DAFTAR PUSTAKA

- R.G. Jalu, T.A. Chamada, Dr.R. Kasirajan, Calcium oxide nanoparticles synthesis from hen eggshells for removal of lead (Pb(II)) from aqueous solution, Environmental Challenges. 4 (2021) 100193. https://doi.org/10. 1016/j.envc.2021.100193.
- [2] J. Briffa, E. Sinagra, R. Blundell, Heavy metal pollution in the environment and their toxicological effects on humans, Heliyon. 6 (2020) e04691. https://doi.org/10.1016/j.heliyon.2020.e04691.
- [3] M. Boskabady, N. Marefati, T. Farkhondeh, F. Shakeri, A. Farshbaf, M.H. Boskabady, The effect of environmental lead exposure on human health and the contribution of inflammatory mechanisms, a review, Environ Int. 120 (2018) 404–420. https://doi.org/10.1016/j.envint.2018.08.013.
- [4] B. Debnath, W. Singh, K. Manna, Sources and toxicological effects of lead on human health, Indian Journal of Medical Specialities. 10 (2019) 66. https://doi.org/10.4103/INJMS_INJMS_30_18.
- [5] X. Deng, L. Lü, H. Li, F. Luo, The adsorption properties of Pb(II) and Cd(II) on functionalized graphene prepared by electrolysis method, J Hazard Mater. 183 (2010) 923–930. https://doi.org/10.1016/j.jhazmat. 2010.07.117.
- [6] Y.-H. Li, Z. Di, J. Ding, D. Wu, Z. Luan, Y. Zhu, Adsorption thermodynamic, kinetic and desorption studies of Pb2+ on carbon nanotubes, Water Res. 39 (2005) 605–609. https://doi.org/10.1016/j.watres.2004.11.004
- [7] A.A. Muataz, M. Fettouhi, A. Al Mammum, N. Yahya, Lead removal by using carbon nanotubes, International Journal of Nanoparticles. 2 (2009) 329. https://doi.org/10.1504/IJNP.2009.028767.
- [8] P. Pourhakkak, A. Taghizadeh, M. Taghizadeh, M. Ghaedi, S. Haghdoust, Fundamentals of adsorption technology, in: 2021: pp. 1–70. https://doi.org/ 10.1016/B978-0-12-818805-7.00001-1.
- [9] X. Ren, C. Chen, M. Nagatsu, X. Wang, Carbon nanotubes as adsorbents in environmental pollution management: A review, Chemical Engineering Journal. 170 (2011) 395–410. https://doi.org/10.1016/j.cej.2010.08.045.
- [10] M. Toński, M. Paszkiewicz, J. Dołżonek, M. Flejszar, A. Bielicka-Giełdoń, P. Stepnowski, A. Białk-Bielińska, Regeneration and reuse of the carbon nanotubes for the adsorption of selected anticancer drugs from water matrices, Colloids Surf A Physicochem Eng Asp. 618 (2021) 126355. https://doi.org/10.1016/j.colsurfa.2021.126355.
- [11] S.A. Moshkalyov, A.L.D. Moreau, H.R. Guttiérrez, M.A. Cotta, J.W. Swart, Carbon nanotubes growth by chemical vapor deposition using thin film

nickel catalyst, Materials Science and Engineering: B. 112 (2004) 147–153. https://doi.org/10.1016/j.mseb.2004.05.038.

- [12] M. Paradise, T. Goswami, Carbon nanotubes Production and industrial applications, Mater Des. 28 (2007) 1477–1489. https://doi.org/10.1016/j. matdes.2006.03.008.
- [13] A.I. Osman, J. Blewitt, J.K. Abu-Dahrieh, C. Farrell, A.H. Al-Muhtaseb, J. Harrison, D.W. Rooney, Production and characterisation of activated carbon and carbon nanotubes from potato peel waste and their application in heavy metal removal., Environmental Science and Pollution Research. 26 (2019) 37228–37241. https://doi.org/10.1007/s11356-019-06594-w.
- [14] A. Melati, E. Hidayati, Synthesis and characterization of carbon nanotube from coconut shells activated carbon, J Phys Conf Ser. 694 (2016) 012073. https://doi.org/10.1088/1742-6596/694/1/012073.
- [15] W.N. Sugiani, V.M.A. Tiwow, M.R. Jura, The Utilization of Aleorites Moluccana Active Charcoal as Absorbent of Lead Metal in Used Oil, Jurnal Akademika Kimia. 10 (2021) 59–63. https://doi.org/10.22487/j24775185. 2021.v10.i2.pp59-63.
- [16] D. Gusnita, Pencemaran Logam Berat Timbal (Pb) di Udara dan Upaya Penghapusan Bensin Bertimbal, 2012. http://mathusen.wordpress.com/ 2010/01/24/.
- [17] S. Bolan, A. Kunhikrishnan, B. Seshadri, G. Choppala, R. Naidu, N.S. Bolan, Y.S. Ok, M. Zhang, C.-G. Li, F. Li, B. Noller, M.B. Kirkham, Sources, distribution, bioavailability, toxicity, and risk assessment of heavy metal(loid)s in complementary medicines, Environ Int. 108 (2017) 103–118. https://doi.org/10.1016/j.envint.2017.08.005.
- [18] M.S. Collin, S.K. Venkatraman, N. Vijayakumar, V. Kanimozhi, S.M. Arbaaz, R.G.S. Stacey, J. Anusha, R. Choudhary, V. Lvov, G.I. Tovar, F. Senatov, S. Koppala, S. Swamiappan, Bioaccumulation of lead (Pb) and its effects on human: A review, Journal of Hazardous Materials Advances. 7 (2022) 100094. https://doi.org/10.1016/j.hazadv.2022.100094.
- [19] G. Azeh Engwa, P. Udoka Ferdinand, F. Nweke Nwalo, M. N. Unachukwu, Mechanism and Health Effects of Heavy Metal Toxicity in Humans, in: Poisoning in the Modern World - New Tricks for an Old Dog?, IntechOpen, 2019. https://doi.org/10.5772/intechopen.82511.
- [20] T.A. Jusko, C.R. Henderson, B.P. Lanphear, D.A. Cory-Slechta, P.J. Parsons, R.L. Canfield, Blood Lead Concentrations < 10 μg/dL and Child Intelligence at 6 Years of Age, Environ Health Perspect. 116 (2008) 243– 248. https://doi.org/10.1289/ehp.10424.

- [21] C. Tsaridou, A.J. Karabelas, Drinking water standards and their implementation— a critical assessment, Water (Switzerland). 13 (2021). https://doi.org/10.3390/w13202918.
- [22] M. Azizah dan Mamay Maslahat, Kandungan Logam Berat Timbal (Pb), Kadmium (Cd), dan Merkuri (Hg) di dalam Tubuh Ikan Wader (Barbodes binotatus) dan Air Sungai Cikaniki, Kabupaten Bogor, 2021.
- [23] A. Mhemeed, A General Overview on the Adsorption Determination of Ofloxacin in Pure and Pharmaceutical Formulation using Reagent 2-amino-6-Nitrobenzothiazole by Visible Spectrophotometric Method View project, 2018. www.tnsroindia.org.in.
- [24] I. Ali, Mohd. Asim, T.A. Khan, Low cost adsorbents for the removal of organic pollutants from wastewater, J Environ Manage. 113 (2012) 170–183. https://doi.org/10.1016/j.jenvman.2012.08.028.
- [25] I. Gehrke, A. Geiser, A. Somborn-Schulz, Innovations in nanotechnology for water treatment, Nanotechnol Sci Appl. (2015) 1. https://doi.org/10.2147/ NSA.S43773.
- [26] M. Sulyman, J. Namiesnik, A. Gierak, Low-cost Adsorbents Derived from Agricultural By-products/Wastes for Enhancing Contaminant Uptakes from Wastewater: A Review, Pol J Environ Stud. 26 (2017) 479–510. https://doi. org/10.15244/pjoes/66769.
- [27] N.B. Singh, G. Nagpal, S. Agrawal, Rachna, Water purification by using Adsorbents: A Review, Environ Technol Innov. 11 (2018) 187–240. https://doi.org/10.1016/j.eti.2018.05.006.
- [28] A. El-Baz, I. Hendy, A. Dohdoh, M. Srour, Adsorption technique for pollutants removal; current new trends and future challenges – A Review, Egyptian Journal for Engineering Sciences and Technology. 32 (2020) 1–24. https://doi.org/10.21608/eijest.2020.45536.1015.
- [29] S. Iijima, Helical microtubules of graphitic carbon, Nature. 354 (1991) 56– 58. https://doi.org/10.1038/354056a0.
- [30] H.W. Kroto, J.R. Heath, S.C. O'Brien, R.F. Curl, R.E. Smalley, C60: Buckminsterfullerene, Nature. 318 (1985) 162–163. https://doi.org/10.1038/ 318162a0.
- [31] S. lijima, T. Ichihashi, Erratum: Single-shell carbon nanotubes of 1-nm diameter, Nature. 364 (1993) 737–737. https://doi.org/10.1038/364737d0.
- [32] S. Rathinavel, K. Priyadharshini, D. Panda, A review on carbon nanotube: An overview of synthesis, properties, functionalization, characterization, and the application, Materials Science and Engineering: B. 268 (2021) 115095. https://doi.org/10.1016/j.mseb.2021.115095.

- [33] R.L. Vander Wal, G.M. Berger, T.M. Ticich, Carbon nanotube synthesis in a flame using laser ablation for in situ catalyst generation, Appl Phys A Mater Sci Process. 77 (2003) 885–889. https://doi.org/10.1007/s00339-003-2196-3.
- [34] J.M. Schnorr, T.M. Swager, Emerging Applications of Carbon Nanotubes, Chemistry of Materials. 23 (2011) 646–657. https://doi.org/10.1021/cm1024 06h.
- [35] D. Patabang, J.T. Siang, Basri, Co-combustion characteristics of low-rank coal mixed with candlenut shell by using Thermogravimetry analysis differential thermal analysis, IOP Conf Ser Mater Sci Eng. 1034 (2021) 012046. https://doi.org/10.1088/1757-899X/1034/1/012046.
- [36] C. Martín, A. Moure, G. Martín, E. Carrillo, H. Domínguez, J.C. Parajó, Fractional characterisation of jatropha, neem, moringa, trisperma, castor and candlenut seeds as potential feedstocks for biodiesel production in Cuba, Biomass Bioenergy. 34 (2010) 533–538. https://doi.org/10.1016/j.biombioe. 2009.12.019.
- [37] T. Alfatah, E.M. Mistar, M.D. Supardan, Porous structure and adsorptive properties of activated carbon derived from Bambusa vulgaris striata by twostage KOH/NaOH mixture activation for Hg2+ removal, Journal of Water Process Engineering. 43 (2021) 102294. https://doi.org/10.1016/j.jwpe.2021 .102294.
- [38] R. Darma, A. Amri, A Simple Candlenut Shell Carbonization Tool, IOP Conf Ser Mater Sci Eng. 506 (2019) 012052. https://doi.org/10.1088/1757-899X/506/1/012052.
- [39] E.M. Mistar, S. Ahmad, A. Muslim, T. Alfatah, M.D. Supardan, Preparation and characterization of a high surface area of activated carbon from *Bambusa vulgaris* —Effect of NaOH activation and pyrolysis temperature, IOP Conf Ser Mater Sci Eng. 334 (2018) 012051. https://doi.org/10.1088/1757-899X/334/1/012051.
- [40] S. Rizal, T. Alfatah, A. H. P. S., E. Mistar, C. Abdullah, F. Olaiya, F. Sabaruddin, Ikramullah, U. Muksin, Properties and Characterization of Lignin Nanoparticles Functionalized in Macroalgae Biopolymer Films, Nanomaterials. 11 (2021) 637. https://doi.org/10.3390/nano11030637.
- [41] K.A. Shah, B.A. Tali, Synthesis of carbon nanotubes by catalytic chemical vapour deposition: A review on carbon sources, catalysts and substrates, Mater Sci Semicond Process. 41 (2016) 67–82. https://doi.org/10.1016/ j.mssp.2015.08.013.
- [42] X.-D. Wang, K. Vinodgopal, G.-P. Dai, Synthesis of Carbon Nanotubes by Catalytic Chemical Vapor Deposition, in: Perspective of Carbon Nanotubes, IntechOpen, 2019. https://doi.org/10.5772/intechopen.86995.

- [43] A. Govindaraj, C.N.R. Rao, Synthesis, growth mechanism and processing of carbon nanotubes, in: Carbon Nanotechnology, Elsevier, 2006: pp. 15–51. https://doi.org/10.1016/B978-044451855-2/50005-X.
- [44] R. BAKER, Formation of carbonaceous deposits from the platinum-iron catalyzed decomposition of acetylene, J Catal. 37 (1975) 101–105. https://doi.org/10.1016/0021-9517(75)90137-2.
- [45] A. Peigney, P. Coquay, E. Flahaut, R.E. Vandenberghe, E. De Grave, C. Laurent, A Study of the Formation of Single- and Double-Walled Carbon Nanotubes by a CVD Method, J Phys Chem B. 105 (2001) 9699–9710. https://doi.org/10.1021/jp004586n.
- [46] W. Yao, G. Guangsheng, W. Fei, W. Jun, Fluidization and agglomerate structure of SiO2 nanoparticles, Powder Technol. 124 (2002) 152–159. https://doi.org/10.1016/S0032-5910(01)00491-0.
- [47] R. Andrews, D. Jacques, A.M. Rao, F. Derbyshire, D. Qian, X. Fan, E.C. Dickey, J. Chen, Continuous production of aligned carbon nanotubes: a step closer to commercial realization, Chem Phys Lett. 303 (1999) 467–474. https://doi.org/10.1016/S0009-2614(99)00282-1.
- [48] J.-F. Colomer, C. Stephan, S. Lefrant, G. Van Tendeloo, I. Willems, Z. Kónya, A. Fonseca, C. Laurent, J.B. Nagy, Large-scale synthesis of single-wall carbon nanotubes by catalytic chemical vapor deposition (CCVD) method, Chem Phys Lett. 317 (2000) 83–89. https://doi.org/10.1016/ S0009-2614(99)01338-X.
- [49] F. Danafar, A. Fakhru'l-Razi, M.A.M. Salleh, D.R.A. Biak, Fluidized bed catalytic chemical vapor deposition synthesis of carbon nanotubes—A review, Chemical Engineering Journal. 155 (2009) 37–48. https://doi.org/ 10.1016/j.cej.2009.07.052.
- [50] F. Danafar, A. Fakhru'l-Razi, M.A. Mohd Salleh, D.R. Awang Biak, Influence of catalytic particle size on the performance of fluidized-bed chemical vapor deposition synthesis of carbon nanotubes, Chemical Engineering Research and Design. 89 (2011) 214–223. https://doi.org/10. 1016/j.cherd.2010.05.004.
- [51] T.W. Ebbesen, P.M. Ajayan, Large-scale synthesis of carbon nanotubes, Nature. 358 (1992) 220–222. https://doi.org/10.1038/358220a0.
- [52] K.J. MacKenzie, O.M. Dunens, A.T. Harris, An Updated Review of Synthesis Parameters and Growth Mechanisms for Carbon Nanotubes in Fluidized Beds, Ind Eng Chem Res. 49 (2010) 5323–5338. https://doi.org/ 10.1021/ie9019787.
- [53] R. Philippe, A. Morançais, M. Corrias, B. Caussat, Y. Kihn, P. Kalck, D. Plee, P. Gaillard, D. Bernard, P. Serp, Catalytic Production of Carbon

Nanotubes by Fluidized-Bed CVD, Chemical Vapor Deposition. 13 (2007) 447–457. https://doi.org/10.1002/cvde.200600036.

- [54] C.H. See, A.T. Harris, A Review of Carbon Nanotube Synthesis via Fluidized-Bed Chemical Vapor Deposition, Ind Eng Chem Res. 46 (2007) 997–1012. https://doi.org/10.1021/ie060955b.
- [55] A. Thess, R. Lee, P. Nikolaev, H. Dai, P. Petit, J. Robert, C. Xu, Y.H. Lee, S.G. Kim, A.G. Rinzler, D.T. Colbert, G.E. Scuseria, D. Tománek, J.E. Fischer, R.E. Smalley, Crystalline Ropes of Metallic Carbon Nanotubes, Science (1979). 273 (1996) 483–487. https://doi.org/10.1126/science. 273.5274.483.
- [56] K. Awasthi, A. Srivastava, O.N. Srivastava, Synthesis of Carbon Nanotubes, J Nanosci Nanotechnol. 5 (2005) 1616–1636. https://doi.org/10.1166/jnn. 2005.407.
- [57] M. Lempang, W. Syafii, G. Pari, Struktur dan Komponen Arang serta Arang Aktif Tempurung Kemiri, Jurnal Penelitian Hasil Hutan. 29 (2011) 278–294.
- [58] M.M. Ngoma, M. Mathaba, K. Moothi, Effect of carbon nanotubes loading and pressure on the performance of a polyethersulfone (PES)/carbon nanotubes (CNT) membrane, Sci Rep. 11 (2021) 23805. https://doi.org/10. 1038/s41598-021-03042-z.
- [59] Z. Lou, H. Huang, M. Li, T. Shang, C. Chen, Controlled Synthesis of Carbon Nanoparticles in a Supercritical Carbon Disulfide System, Materials. 7 (2013) 97–105. https://doi.org/10.3390/ma7010097.
- [60] Y.L. Hsin, K.C. Hwang, F.-R. Chen, J.-J. Kai, Production and in-situ Metal Filling of Carbon Nanotubes in Water, Advanced Materials. 13 (2001) 830– 833. https://doi.org/10.1002/1521-4095(200106)13:11<830::AIDADMA8 30>3.0.CO;2-4.
- [61] H.W. Zhu, X.S. Li, B. Jiang, C.L. Xu, Y.F. Zhu, D.H. Wu, X.H. Chen, Formation of carbon nanotubes in water by the electric-arc technique, Chem Phys Lett. 366 (2002) 664–669. https://doi.org/10.1016/S0009-2614(02) 01648-2.
- [62] M.S. Saravanan, S.P. Babu, K. Sivaprasad, M. Jagannatham, Technoeconomics of carbon nanotubes produced by open air arc discharge method, International Journal of Engineering, Science and Technology. 2 (2010). https://doi.org/10.4314/ijest.v2i5.60128.
- [63] L. Wang, T. Qi, M. Hu, S. Zhang, P. Xu, D. Qi, S. Wu, H. Xiao, Inhibiting Mercury Re-emission and Enhancing Magnesia Recovery by Cobalt-Loaded Carbon Nanotubes in a Novel Magnesia Desulfurization Process, Environ Sci Technol. 51 (2017) 11346–11353. https://doi.org/10. 1021/acs.est.7b03364.

- [64] W. Xue, P. Li, Dielectrophoretic Deposition and Alignment of Carbon Nanotubes, in: Carbon Nanotubes - Synthesis, Characterization, Applications, InTech, 2011. https://doi.org/10.5772/16487.
- [65] S.I. Ao, International Association of Engineers., World Congress on Engineering: WCE 2011: 6-8 July 2011, Imperial College London, London, U.K., Newswood Ltd., 2011.
- [66] V.A. Mentari, G. Handika, S. Maulina, Perbandingan Gugus Fungis dan Morfologi Permukaan Kabon Aktif dari Pelepah Kelapa Sawit Menggunakan Aktivator Asam Fosfat (H3PO4) dan Asam Nitrat (HNO3), Medan, 2018.
- [67] A. Eliyana, T. Winata, Karakterisasi FTIR pada Studi Awal Penumbuhan CNT dengan Prekursor Nanokatalis Ag dengan Metode HWC-VHF-PECVD, Jurnal Fisika Dan Aplikasinya. 13 (2017) 39. https://doi.org/10. 12962/j24604682.v13i2.2155.
- [68] C. CHEN, C. HUANG, Hydrogen storage by KOH-modified multi-walled carbon nanotubes, Int J Hydrogen Energy. 32 (2007) 237–246. https://doi. org/10.1016/j.ijhydene.2006.03.010.
- [69] I. Yuliastuti, A. Subagio, Modification Effect of Carbon Nanotubes by LiCl (CNTs/LiCl) on the Electrical Conductivity Character, Jurnal Sains Dan Matematika. 23 (2015) 1–6.
- [70] H. Fu, Z. Du, W. Zou, H. Li, C. Zhang, Simple fabrication of strongly coupled cobalt ferrite/carbon nanotube composite based on deoxygenation for improving lithium storage, Carbon N Y. 65 (2013) 112–123. https://doi. org/10.1016/j.carbon.2013.08.006.
- [71] N.D. Lestari, P. Pardoyo, A. Subagio, Sintesis dan Karakterisasi CNT (Carbon Nanotube) Berdopan Logam Kobalt, Jurnal Kimia Sains Dan Aplikasi. 17 (2014) 80–85. https://doi.org/10.14710/jksa.17.3.80-85.
- [72] G. Prieto, A. Martínez, P. Concepción, R. Moreno-Tost, Cobalt particle size effects in Fischer–Tropsch synthesis: structural and in situ spectroscopic characterisation on reverse micelle-synthesised Co/ITQ-2 model catalysts, J Catal. 266 (2009) 129–144. https://doi.org/10.1016/ j.jcat.2009.06.001.
- [73] M.M. Rahman, M. Adil, A.M. Yusof, Y.B. Kamaruzzaman, R.H. Ansary, Removal of heavy metal ions with acid activated carbons derived from oil palm and coconut shells, Materials. 7 (2014) 3634–3650. https://doi.org/ 10.3390/ma7053634.
- [74] T. Van Thuan, B.T.P. Quynh, T.D. Nguyen, V.T.T. Ho, L.G. Bach, Response surface methodology approach for optimization of Cu2+, Ni2+ and Pb²⁺ adsorption using KOH-activated carbon from banana peel, Surfaces and Interfaces. 6 (2017) 209–217. https://doi.org/10.1016/j.surfin. 2016.10.007.

- [75] T. Van Tran, Q.T.P. Bui, T.D. Nguyen, N.T.H. Le, L.G. Bach, A comparative study on the removal efficiency of metal ions (Cu²⁺, Ni²⁺, and Pb²⁺) using sugarcane bagasse-derived ZnCl2-activated carbon by the response surface methodology, Adsorption Science and Technology. 35 (2017) 72–85. https://doi.org/10.1177/0263617416669152.
- [76] I. Nhapi, Removal of Heavy Metals from Industrial Wastewater Using Rice Husks, The Open Environmental Engineering Journal. 4 (2011) 170–180. https://doi.org/10.2174/1874829501104010170.
- [77] M.A.P. Cechinel, S.M.A.G. Ulson de Souza, A.A. Ulson de Souza, Study of lead (II) adsorption onto activated carbon originating from cow bone, J Clean Prod. 65 (2014) 342–349. https://doi.org/10.1016/j.jclepro.2013. 08.020.
- [78] S. Tangjuank, N. Insuk, J. Tontrakoon, V. Udeye, Adsorption of Lead(II) and Cadmium(II) ions from aqueous solutions by adsorption on activated carbon prepared from cashew nut shells, International Journal of Chemical and Molecular Engineering. 3 (2009).
- [79] M. Kobya, E. Demirbas, E. Senturk, M. Ince, Adsorption of heavy metal ions from aqueous solutions by activated carbon prepared from apricot stone, Bioresour Technol. 96 (2005) 1518–1521. https://doi.org/10.1016/ j.biortech.2004.12.005.
- [80] M. Momčilović, M. Purenović, A. Bojić, A. Zarubica, M. Ranđelović, Removal of lead(II) ions from aqueous solutions by adsorption onto pine cone activated carbon, Desalination. 276 (2011) 53–59. https://doi.org/10. 1016/j.desal.2011.03.013.
- [81] J. Acharya, J.N. Sahu, C.R. Mohanty, B.C. Meikap, Removal of lead(II) from wastewater by activated carbon developed from Tamarind wood by zinc chloride activation, Chemical Engineering Journal. 149 (2009) 249– 262. https://doi.org/10.1016/j.cej.2008.10.029.
- [82] M. Imamoglu, O. Tekir, Removal of copper (II) and lead (II) ions from aqueous solutions by adsorption on activated carbon from a new precursor hazelnut husks, Desalination. 228 (2008) 108–113. https://doi.org/ 10.1016/j.desal.2007.08.011.
- [83] T. Depci, A.R. Kul, Y. Önal, Competitive adsorption of lead and zinc from aqueous solution on activated carbon prepared from Van apple pulp: Study in single- and multi-solute systems, Chemical Engineering Journal. 200–202 (2012) 224–236. https://doi.org/10.1016/j.cej.2012.06.077.
- [84] M.M. Rao, D.K. Ramana, K. Seshaiah, M.C. Wang, S.W.C. Chien, Removal of some metal ions by activated carbon prepared from Phaseolus aureus hulls, J Hazard Mater. 166 (2009) 1006–1013. https://doi.org/10. 1016/j.jhazmat.2008.12.002.

- [85] L. Wang, J. Zhang, R. Zhao, Y. Li, C. Li, C. Zhang, Adsorption of Pb(II) on activated carbon prepared from Polygonum orientale Linn.: Kinetics, isotherms, pH, and ionic strength studies, Bioresour Technol. 101 (2010) 5808–5814. https://doi.org/10.1016/j.biortech.2010.02.099.
- [86] R.R. Bansode, J.N. Losso, W.E. Marshall, R.M. Rao, R.J. Portier, Adsorption of metal ions by pecan shell-based granular activated carbons, Bioresour Technol. 89 (2003) 115–119. https://doi.org/10.1016/S09608524 (03)00064-6.
- [87] V.J.P. Vilar, C.M.S. Botelho, R.A.R. Boaventura, Influence of pH, ionic strength and temperature on lead biosorption by Gelidium and agar extraction algal waste, Process Biochemistry. 40 (2005) 3267–3275. https:// doi.org/10.1016/j.procbio.2005.03.023.
- [88] G. Issabayeva, M.K. Aroua, N.M.N. Sulaiman, Removal of lead from aqueous solutions on palm shell activated carbon, Bioresour Technol. 97 (2006) 2350–2355. https://doi.org/10.1016/j.biortech.2005.10.023.
- [89] M. Abdulkarim, F.A. Al-Rub, Adsorption of Lead Ions from Aqueous Solution onto Activated Carbon and Chemically-Modified Activated Carbon Prepared from Date Pits, Adsorption Science & Technology. 22 (2004) 119– 134. https://doi.org/10.1260/026361704323150908.
- [90] M.M. Johns, W.E. Marshall, C.A. Toles, Agricultural by-products as granular activated carbons for adsorbing dissolved metals and organics, Journal of Chemical Technology & Biotechnology. 71 (1998) 131–140. https://doi.org/10.1002/(SICI)1097-4660(199802)71:2<131::AIDJCTB82 1>3.0.CO;2-K.
- [91] Y.-H. Li, S. Wang, J. Wei, X. Zhang, C. Xu, Z. Luan, D. Wu, B. Wei, Lead adsorption on carbon nanotubes, Chem Phys Lett. 357 (2002) 263–266. https://doi.org/10.1016/S0009-2614(02)00502-X.
- [92] A.S. Gugushe, A. Mpupa, P.N. Nomngongo, Ultrasound-assisted magnetic solid phase extraction of lead and thallium in complex environmental samples using magnetic multi-walled carbon nanotubes/zeolite nanocomposite, Microchemical Journal. 149 (2019). https://doi.org/10. 1016/j.microc.2019.05.060.
- [93] Z. Wang, W. Xu, F. Jie, Z. Zhao, K. Zhou, H. Liu, The selective adsorption performance and mechanism of multiwall magnetic carbon nanotubes for heavy metals in wastewater, Sci Rep. 11 (2021). https://doi.org/10.1038/ s41598-021-96465-7.
- [94] A. Mittal, Mu. Naushad, G. Sharma, Z.A. ALothman, S.M. Wabaidur, M. Alam, Fabrication of MWCNTs/ThO 2 nanocomposite and its adsorption behavior for the removal of Pb(II) metal from aqueous medium, Desalination Water Treat. 57 (2016) 21863–21869. https://doi.org/10.1080/19443994. 2015.1125805.

- [95] S. Li, Y. Gong, Y. Yang, C. He, L. Hu, L. Zhu, L. Sun, D. Shu, Recyclable CNTs/Fe₃O₄ magnetic nanocomposites as adsorbents to remove bisphenol A from water and their regeneration, Chemical Engineering Journal. 260 (2015) 231–239. https://doi.org/10.1016/j.cej.2014.09.032.
- [96] N.A. Kabbashi, M.A. Atieh, A. Al-Mamun, M.E. Mirghami, M.D.Z. Alam, N. Yahya, Kinetic adsorption of application of carbon nanotubes for Pb(II) removal from aqueous solution, Journal of Environmental Sciences. 21 (2009) 539–544. https://doi.org/10.1016/S1001-0742(08)62305-0.
- [97] T. Navaei Diva, K. Zare, F. Taleshi, M. Yousefi, Synthesis, characterization, and application of nickel oxide/CNT nanocomposites to remove Pb²⁺ from aqueous solution, J Nanostructure Chem. 7 (2017) 273–281. https://doi.org/ 10.1007/s40097-017-0239-0.
- [98] T.A. Saleh, Nanocomposite of carbon nanotubes/silica nanoparticles and their use for adsorption of Pb(II): from surface properties to sorption mechanism, Desalination Water Treat. 57 (2016) 10730–10744. https://doi. org/10.1080/19443994.2015.1036784.
- [99] C. Zhang, J. Sui, J. Li, Y. Tang, W. Cai, Efficient removal of heavy metal ions by thiol-functionalized superparamagnetic carbon nanotubes, Chemical Engineering Journal. 210 (2012) 45–52. https://doi.org/10.1016/j.cej.2012. 08.062.
- [100] J. Hu, D. Shao, C. Chen, G. Sheng, J. Li, X. Wang, M. Nagatsu, Plasmainduced grafting of cyclodextrin onto multiwall carbon nanotube/iron oxides for adsorbent application, Journal of Physical Chemistry B. 114 (2010) 6779–6785. https://doi.org/10.1021/jp911424k.
- [101] S.-H. Hsieh, J.-J. Horng, Adsorption behavior of heavy metal ions by carbon nanotubes grown on microsized Al₂O₃ particles, Journal of University of Science and Technology Beijing, Mineral, Metallurgy, Material. 14 (2007) 77–84. https://doi.org/10.1016/S1005-8850(07)60016-4.
- [102] S. Yang, J. Hu, C. Chen, D. Shao, X. Wang, Mutual effects of Pb(II) and humic acid adsorption on multiwalled carbon nanotubes/polyacrylamide composites from aqueous solutions, Environ Sci Technol. 45 (2011) 3621– 3627. https://doi.org/10.1021/es104047d.
- [103] B. Chen, Z. Zhu, J. Ma, M. Yang, J. Hong, X. Hu, Y. Qiu, J. Chen, One-pot, solid-phase synthesis of magnetic multiwalled carbon nanotube/iron oxide composites and their application in arsenic removal, J Colloid Interface Sci. 434 (2014) 9–17. https://doi.org/10.1016/j.jcis.2014.07.046.
- [104] H.J. Wang, A.L. Zhou, F. Peng, H. Yu, L.F. Chen, Adsorption characteristic of acidified carbon nanotubes for heavy metal Pb(II) in aqueous solution, Materials Science and Engineering A. 466 (2007) 201–206. https://doi.org/ 10.1016/j.msea.2007.02.097.

- [105] G. Hanbali, S. Jodeh, O. Hamed, R. Bol, B. Khalaf, A. Qdemat, S. Samhan, O. Dagdag, Magnetic multiwall carbon nanotube decorated with novel functionalities: Synthesis and application as adsorbents for lead removal from aqueous medium, Processes. 8 (2020). https://doi.org/10.3390/PR 8080986.
- [106] L. Torkian, M.M. Amini, T. Gorji, O. Sadeghi, A simple, rapid and sensitive method based on modified multiwalled carbon nanotube for preconcentration and determination of lead ions in aqueous media in natural pHs, Arabian Journal of Chemistry. 12 (2019) 1315–1321. https://doi.org/ 10.1016/j.arabjc.2014.10.041.
- [107] M.A. Atieh, O.Y. Bakather, B. Al-Tawbini, A.A. Bukhari, F.A. Abuilaiwi, M.B. Fettouhi, Effect of Carboxylic Functional Group Functionalized on Carbon Nanotubes Surface on the Removal of Lead from Water, Bioinorg Chem Appl. 2010 (2010) 1–9. https://doi.org/10.1155/2010/603978.
- [108] Y. Sun, S. Yang, G. Sheng, Z. Guo, X. Wang, The removal of U(VI) from aqueous solution by oxidized multiwalled carbon nanotubes, J Environ Radioact. 105 (2012) 40–47. https://doi.org/10.1016/j.jenvrad.2011.10.009.

LAMPIRAN I

Perhitungan

1. Perhitungan pembuatan larutan induk timbal 1000 mg/L Pb(NO₃)₂

Diketahui:

- Ar Pb = 207,2
- Mr Pb(NO₃)₂ = 331,22
- Volume = 1000 mL
- Kemurnian = 99%

$$M = \frac{n}{V}$$
$$= \frac{gr}{Ar Pb \cdot L}$$
$$= \frac{gr}{207, 2 \cdot L}$$
$$\frac{gr}{L} = 0,0048 M$$

Molaritas larutan induk timbal untuk 1000 mg/L yaitu 0,0048 M. Sedangkan, konsentrasi timbal yang digunakan pada penelitian ini sebesar 50 mg/L. Sehingga molaritas untuk 50 mg/L adalah sebesar 0,00024 M.

$$M = \frac{gr}{Mr \ Pb(NO_3)_2} \times \frac{1000}{mL}$$

0,00024 M = $\frac{gr}{331,22} \times \frac{1000}{1000}$
gr = 0,00024 M × 331,22
= 0,079/0,99
= 0,08 gr Pb(NO_3)_2

Jadi jumlah serbuk $Pb(NO_3)_2$ yang dibutuhkan sebesar 0,08 gram untuk dilarutkan dengan 1000 mL aquades.

2. Perhitungan persentase efisiensi adsorpsi logam berat timbal (Pb)

$$\%E = \frac{(C_{awal} - C_{akhir})}{C_{awal}} \times 100\%$$

Keterangan:

%E = Persentase efisiensi adsorpsi (%) C_{awal} = Konsentrasi awal timbal dalam larutan (mg/L) C_{akhir} = Konsentrasi akhir timbal dalam larutan (mg/L)

• Sampel 1: Karbon aktif tempurung kemiri

$$\%E = \frac{(C_{awal} - C_{akhir})}{C_{awal}} \times 100\%$$
$$= \frac{(28,57 - 11,20) mg/L}{28,57 mg/L} \times 100\%$$
$$= 60,80\%$$

Jadi, persentase efisiensi adsorpsi karbon aktif tempurung kemiri adalah sebesar 60,80%.

• Sampel 2: CNT-100% Karbon aktif

$$\%E = \frac{(C_{awal} - C_{akhir})}{C_{awal}} \times 100\%$$
$$= \frac{(28,57 - 24,21) mg/L}{28,57 mg/L} \times 100\%$$
$$= 15,26\%$$

Jadi, persentase efisiensi adsorpsi CNT dari karbon aktif murni adalah sebesar 15,26%.

• Sampel 3: CNT-97% Karbon aktif + 3% CoSO4

$$\%E = \frac{(C_{awal} - C_{akhir})}{C_{awal}} \times 100\%$$
$$= \frac{(28,57 - 18,38) mg/L}{28,57 mg/L} \times 100\%$$
$$= 35,67\%$$

Jadi, persentase efisiensi adsorpsi CNT dari karbon aktif penambahan katalis adalah sebesar 15,26%.

3. Perhitungan kapasitas adsorpsi logam berat timbal (Pb)

$$Q = \frac{(C_{awal} - C_{akhir}) \cdot V}{W}$$

Keterangan:

Q = Kadar timbal yang teradsorpsi (mg/g) V = Volume larutan (L) C_{awal} = Konsentrasi awal timbal dalam larutan (mg/L) C_{akhir} = Konsentrasi akhir timbal dalam larutan (mg/L) W = Massa adsorben yang digunakan (g)

• Sampel 1: Karbon aktif tempurung kemiri

$$Q = \frac{(C_{awal} - C_{akhir}) \cdot V}{W}$$
$$= \frac{(28,57 - 11,20) mg/L \cdot 0,05 L}{0,1 g}$$
$$= 8,68 mg/g$$

Jadi, kapasitas adsorpsi karbon aktif tempurung kemiri adalah sebesar 8,68 mg/g.

• Sampel 2: CNT-100% Karbon aktif

$$Q = \frac{(C_{awal} - C_{akhir}) \cdot V}{W}$$
$$= \frac{(28,57 - 24,21) mg/L \cdot 0,05 L}{0,1 g}$$
$$= 2,18 mg/g$$

Jadi, kapasitas adsorpsi CNT dari karbon aktif murni adalah sebesar 2,18 mg/g.

• Sampel 3: CNT-97% Karbon aktif + 3% CoSO4

$$Q = \frac{(C_{awal} - C_{akhir}) \cdot V}{W}$$
$$= \frac{(28,57 - 18,38) mg/L \cdot 0,05 L}{0,1 g}$$

$$= 5,09 mg/g$$

Jadi, kapasitas adsorpsi CNT dari karbon aktif penambahan katalis adalah sebesar 5,09 mg/g.

LAMPIRAN II

Analisis Karakterisasi X-Ray Diffractometer (XRD)

# Data Information		
		Standard
Group	•	Standard
Data Samula Manag	•	
Sample Name	:	serbuk
Comment	:	02 21 22 10 11 22
Date & Time	:	03-31-23 10:11:33
# Measurement Condition		
X-ray tube		
target	:	Cu
voltage	:	40.0 (kV)
current	:	30.0 (mA)
Slits		
Auto Slit	:	not Used
divergence slit	:	1.00000 (deg)
scatter slit	:	1.00000 (deg)
receiving slit	:	0.30000(mm)
Scanning		
drive axis	:	Theta-2Theta
scan range	:	15.0000 - 75.0000 (deg)
scan mode	:	Continuous Scan
scan speed	:	2.0000 (deg/min)
sampling pitch	:	0.0200 (deg)
preset time	:	0.60 (sec)
# Data Process Condition		
Smoothing		[AUTO]
smoothing points		: 51
B.G.Subtruction		[AUTO]
sampling points		: 51
repeat times		: 30
Ka1-a2 Separate		[MANUAL]
Kal a2 ratio		: 50 (%)
Peak Search		[AUTO]
differential points		: 45
FWHM threhold		: 0.050 (deg)
intensity threhold		: 30 (par mil)
FWHM ratio (n-1))/n	:2
System error Correction		[NO]
Precise peak Correction		[NO]

# Strongest no. peak	3 peaks 2Theta	d	I/I1	FWHM	Intensity	Integrated	Int
no.	(deg)	(A)		(deg)	(Counts)	(Counts)	
1	28.9467	3.08207	100	0.88000	104	4735	
2	30.4660	2.93174	84	0.70800	87	3070	
3	64.4100	1.44535	66	0.55600	69	1904	

					-		
# Peak Data	List						
peak	2Theta	d	I/I1	FWHM	Intensity	Integrated	Int
no.	(deg)	(A)		(deg)	(Counts)	(Counts)	
1	16.5500	5.35211	5	0.26000	5	160	
2	18.4600	4.80243	8	0.48000	8	256	
3	19.7100	4.50059	13	0.62000	13	482	
4	21.0200	4.22297	18	1.04000	19	1325	
5	21.8000	4.07360	23	0.00000	24	0	
6	23.0600	3.85379	31	0.00000	32	0	
7	24.0000	3.70494	33	0.00000	34	0	
8	24.9800	3.56176	48	0.00000	50	0	
9	26.6200	3.34594	50	0.88000	52	4200	
10	27.5800	3.23161	24	0.64000	25	913	
11	28.9467	3.08207	100	0.88000	104	4735	
12	30.4660	2.93174	84	0.70800	87	3070	
13	31.3200	2.85372	17	0.60000	18	693	
14	33.2300	2.69393	11	0.38000	11	203	
15	35.3700	2.53569	7	0.26000	7	123	
16	37.7700	2.37990	13	0.66000	14	541	
17	38.8400	2.31676	4	0.04000	4	17	
18	40.3900	2.23135	15	1.10000	16	835	
19	41.8550	2.15658	15	0.79000	16	589	
20	43.1000	2.09712	15	0.72000	16	584	
21	44.0400	2.05452	43	0.58000	45	1415	
22	44.9400	2.01544	6	0.00000	6	0	
23	45.3000	2.00026	8	1.08000	8	439	
24	46.4200	1.95457	5	0.00000	5	0	
25	47.2000	1.92407	4	0.12000	4	92	
26	48.6000	1.87187	13	0.72000	13	526	
27	50.2200	1.81521	14	0.56000	15	435	
28	51.4100	1.77596	6	0.58000	6	234	
29	52.5700	1.73947	8	0.26000	8	215	
30	55.1000	1.66543	5	0.24000	5	106	
31	55.9150	1.64307	5	0.45000	5	177	
32	57.9900	1.58912	4	0.34000	4	129	
33	58.9000	1.56672	7	0.24000	7	177	
34	61.4000	1.50879	8	0.64000	8	301	
35	63.3500	1.46696	5	0.58000	5	229	

1. XRD Karbon Aktif Tempurung Kemiri

Gambar 1. pola XRD karbon aktif tempurung kemiri

# Strongest	peaks						
no. peak	2Theta	d	I/I1	FWHM	Intensity	Integrated	Int
no.	(deg)	(A)		(deg)	(Counts)	(Counts)	
1	44.0741	2.05301	100	0.17810	216	1919	
2	64.4448	1.44465	86	0.19040	185	1914	
3	30.4230	2.93579	40	0.37400	86	1631	
# Peak Data	List						
peak	2Theta	d	I/I1	FWHM	Intensity	Integrated	Int
no.	(deg)	(A)		(deg)	(Counts)	(Counts)	
1	15.6150	5.67042	4	0.07000	9	88	
2	16.1255	5.49204	4	0.09900	8	97	
3	16.3717	5.41000	5	0.09000	10	49	
4	17.1100	5.17818	3	0.14000	6	51	
5	17.3116	5.11833	3	0.12330	6	37	
6	19.3150	4.59173	3	0.13000	7	80	
7	19.6400	4.51647	3	0.12000	7	83	
8	19.9425	4.44864	3	0.03500	6	25	
9	20.2416	4.38358	3	0.05670	6	23	
10	20.4625	4.33675	5	0.07500	11	69	
11	20.8500	4.25702	3	0.07000	6	35	
12	21.0833	4.21043	5	0.15330	11	114	
13	21.3850	4.15171	3	0.09000	6	29	
14	21.6233	4.10649	3	0.10000	6	39	
15	21.9350	4.04884	4	0.07000	8	32	
16	22.1033	4.01839	3	0.15330	6	45	
17	22.3833	3.96875	5	0.12670	11	86	
18	22.6391	3,92448	5	0.09170	10	48	
19	22.8175	3.89420	6	0.15500	12	86	
20	23.0050	3.86288	5	0.07000	10	40	
21	23 3950	3 79936	4	0.07000	9	48	
22	23.7416	3.74467	4	0.09670	8	47	
23	23.9800	3.70798	3	0.08000	7	82	
24	24.3850	3.64731	3	0.07000	7	55	
25	24.6600	3.60725	6	0.09340	14	78	
26	24.8600	3.57868	12	0.13340	26	194	
27	25.0200	3.55616	10	0.14000	21	206	
28	25.3820	3.50626	5	0.04400	11	36	
29	25.8533	3.44340	4	0.09330	8	43	
30	26.0400	3.41913	3	0.08000	6	38	
31	26 2200	3 39607	5	0.08000	11	69	
32	26.5350	3.35646	16	0.33000	34	577	
33	27.2083	3.27491	3	0.11670	7	59	
34	27.4475	3.24691	6	0.09500	12	57	
35	27.7071	3.21708	4	0.14570	9	72	
36	28 2800	3.15319	6	0.12660	14	103	
37	28.6800	3.11012	30	0.41720	64	1025	
38	29.0000	3.07652	32	0.41200	70	1215	
20	_/.5000	2.2.002		0=00			

2. XRD CNT-100% Karbon aktif

39	29.3600	3.03961	10	0.10000	21	137	
40	29.9800	2.97815	3	0.00000	7	0	
41	30.4230	2.93579	40	0.37400	86	1631	
42	30.8000	2.90071	3	0.10000	7	65	
43	31.2390	2.86094	7	0.13530	16	122	
44	32.8400	2.72503	3	0.12000	6	40	
45	33.0000	2.71218	5	0.16000	10	61	
46	33.1800	2.69787	7	0.24000	15	172	
47	35.1116	2.55375	3	0.08330	7	42	
48	35.3850	2.53465	5	0.19000	11	128	
49	35.6450	2.51675	6	0.13000	12	81	
50	36.3150	2.47184	3	0.13000	6	62	
51	37.0616	2.42374	3	0.10330	7	60	
52	37.5425	2.39379	6	0.11500	12	74	
53	37.8157	2.37712	18	0.20860	39	415	
54	38.0841	2.36099	5	0.10170	11	64	
55	38.2925	2.34861	3	0.10500	7	49	
56	39.9708	2.25378	6	0.24830	12	199	
57	40.4166	2.22995	8	0.15330	18	150	
58	40.9150	2.20393	4	0.09000	9	46	
59	41.6200	2.16821	7	0.30660	15	184	
60	41.8800	2.15535	6	0.28000	12	136	
61	42.1250	2.14338	7	0.17000	16	112	
62	42.4050	2.12987	4	0.09000	9	45	
63	43.0275	2.10049	10	0.13500	22	173	
64	43.2600	2.08973	6	0.12000	12	81	
65	43.8600	2.06253	9	0.12000	20	246	
66	44.0741	2.05301	100	0.17810	216	1919	
67	44.4200	2.03782	4	0.08000	9	52	
68	45.6683	1.98498	4	0.12330	8	68	
69	46.3050	1.95915	4	0.11000	9	84	
70	47.2333	1.92279	5	0.14670	10	68	
71	47.5140	1.91209	4	0.09200	9	45	
72	48.0150	1.89330	3	0.21000	6	86	
73	48.6750	1.86916	9	0.17000	20	206	
74	50.0200	1.82200	6	0.12000	13	125	
75	50.5083	1.80553	4	0.15670	9	78	
76	50.8233	1.79507	3	0.16670	6	49	
77	51.1650	1.78389	5	0.15000	10	80	
78	51.6500	1.76827	3	0.12000	6	48	
79	52.3400	1.74657	3	0.13340	6	84	
80	52.6900	1.73579	6	0.18000	13	185	
81	53.1200	1.72275	3	0.12000	6	54	
82	54.8800	1.67159	3	0.10000	6	41	
83	55.0875	1.66578	4	0.13500	9	73	
84	55.5600	1.65273	4	0.14000	8	74	
85	55.9650	1.64172	4	0.09000	9	52	
86	56.2200	1.63488	4	0.08000	9	44	
87	58.2600	1.58240	4	0.08000	9	55	
88	58.6400	1.57305	3	0.16000	6	79	
89	61.0500	1.51659	3	0.14000	6	99	

Gambar 2. Pola XRD CNT-100% Karbon aktif

# Strongest no. peak	3 peaks 2Theta	d	I/I1	FWHM	Intensity	Integrated	Int
no.	(deg)	(A)		(deg)	(Counts)	(Counts)	
1	64.4387	1.44478	100	0.29590	112	1676	
2	44.0655	2.05339	89	0.30890	100	1567	
3	30.4457	2.93365	82	0.41140	92	2113	

3. XRD CNT-97% Karbon aktif + 3% CoSO4

# Peak Data	List						
peak	2Theta	d	I/I1	FWHM	Intensity	Integrated	Int
no.	(deg)	(A)		(deg)	(Counts)	(Counts)	
1	15.1600	5.83957	6	0.08000	7	46	
2	15.4400	5.73430	6	0.36000	7	165	
3	16.1200	5.49390	4	0.16000	4	47	
4	17.7700	4.98732	4	0.22000	5	85	
5	18.2450	4.85853	6	0.15000	7	88	
6	18.6800	4.74636	6	0.20000	7	121	
7	19.1333	4.63492	5	0.25330	6	84	
8	19.6200	4.52103	10	0.32000	11	253	
9	20.1600	4.40113	4	0.00000	5	0	
10	20.6600	4.29574	13	0.40000	15	382	
11	21.3300	4.16229	18	0.60660	20	663	
12	21.8800	4.05889	14	0.00000	16	0	
13	22.5000	3.94843	16	0.00000	18	0	
14	23.0600	3.85379	22	0.58000	25	687	
15	23.2200	3.82760	21	0.00000	23	0	
16	23.8400	3.72944	23	0.00000	26	0	
17	24.2000	3.67477	26	0.00000	29	0	
18	24.4000	3.64510	22	0.00000	25	0	
19	24.8600	3.57868	31	0.00000	35	0	
20	25.1000	3.54501	28	0.00000	31	0	
21	25.2000	3.53117	27	0.00000	30	0	
22	25.6200	3.47422	21	0.00000	24	0	
23	25.7800	3.45302	23	0.00000	26	0	
24	26.5373	3.35618	39	0.69870	44	2188	
25	27.5200	3.23852	18	0.00000	20	0	
26	28.0000	3.18409	12	0.00000	13	0	
27	28.7200	3.10588	68	0.56000	76	1983	
28	29.0600	3.07031	78	0.48000	87	1912	
29	29.8800	2.98789	17	0.16000	19	271	
30	30.4457	2.93365	82	0.41140	92	2113	
31	31.3400	2.85195	11	0.50000	12	430	
32	32.0950	2.78656	5	0.23000	6	62	
33	33.2000	2.69629	12	0.20000	13	195	
34	35.4766	2.52831	6	0.16670	7	114	
35	37.4400	2.40011	3	0.04000	3	21	
36	37.8183	2.37697	21	0.30330	23	376	
37	38.2600	2.35053	4	0.28000	5	87	

r							
38	38.9900	2.30819	3	0.06000	3	25	
39	39.8700	2.25925	8	0.34000	9	189	
40	40.3800	2.23188	15	0.24000	17	330	
41	40.8400	2.20780	10	0.16000	11	163	
42	41.1200	2.19341	4	0.16000	4	47	
43	41.6400	2.16721	14	0.30000	16	287	
44	42.1400	2.14265	13	0.22000	15	209	
45	42.4200	2.12915	6	0.22000	7	106	
46	42.9600	2.10363	13	0.26000	14	319	
47	43.2800	2.08882	13	0.00000	15	0	
48	43.4400	2.08149	10	0.18000	11	166	
49	44.0655	2.05339	89	0.30890	100	1567	
50	44.5000	2.03434	4	0.17340	4	36	
51	44.7700	2.02270	8	0.22000	9	121	
52	45.5733	1.98889	10	0.29330	11	209	
53	46.6300	1.94625	8	0.18000	9	117	
54	46.8400	1.93802	4	0.12000	4	28	
55	47.0800	1.92870	3	0.04000	3	13	
56	48.2600	1.88426	3	0.04000	3	16	
57	48.6200	1.87114	10	0.40000	11	156	
58	48.8200	1.86394	7	0.48000	8	140	
59	49.8200	1.82885	3	0.16000	3	35	
60	50.1700	1.81691	13	0.38000	14	283	
61	51.2450	1.78129	5	0.15000	6	55	
62	52 5833	1 73906	7	0.24670	8	109	
63	52,8300	1 73152	4	0.10000	4	33	
64	54 4350	1.68420	3	0.05000	3	20	
65	54 9700	1.66906	4	0.14000	5	49	
66	55 3800	1.65767	4	0.28000	5	97	
67	55 7900	1.64646	4	0.18000	4	52	
68	57,9600	1 58987	4	0.08000	4	<u> </u>	
69	58 2800	1.58190	3	0.00000	3		
70	58.4700	1.50120	1	0.10000	5	79	
70	59,0800	1.57721	3	0.16000	3	53	
71	60,6000	1.50258	3	0.10000	3	13	
72	61 4000	1.52077	5	0.04000	6	135	
73	61 7200	1.50077	3	0.4000	3	16	
75	62 4 550	1 48581	3	0.04000	3	37	
76	63 7300	1 45912	<u> </u>	0.12000	<u> </u>	77	
77	64 4387	1 44478	100	0.29590	112	1676	
78	64 9000	1 43567	100	0.27590	112	26	
70	65 5200	1.43302	4	0.00000	5	58	
80	66 1800	1 41007		0.00000	<u> </u>	60	
<u>81</u>	66 6100	1.41072	4	0.10000	4	20	
87	66 8600	1 30821	+ /	0.10000	+ /	70	
82	67 2200	1.37021	+ 2	0.40000	+ 2	19	
03 84	67.8500	1.30000	<u> </u>	0.12000	<u> </u>	42	
04 85	60 / 100	1.30020	+ /	0.10000	-+ 	50 67	
0J 86	60 2000	1.33294	4	0.10000	2	25	
00	70 5200	1.34482	2	0.10000	2	25 25	
0/	70.3200	1.33434	<u> </u>	0.04000	5	<u> </u>	
88	72.1900	1.50755	4	0.22000	5	69	

Gambar 3. XRD CNT-97% Karbon aktif + 3% CoSO₄

LAMPIRAN III

Analisis Karakterisasi Fourier Transform Infrared Spectrometer (FTIR)

No	Peak	Intensity	Corr. Intensity	Base (H)	Base (L)	Area	Corr. Area
1	424.36	87.219	1.357	435.93	410.86	1.403	0.08
2	454.26	88.139	0.597	460.04	441.72	0.968	0.024
3	504.41	87.256	0.123	514.05	500.55	0.791	0.004
4	568.06	84.079	3.028	634.61	542.02	5.859	0.565
5	683.79	88.808	0.322	694.4	666.43	1.408	0.018
6	720.44	87.508	1.217	741.66	694.4	2.581	0.131
7	946.12	82.361	3.901	996.28	847.75	10.316	1.171
8	1033.89	82.961	1.204	1049.32	997.24	3.924	0.116
9	1085.01	79.53	3.717	1113.94	1050.29	5.681	0.627
10	1146.73	77.837	5.053	1249.93	1114.9	12.736	1.772
11	1278.86	82.77	0.092	1355.05	1275.97	6.077	0.006
12	1600.99	83.199	0.071	1605.81	1594.23	0.922	0.002
13	1684.89	84.29	0.291	1700.32	1681.04	1.406	0.009
14	1715.76	84.388	0.184	1734.08	1712.86	1.525	0.003
15	2351.33	80.791	0.311	2363.87	2333.97	2.744	0.027
16	2892.38	78.502	0.013	2894.31	2850.91	4.536	0.01
17	3448.87	72.614	0.034	3463.34	3446.94	2.268	0.002

1. Karbon Aktif Tempurung Kemiri

Gambar 1. Pola FTIR karbon aktif tempurung kemiri

No Peak		Intensity	Corr.	Corr. Base (H)		Aroo	Corr.
INO.	геак	Intensity	Intensity	Dase (II)	Dase (L)	Area	Area
1	431.11	76.662	0.902	434.97	420.5	1.615	0.029
2	453.29	75.122	1.723	464.86	434.97	3.563	0.161
3	496.69	71.722	2.721	512.12	464.86	6.233	0.316
4	537.2	69.763	0.598	541.06	512.12	4.243	0.054
5	569.03	65.277	5.66	639.43	541.06	15.625	1.418
6	648.11	73.452	0.068	652.93	639.43	1.805	0.003
7	719.48	69.445	2.91	745.52	667.4	11.213	0.399
8	945.16	59.908	0.077	946.12	803.39	24.412	-1.94
9	1032.93	61.218	2.511	1047.39	1005.92	8.318	0.282
10	1085.01	56.265	6.193	1113.94	1047.39	15.073	1.501
11	1144.8	53.391	8.916	1250.89	1113.94	32.277	4.512
12	1281.75	62.978	0.553	1299.11	1250.89	9.591	0.083
13	1309.72	63.496	0.274	1385.91	1299.11	16.56	-0.073
14	1556.62	64.252	0.005	1562.41	1555.66	1.297	0
15	2315.64	59.134	0.297	2335.9	1669.46	141.821	2.425
16	2351.33	59.044	0.178	2362.9	2336.86	5.942	0.019
17	2901.06	57.128	0.113	2918.42	2849.95	16.614	0.039
18	3435.37	53.221	0.031	3438.26	3058.27	97.756	0.023

2. Sampel CNT-100% Karbon Aktif

Gambar 2. Pola FTIR CNT-100% karbon aktif

No.	Peak	Intensity	Corr. Intensity	Base (H)	Base (L)	Area	Corr. Area
1	452.33	65.626	3.078	468.72	431.11	6.507	0.393
2	497.66	63.343	3.407	512.12	468.72	7.923	0.403
3	536.23	61.189	1.055	542.02	512.12	5.947	0.079
4	566.13	55.837	6.525	656.79	542.02	24.374	1.922
5	720.44	61.585	4.003	771.56	677.04	18.159	0.803
6	951.91	53.173	6.76	991.45	800.49	43.44	3.168
7	1002.06	58.002	0.629	1010.74	991.45	4.518	0.047
8	1032.93	54.594	2.904	1046.43	1010.74	8.86	0.336
9	1085.01	50.269	6.217	1114.9	1046.43	18.733	1.769
10	1143.84	47.321	3.04	1156.37	1114.9	12.255	0.423
11	1523.83	59.892	0.012	1527.69	1521.9	1.288	0
12	2322.39	56.823	0.03	2325.29	2293.46	7.787	0.001
13	2836.45	55.652	0.084	2851.88	2821.01	7.845	0.01
14	2885.63	55.609	0.194	2920.35	2851.88	17.419	0.07
15	3434.4	53.043	0.008	3435.37	3099.74	89.082	0.01

3. Sampel CNT-97% Karbon Aktif + 3% CoSO₄

Gambar 3. Pola FTIR CNT 97% karbon aktif + 3% CoSO₄

LAMPIRAN IV

Analisis Karakterisasi Scanning Electron Microscope (SEM)

1. Karbon Aktif Tempurung Kemiri

2. Sampel 100% Karbon Aktif

3. Sampel 97% Karbon Aktif + 3% CoSO4

LAMPIRAN V

Atomic Absorption Spectroscopy (AAS)

No.	Sampel	Parameter	Satuan	Hasil Uji	Spesifikasi Metode
1.	Pb standar	Timbal (Pb)	mg/L	28,57	AAS
2.	Karbon aktif	Timbal (Pb)	mg/L	11,20	AAS
3.	CNT-100% Karbon aktif	Timbal (Pb)	mg/L	24,21	AAS
4.	CNT-97% Karbon aktif + 3% CoSO4	Timbal (Pb)	mg/L	18,38	AAS

Tabel laporan hasil uji pemeriksaan larutan timbal (hasil adsorpsi)

LAMPIRAN VI Dokumentasi

Alat Penelitian

1.

Seperangkat alat chemical vapour deposition (CVD)

Tungku drum

Furnace

Oven

Timbangan digital

Neraca analitik

Labu ukur

Corong

Spatula

Batang pegaduk

Saringan

Sieve shaker

Lumpang Alu

pH Universal

Cawan

Pinset

Pipet tetes

Aluminium foil

Hot plate Lemari asap

X-Ray diffractometer (XRD)

Scanning electron microscopy (SEM)

Fourier Transform Infrared Spectrometer (FTIR)

Tempurung kemiri

Aquades

Gas asetilen (C₂H₂)

Gas argon (Ar)

Co Soy

Waterone

 $Pb(NO_3)_2$

- 3. Prosedur Penelitian
- a. Tahap Pembuatan Karbon Aktif Tempurung Kemiri

Pengambilan sampel

Pencucian dan penjemuran

Pembakaran dengan tungku drum

Penghilangan kandungan air dengan oven

Sampel setelah proses dehidrasi

Persiapan untuk proses karbonisasi

Proses karbonisasi dengan furnace

Arang tempurung kemiri

Proses penggerusan arang tempurung kemiri

Serbuk arang tempurung

Proses pengayakan dengan siever shaker

Ayakan 100 mesh

Pembuatan larutan H₃PO₄ 7%

Proses aktivasi

Penetralan karbon aktif

Pengeringan dengan oven

Pemanasan pada suhu 600°C

Sampel setelah difurnace

Menimbang sampel karbon aktif

Hasil akhir karbon aktif

Preparasi Sampel b.

Menimbang karbon dan Katalis

3% Katalis CoSO4 dan 97% karbon aktif

Pelarutan dengan aquades

Proses menguapkan zat pelarut

Proses pengeringan sampel

Sampel sebelum difurnace

Sampel difurnace

Sampel setelah difurnace

c. Sintesis Carbon Nanotube (CNT)

Pemasangan komponen alat CVD

Pemeriksaan alat CVD

Meletakkan sampel di dalam *chamber*

Proses sintesis

Hasil sintesis *carbon nanotube* (CNT) (a) Karbon aktif 100%; (b) Karbon aktif 97% + CoSO₄ 3%