Na0.25 O6 Si2 Al0.323 Ca0.661 Cr0.005 Fe0.206 Mg0.771 Mn0.001 Na0.153 O6 Si1.851 Ti0.029 Al0.51 Ca0.5 Fe0.06 Mg0.46 Na0.5 O6 Si1.97 Al0.119 Ca0.553 Fe0.15 Mg1.087 Na0.118 O6 Si1.973	96-152- 8613 96-411- 4284 96-900- 2723 96-900- 1336 96-900- 1336 96-900- 5010 96-901- 1810 96-153- 1794	0.6670 0.6661 0.6637 0.6635 0.6630 0.6614 0.6604
Diopside Diopside Diopside Diopside Omphacite (Na.118 Ca.553 Mg1.087 Fe.125 Fe.025 Al.119) Si1.973 O6 Diopside	Fe2 O3 C0 F8 Fe2 N6 O8 P2 Al0.029 Ca0.509 Cr0.223 Fe0.011 Mg0.488 Mn0.001 Na0.491 O6 Si1.99 Ti0.001V0.257 Al0.035 Ca0.51 Cr0.247 Fe0.007 Mg0.484 Mn0.001 Na0.49 O6 Si1.982 V0.244 Al0.22 Ca0.61 Fe0.2 Mg0.72 Na0.25 O6 Si2 Al0.323 Ca0.661 Cr0.005 Fe0.206 Mg0.771 Mn0.001 Na0.153 O6 Si1.851 Ti0.029 Al0.51 Ca0.5 Fe0.06 Mg0.46 Na0.5 O6 Si1.97 Al0.119 Ca0.553 Fe0.15 Mg1.087 Na0.118 O6 Si1.973 Al0.42 Ca0.646 Fe0.271 Mg0.69 Mn0.003 Na0.143 O6 Si1.783 Ti0.044	96-152- 8613 96-411- 4284 96-900- 2723 96-900- 1336 96-900- 1336 96-900- 5010 96-901- 1810 96-153- 1794 96-900- 4997	0.6670 0.6661 0.6637 0.6635 0.6630 0.6614 0.6604 0.6600
Diopside Diopside Diopside Diopside Omphacite (Na.118 Ca.553 Mg1.087 Fe.125 Fe.025 Al.119) Si1.973 O6 Diopside Diopside	Fe2 O3 C0 F8 Fe2 N6 O8 P2 Al0.029 Ca0.509 Cr0.223 Fe0.011 Mg0.488 Mn0.001 Na0.491 O6 Si1.99 Ti0.001V0.257 Al0.035 Ca0.51 Cr0.247 Fe0.007 Mg0.484 Mn0.001 Na0.49 O6 Si1.982 V0.244 Al0.22 Ca0.61 Fe0.2 Mg0.72 Na0.25 O6 Si2 Al0.323 Ca0.661 Cr0.005 Fe0.206 Mg0.771 Mn0.001 Na0.153 O6 Si1.851 Ti0.029 Al0.51 Ca0.5 Fe0.06 Mg0.46 Na0.5 O6 Si1.97 Al0.119 Ca0.553 Fe0.15 Mg1.087 Na0.118 O6 Si1.973 Al0.42 Ca0.646 Fe0.271 Mg0.69 Mn0.003 Na0.143 O6 Si1.783 Ti0.044 Ca0.58 Fe0.5 Mg0.5 Na0.42 O6 Si2	96-152- 8613 96-411- 4284 96-900- 2723 96-900- 1336 96-900- 1336 96-900- 1810 96-901- 1810 96-153- 1794 96-900- 4997 96-901- 4599	0.6670 0.6661 0.6637 0.6635 0.6630 0.6614 0.6604 0.6600
Diopside Diopside Diopside Diopside Omphacite (Na.118 Ca.553 Mg1.087 Fe.125 Fe.025 Al.119) Si1.973 O6 Diopside Diopside (Mg0.89 Fe0.11) Al2 (P O4)2 (O H)2	Fe2 O3 C0 F8 Fe2 N6 O8 P2 Al0.029 Ca0.509 Cr0.223 Fe0.011 Mg0.488 Mn0.001 Na0.491 O6 Si1.99 Ti0.001V0.257 Al0.035 Ca0.51 Cr0.247 Fe0.007 Mg0.484 Mn0.001 Na0.49 O6 Si1.982 V0.244 Al0.22 Ca0.61 Fe0.2 Mg0.72 Na0.25 O6 Si2 Al0.323 Ca0.661 Cr0.005 Fe0.206 Mg0.771 Mn0.001 Na0.153 O6 Si1.851 Ti0.029 Al0.51 Ca0.5 Fe0.06 Mg0.46 Na0.5 O6 Si1.97 Al0.119 Ca0.553 Fe0.15 Mg1.087 Na0.118 O6 Si1.973 Al0.42 Ca0.646 Fe0.271 Mg0.69 Mn0.003 Na0.143 O6 Si1.783 Ti0.044 Ca0.58 Fe0.5 Mg0.5 Na0.42 O6 Si2	96-152- 8613 96-411- 4284 96-900- 2723 96-900- 2722 96-900- 1336 96-900- 5010 96-901- 1810 96-153- 1794 96-900- 4997 96-901- 4599 96-154- 2135	0.6670 0.6661 0.6637 0.6635 0.6630 0.6604 0.6600 0.6600 0.6598
Diopside Diopside Diopside Diopside Diopside Omphacite (Na.118 Ca.553 Mg1.087 Fe.125 Fe.025 Al.119) Si1.973 O6 Diopside Diopside Diopside Diopside Diopside Diopside	Fe2 O3 C0 F8 Fe2 N6 O8 P2 Al0.029 Ca0.509 Cr0.223 Fe0.011 Mg0.488 Mn0.001 Na0.491 O6 Si1.99 Ti0.001V0.257 Al0.035 Ca0.51 Cr0.247 Fe0.007 Mg0.484 Mn0.001 Na0.49 O6 Si1.982 V0.244 Al0.22 Ca0.61 Fe0.2 Mg0.72 Na0.25 O6 Si2 Al0.323 Ca0.661 Cr0.005 Fe0.206 Mg0.771 Mn0.001 Na0.153 O6 Si1.851 Ti0.029 Al0.51 Ca0.5 Fe0.06 Mg0.46 Na0.5 O6 Si1.97 Al0.119 Ca0.553 Fe0.15 Mg1.087 Na0.118 O6 Si1.973 Al0.42 Ca0.646 Fe0.271 Mg0.69 Mn0.003 Na0.143 O6 Si1.783 Ti0.044 Ca0.58 Fe0.5 Mg0.5 Na0.42 O6 Si2 Al2 Fe0.11 H2 Mg0.89 O10 P2 Al0.34 Ca0.6 Fe0.2 Mg0.9 Na0.1 O6 Si1.82	96-152- 8613 96-411- 4284 96-900- 2723 96-900- 1336 96-900- 1336 96-900- 5010 96-901- 1810 96-153- 1794 96-901- 4599 96-154- 2135 96-100- 0036	0.6670 0.6661 0.6637 0.6635 0.6630 0.6604 0.6600 0.6600 0.6598 0.6587
Diopside Diopside Diopside Diopside Diopside Omphacite (Na.118 Ca.553 Mg1.087 Fe.125 Fe.025 Al.119) Si1.973 O6 Diopside Diopside Diopside Diopside Cium magnesium iron titanium te * (Augite))2Fe0.01Al0.99Si2.99O8 (albite)	Fe2 O3 C0 F8 Fe2 N6 O8 P2 Al0.029 Ca0.509 Cr0.223 Fe0.011 Mg0.488 Mn0.001 Na0.491 O6 Si1.99 Ti0.001V0.257 Al0.035 Ca0.51 Cr0.247 Fe0.007 Mg0.484 Mn0.001 Na0.49 O6 Si1.982 V0.244 Al0.22 Ca0.61 Fe0.2 Mg0.72 Na0.25 O6 Si2 Al0.323 Ca0.661 Cr0.005 Fe0.206 Mg0.771 Mn0.001 Na0.153 O6 Si1.851 Ti0.029 Al0.51 Ca0.5 Fe0.06 Mg0.46 Na0.5 O6 Si1.97 Al0.119 Ca0.553 Fe0.15 Mg1.087 Na0.118 O6 Si1.973 Al0.42 Ca0.646 Fe0.271 Mg0.69 Mn0.003 Na0.143 O6 Si1.783 Ti0.044 Ca0.58 Fe0.5 Mg0.5 Na0.42 O6 Si2 Al2 Fe0.11 H2 Mg0.89 O10 P2 Al0.34 Ca0.6 Fe0.2 Mg0.9 Na0.1 O6 Si1.82 Al0.99 Fe0.01 K0.01 Na1.02 O8 Si2.99	96-152- 8613 96-411- 4284 96-900- 2723 96-900- 1336 96-900- 1336 96-900- 5010 96-901- 1810 96-153- 1794 96-901- 4599 96-154- 2135 96-100- 0036 96-155- 7000	0.6670 0.6661 0.6637 0.6635 0.6630 0.6604 0.6600 0.6600 0.6598 0.6587 0.6582

Labyrinthite	Si1.888 Ti0.008 Ca12 Ce0.102 Cl2.68 F0.68 Fe2.19 H11.56 K1.452 Mn0.81 Na34.53 O151 54 Si51 2Sr0 735 Ti0.52 Zr6	96-901- 2646	0.6565
Fe Zn Sb	Fe Sb Zn	96-152-	0.6564
Iron	Fe	96-901- 4477	0.6560
Iron	Fe	96-901- 4712	0.6560
Iron	Fe	96-901- 5072	0.6560
Diopside	Al0.444 Ca0.637 Cr0.001 Fe0.29 Mg0.647 Mn0.004 Na0.159 O6 Si1.772 Ti0.046	96-900- 4998	0.6555
Lazulite	Al2 Fe0.134 H2 Mg0.866 O10 P2	96-900- 9305	0.6552
Franklinite	Fe2 O4 Zn	96-900- 6902	0.6549
(B5 Er8 Fe70 Si2)0.024	B0.118 Er0.188 Fe1.648 Si0.048	96-151- 1038	0.6535
Pigeonite	Al0.02 Ca0.121 Fe1.008 Mg0.871 O6 Si1.98	96-901- 3710	0.6528
Diopside	Al0.426 Ca0.631 Fe0.295 Mg0.662 Mn0.004 Na0.163 O6 Si1.777 Ti0.042	96-900- 5000	0.6526
Tribarium diiron(III) digallium dialuminium oxide	Al2 Ba3 Fe2 Ga2 O12	96-200- 2554	0.6516
Diopside	Al0.32 Ca0.55 Fe0.15 Mg0.65 Na0.3 O6 Si2 Ti0.01	96-900- 1339	0.6506
	Fe3 N1.235	96-152- 5732	0.6505
Silver iron (0.3/0.7)	Ag0.3 Fe0.7	96-150- 9089	0.6504
Katayamalite	Ca7 F0.24 Fe0.05 H1.76 K0.89 Li3 Na0.11 O37.76 Si12 Ti1.95	96-901- 2100	0.6494
Ca.818 Mg.792 Fe.183 Fe.086 Al.151 Al.269 Si1.731 O6	Al0.42 Ca0.818 Fe0.269 Mg0.792 O6 Si1.731	96-152- 6738	0.6493
Enstatite	Al0.03 Fe0.15 Mg1.82 O6 Si1.97	96-901- 0889	0.6490
Aegirine	Ca0.25 Fe Na0.75 O6 Si2	96-900- 5437	0.6487
Enstatite	Al0.03 Fe0.15 Mg1.82 O6 Si1.97	96-901- 0897	0.6477
Iron cobalt sulfide	Co Fe S2	96-101- 0434	0.6470
and 178 others			

Search-Match

Settings

Optimized using trial version www.balesio.com

 Reference database used
 COD-Inorg 2023.12.05

 Automatic zeropoint adaptation
 Yes

 Downgrade entries with low scaling factorsYes
 Downgrade entries with low scaling factorsYes

 Minimum figure-of-merit (FoM)
 0.60

 Iow for peak corr.
 0.30 deg.

 Influence 2theta
 0.50

 influence intensities
 0.50

 multiple/single phase(s)
 0.50

Selection Criteria

Elements:

Elements that must be present:

Elements that may be present:

All elements not mentioned above

Peak List

Fe

No.	2theta [º]	d [Å]	I/I0 (peak height)	Counts (peak area)	FWHM	Matched
1	20.12	4.4098	52.36	2.02	0.0647	
2	20.26	4.3796	1.62	0.10	0.1033	
3	20.40	4.3499	36.97	2.28	0.1033	
4	20.48	4.3331	29.80	1.84	0.1033	
5	20.92	4.2429	110.96	5.30	0.0800	
6	21.14	4.1993	28.10	1.34	0.0800	
7	21.34	4.1604	35.13	1.68	0.0800	
8	21.66	4.0996	5.64	0.27	0.0800	
9	22.02	4.0334	218.72	13.69	0.1049	
10	22.28	3.9869	9.34	0.45	0.0800	
11	23.28	3.8179	8.39	0.22	0.0441	
12	23.90	3.7202	53.78	6.67	0.2081	
13	24.10	3.6898	10.90	2.41	0.3705	
14	24.24	3.6688	12.04	1.55	0.2163	D
15	26.10	3.4114	19.43	1.48	0.1275	
16	26.88	3.3142	15.29	0.45	0.0489	
17	27.48	3.2431	34.56	8.00	0.3880	
18	27.58	3.2316	82.74	5.92	0.1200	
19	27.92	3.1930	865.01	73.05	0.1416	
20	28.14	3.1686	78.54	4.22	0.0900	
21	28.52	3.1272	19.25	1.33	0.1160	
22	28.70	3.1080	17.45	0.45	0.0431	
23	29.66	3.0095	14.67	0.46	0.0523	
24	29.88	2.9879	91.19	6.15	0.1131	
25	30.12	2.9646	71.51	5.71	0.1339	A
26	30.28	2.9493	84.10	5.45	0.1087	
27	30.56	2.9229	141.61	10.14	0.1200	
28	30.76	2.9044	15.10	2.94	0.3268	
29	31.04	2.8788	20.82	2.22	0.1786	
30	31.34	2.8519	15.68	1.14	0.1219	
31	31.62	2.8273	15.58	0.54	0.0580	
32	31.84	2.8083	67.29	4.74	0.1180	
33	32.90	2.7202	31.03	2.46	0.1331	_
34	33.38	2.6822	118.23	20.07	0.2846	D
35	33.88	2.6437	42.89	2.05	0.0800	
36	35.22	2.5461	133.18	9.53	0.1200	
37	35.30	2.5406	49.10	1.51	0.0517	
38	35.60	2.5198	108.95	10.40	0.1600	A
39	35.80	2.5062	137.64	14.46	0.1761	D
40	35.96	2.4954	70.42	25.21	0.6000	
41	36.10	2.4861	162.28	7.70	0.0795	
42	40.02	2.2511	141.83	5.46	0.0645	0
DDE	40.12	2.2457	54.12	2.29	0.0710	C
FOR	41.10	2.1944	/2.46	11.56	0.2674	D
	42.64	2.1187	1000.00	65.66	0.1101	E
CAK I	43.04	2.0999	36.94	20.27	0.9200	В
AH	43.16	2.0943	113.19	8.10	0.1200	A
80	43.30	2.0879	98.63	11.77	0.2000	~
	43.44	2.0815	49.24	3.53	0.1200	С

50	45.92	1.9747	466.60	19.33	0.0694	С
51	46.46	1.9530	17.01	0.54	0.0527	
52	46.86	1.9372	9.52	0.49	0.0855	
53	47.06	1.9295	7.94	0.22	0.0466	Α
54	49.00	1.8575	16.84	0.80	0.0794	
55	49.42	1.8427	13.58	1.24	0.1529	
56	49.70	1.8330	54.66	7.03	0.2154	Е
57	49.78	1.8302	44.52	13.81	0.5200	D
58	49.94	1.8247	28.48	2.28	0.1342	
59	50.06	1.8206	10.82	0.52	0.0799	
60	50.38	1.8098	18.54	0.81	0.0732	
61	50.60	1.8025	277.85	15.03	0.0907	
62	50.74	1.7978	123.68	5.19	0.0703	
63	52.00	1.7572	139.31	7.24	0.0872	
64	54.38	1.6858	49.03	15.06	0.5149	
65	54.50	1.6823	46.10	3.30	0.1200	D
66	56.72	1.6217	290.13	13.83	0.0799	D
67	56.88	1.6175	130.37	5.76	0.0741	
68	57.20	1.6092	102.36	10.67	0.1748	Α
69	58.62	1.5735	15.16	2.25	0.2490	
70	59.72	1.5472	21.91	1.05	0.0800	
71	62.48	1.4853	277.55	19.87	0.1200	В
72	62.66	1.4814	164.10	16.42	0.1677	Α
73	62.94	1.4755	56.97	9.24	0.2720	D
74	63.62	1.4614	171.53	8.84	0.0863	
75	63.76	1.4585	53.13	3.99	0.1260	
76	63.94	1.4548	24.23	2.36	0.1631	
77	64.78	1.4380	19.65	0.62	0.0531	D
78	66.42	1.4064	119.76	7.38	0.1033	
79	66.60	1.4030	58.24	2.59	0.0746	D

Integrated Profile Areas

Based on calculated profile

Profile area	Counts	Amount
Overall diffraction profile	42975	100.00%
Background radiation	13339	31.04%
Diffraction peaks	29636	68.96%
Peak area belonging to selected phases	9542	22.20%
Peak area of phase A (Magnetite)	1435	3.34%
Peak area of phase B (Magnesium oxide Periclase)	2037	4.74%
Peak area of phase C (Hexaferrum)	1072	2.50%
Peak area of phase D (Hematite)	2384	5.55%
Peak area of phase E (Copper)	2614	6.08%
Unidentified peak area	20094	46.76%

Peak Residuals

Peak data	Counts	Amount
Overall peak intensity	594	100.00%
Peak intensity belonging to selected phases	557	93.81%
Unidentified peak intensity	37	6.19%

Optimized using trial version www.balesio.com

Diffraction Pattern Graphics

67

trial version www.balesio.com