Skripsi Geofisika

# ANALISIS POTENSI LIKUIFAKSI PADA PANAS BUMI BORA MENGGUNAKAN MIKROZONASI *GROUND SHEAR STRAIN* DAN AKUIFER BAWAH PERMUKAAN



## **OLEH:**

## **DEDE MUHAIMIN AZIZ**

### H061181324

## DEPARTEMEN GEOFISIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM UNIVERSITAS HASANUDDIN MAKASSAR 2024



## HALAMAN JUDUL

Analisis Potensi Likuifaksi pada Panas Bumi Bora Menggunakan Mikrozonasi *Ground Shear Strain* dan Akuifer Bawah Permukaan

## SKRIPSI

Diajukan Sebagai Salah Satu Syarat Untuk Memperoleh Gelar Sarjana Sains

Pada Departemen Geofisika

Fakultas Matematika dan Ilmu Pengetahuan Alam

Universitas Hasanuddin

**OLEH:** 

**DEDE MUHAIMIN AZIZ** 

H061181324

## **DEPARTEMEN GEOFISIKA**

## FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM



## MAKASSAR

2024



## HALAMAN PENGESAHAN

## Analisis Potensi Likuifaksi pada Panas Bumi Bora Menggunakan Mikrozonasi *Ground Shear Strain* dan Akuifer Bawah Permukaan

Disusun dan Diajukan Oleh:

DEDE MUHAIMIN AZIZ

### H061181324

Telah dipertahankan dan di hadapan Panitia Ujian yang dibentuk dalam rangka Penyelesaian Program Sarjana Program Studi Geofisika Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Hasanuddin

> Pada 26 April 2024 Dinyatakan telah memenuhi syarat kelulusan Menyetujui

**Pembimbing Utama** 

Ir. Bambang Harimei/ M.Si NIP. 196105011991031003 **Pembimbing** Pertama

Svansuddin, S.Si, MT NIP. 197401152002121001

Ketua Departemen Geofisika Fakultas Matematika dan Ilmu Pengetahuan Alam

Universitas Hasanuddin



Optimized using trial version www.balesio.com

Dr. Muh. Alimuddin Hamzah, M.Eng NIP. 196709291993031003

iii

## PERNYATAAN KEASLIAN

Saya yang bertandatangan di bawah ini:

- Nama : Dede Muhaimin Aziz
- NIM : H061181324
- Departemen : Geofisika

Judul Skripsi : Analisis Potensi Likuifaksi pada Panas Bumi Bora Menggunakan Mikrozonasi *Ground Shear Strain* dan Akuifer Bawah Permukaan

Menyatakan bahwa skripsi ini benar-benar hasil karya sendiri dan belum pernah diajukan untuk mendapatkan gelar sarjana di Universitas Hasanuddin atau Lembaga Penelitian lain kecuali kutipan dengan mengikuti tata penulisan karya ilmiah yang sudah lazim digunakan, karya tulis ini merupakan murni dari gagasan penelitian saya sendiri, kecuali arahan dari Tim Pembimbing dan masukan Tim Penguji.

Makassar, 26 April 2024

Yang membuat pernyataan Dede Muhaimin Aziz LX138064009



## ABSTRAK

Indonesia merupakan salah satu negara yang kaya akan sumber energi panas bumi, dengan potensi mencapai 40% cadangan panas bumi dunia. Dalam rangka memenuhi kebutuhan energi yang terus meningkat, pemerintah daerah Provinsi Sulawesi Tengah berupaya mengembangkan potensi panas bumi di daerah Bora-Palu yang memiliki cadangan terduga sebesar 93 MWe. Namun, daerah ini berada di dekat Sesar Palu Koro yang masih aktif dengan pergerakan mencapai 6,3 cm/tahun sehingga berpotensi mengalami bencana gempa bumi dan likuifaksi. Penelitian ini bertujuan untuk mengetahui potensi likuifaksi pada daerah panas bumi Bora saat terjadi gempa bumi dengan menganalisis hasil Ground Shear Strain dan sebaran akuifer bawah permukaan. Metode yang digunakan adalah mikrotremor HVSR (Horizontal to Vertical Spectral Ratio) untuk mendapatkan parameter frekuensi dominan, faktor amplifikasi, dan ground shear strain yang mengindikasikan potensi likuifaksi. Pengukuran dilakukan di 25 titik di area WKP Bora dengan durasi 60 menit per titik. Hasil penelitian menunjukkan titik-titik yang berpotensi mengalami likuifaksi seperti GTB\_21, GTB\_16, GTB\_22, GTB\_13, dan GTB\_02 yang ditandai dengan adanya rekahan tanah, dampak pada bangunan, dan munculnya air permukaan setelah gempa Palu 2018. Sebaran titik dengan potensi likuifaksi tinggi memiliki nilai ground shear strain 0,00432 -0,00648. Kemudian, dilakukan Pembobotan untuk penarikan kesimpulan pada Eksploitasi panas bumi Bora. Hasil yang diperoleh menunjukkan bahwa peluang terjadinya likuifaksi cukup besar di WKP Bora. Penelitian ini diharapkan dapat dijadikan acuan bagi pemerintah setempat dalam upaya mitigasi bencana kerentanan tanah kedepannya.

Kata Kunci: Mikrotremor, HVSR, Ground Shear Strain, Akuifer



## ABSTRACT

Indonesia is one of the countries rich in geothermal energy resources, with the potential to reach 40% of the world's geothermal reserves. In order to meet the increasing energy demand, the local government of Central Sulawesi Province is trying to develop geothermal potential in the Bora-Palu area, which has 93 MWe of estimated reserves. However, this area is located near the active Palu Koro Fault with a movement of up to 6.3 cm/year, which has the potential to experience earthquakes and liquefaction disasters. This study aims to determine the potential for liquefaction in the Bora geothermal area during an earthquake by analyzing the results of Ground Shear Strain and the distribution of subsurface aquifers. The method used is HVSR (Horizontal to Vertical Spectral Ratio) microtremor to obtain dominant frequency parameters, amplification factors, and ground shear strains that indicate liquefaction potential. Measurements were conducted at 25 points in the WKP Bora area with a duration of 60 minutes per point. The results showed that points with liquefaction potential such as GTB\_21, GTB\_16, GTB\_22, GTB\_13, and GTB\_02 were characterized by ground fractures, impacts on buildings, and the emergence of surface water after the 2018 Palu earthquake. The distribution of points with high liquefaction potential has a ground shear strain value of 0.00432 - 0.00648. Then, weighting was carried out to draw conclusions on Bora geothermal exploitation. The results obtained show that the chance of liquefaction is quite large in WKP Bora. This research is expected to be used as a reference for the local government in future soil vulnerability disaster mitigation efforts.

Keywords: Microtremor, HVSR, Ground Shear Strain, Aquifer



## KATA PENGANTAR

Alhamdulillah puji syukur penulis panjatkan kepada Allah SWT, karena atas segala rahmat dan hidayah-Nya sehingga penulis dapat menyelesaikan tugas akhir yang berjudul "Analisis Potensi Likuifaksi pada Panas Bumi Bora Menggunakan Mikrozonasi Ground Shear Strain dan Akuifer Bawah Permukaan", sebagai salah satu syarat untuk menyelesaikan studi pada Program Studi Geofisika Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Hasanuddin. Sholawat serta salam tak lupa penulis curahkan kepada Nabi Muhammad SAW. Kepada sahabat dan pengikutnya yang senantiasa mengikuti sunnah beliau hingga akhir zaman. Selesainya proses penyusunan tugas akhir ini pun didukung oleh berbagai pihak yang memberikan semangat, ide, dukungan, dan doa tentunya. Dengan segala kerendahan hati, penulis ingin menyampaikan salam hormat dan terima kasih yang sebesar-besarnya kepada:

- Kepada orang tua tercinta, Ibu Masitha dan Bapak Abdul Azis yang selalu memberikan doa dan dukungan, sehingga penulis dapat menyelesaikan Pendidikan strata satu ini. Terima kasih juga untuk kakak saya Nur Fajr Azzahra dan adik saya Abdi Azhar Azis serta Adelia Ainun Zahra, yang telah memberikan semangat disaat penulis menyelesaikan tugas akhir ini.
- 2. Bapak **Ir. Bambang Harimei, M.Si** dan Bapak **Syamsuddin, S.Si., MT**. selaku pembimbing utama dan pembimbing pertama penulis. Terima kasih telah membimbing dan memotivasi penulis dengan penuh tanggung jawab



da penulis hingga selesainya tugas akhir ini.

- 3. Bapak Sofian, S.Si. selaku pembimbing lapangan penulis di BMKG Stasiun Geofisika Kelas I Palu, terima kasih telah meluangkan waktu untuk membimbing penulis, serta Bapak Hendrik Leopatty, S.Si selaku Koordinator Bidang Data dan Informasi BMKG Stasiun Geofisika Kelas I Palu.
- Ibu Makhrani, S.Si., M.Si. dan Bapak Andi Muhammad Pramatadie, S.T., M.Eng., Ph.D. selaku tim penguji dalam pelaksanaan seminar proposal penelitian, seminar hasil penelitian, dan ujian sidang skripsi geofisika, terima kasih atas segala masukan serta saran kepada penulis.
- Bapak Dr. Eng. Amiruddin, S.Si., M.Si. selaku Dekan Fakultas Matematika dan Ilmu Pengetahuan Alam, Universitas Hasanuddin
- Bapak Dr. Muh. Alimuddin Hamzah, M.Eng. selaku Ketua Departemen Geofisika FMIPA Universitas Hasanuddin
- 7. Bapak **Dr. Erfan, M.Si**. selaku Dosen Penasihat Akademik yang banyak memberikan masukan kepada penulis.
- 8. Seluruh **Dosen-dosen Departemen Geofisika** yang telah memberikan ilmunya kepada penulis selama perkuliahan.
- Seluruh Kawan-kawan Mahasiswa Unhas yang memiliki satu kesamaan, saudara FISIKA 2018 dan MIPA 2018, serta senior dan junior saya yang telah berjasa selama saya berkuliah.
- 10. Teman seperjuangan Tugas Akhir dan Kerja Praktek, Sarwan Hendrick dan



Optimized using trial version www.balesio.com l**a Wahyu Rahmadani**, terima kasih untuk tetap selalu berjuang bersama lis hingga terselesaikannya tugas akhir ini. Teman seperjuangan KP BMKG Palu, terima kasih telah membersamai penulis selama berada di tempat KP.

 Kantin Jasmip yang telah menjadi tempat mendapatkan ilmu diluar kelas serta membangun ide-ide yang didampingi Kak Suri dan Mace.

Makassar, 26 April 2024

PENULIS

Dede Muhaimin Aziz



trial version www.balesio.com

## **DAFTAR ISI**

| HALA  | MAN JUDUL                                         | ii   |
|-------|---------------------------------------------------|------|
| HALA  | MAN PENGESAHAN                                    | iii  |
| PERN  | YATAAN KEASLIAN                                   | iv   |
| ABST  | RAK                                               | v    |
| КАТА  | PENGANTAR                                         | vii  |
| DAFT  | AR ISI                                            | x    |
| DAFT  | AR TABEL                                          | xii  |
| DAFT  | AR GAMBAR                                         | xiii |
| BAB I |                                                   | 1    |
| PEND  | AHULUAN                                           | 1    |
| I.1.  | Latar Belakang                                    | 1    |
| I.2.  | Rumusan Masalah                                   | 4    |
| I.3.  | Ruang Lingkup                                     | 4    |
| I.4.  | Tujuan Penelitian                                 |      |
| BAB I | [                                                 | 5    |
| TINJA | UAN PUSTAKA                                       | 5    |
| II.1. | Geologi Regional                                  | 5    |
| II.2. | Gelombang Seismik                                 | 10   |
| II.3. | Gempabumi                                         | 12   |
| II.4. | Mikrozonasi                                       | 13   |
| II.   | 4.1. Horizontal to Vertical Spectral Ratio (HVSR) | 13   |
| II.4  | 4.2. Peak Ground Accelaration (PGA)               | 19   |
| II.   | 4.3. Ground Shear Strain (GSS)                    |      |
| II.5. | Likuifaksi                                        |      |
| II.6. | Sebaran Akuifer                                   |      |
| BAB I | П                                                 |      |
| METC  | DOLOGI PENELITIAN                                 |      |
|       | Peta Lokasi Penelitian                            |      |
| PDF   | Alat dan Bahan                                    |      |
|       | 1. Alat                                           |      |
| 10    | 2. Bahan                                          | 33   |
|       |                                                   |      |

Optimized using trial version www.balesio.com

| III.3.   | Prosedur Akuisisi Data                                 | 33  |
|----------|--------------------------------------------------------|-----|
| III.4.   | Prosedur Pengolahan Data                               |     |
| III.5.   | Bagan Alir                                             | 37  |
| BAB IV   |                                                        |     |
| HASIL D  | AN PEMBAHASAN                                          |     |
| IV.1. Ha | asil HVSR Panas Bumi Bora                              | 38  |
| IV.2. Ha | asil Ground Shear Strain                               | 49  |
| IV.3. Ha | asil Akuifer sebagai Faktor Likuifaksi Panas Bumi Bora | 51  |
| IV.4. Po | tensi Likuifaksi                                       | 52  |
| BAB V    |                                                        | 57  |
| PENUTU   | Ρ                                                      | 57  |
| V.1. Ke  | simpulan                                               | 57  |
| V.2 Sara | an                                                     | 57  |
| DAFTAR   | PUSTAKA                                                | 59  |
| LAMPIR   | AN                                                     | 63  |
| Lampira  | n 1. Proses Windowing Data                             | 63  |
| Lampira  | n 2. Kurva HVSR Setiap titik Pengukuran                | 75  |
| Lampira  | n 3. Perhitungan PGA                                   | 81  |
| Lampira  | n 4. Perhitungan Keseluruhan Data                      | 82  |
| Lampira  | n 5. Lembar Akuisisi Data Mikrotremor                  |     |
| т        | n ( Delaurenter' Lenensen                              | 100 |



## DAFTAR TABEL

| Tabel 2. 1 Klasifikasi Nilai Frekuensi Dominan dan Periode Dominan oleh Kanai      |
|------------------------------------------------------------------------------------|
| (BMKG,1998)                                                                        |
| Tabel 2. 2 Klasifikasi Nilai Amplifikasi (Sitorus dkk, 2017)                       |
| <b>Tabel 2. 3</b> Klasifikasi Nilai Indeks Kerentanan Tanah (Kg) (Akkaya, 2020) 18 |
| Tabel 2. 4 Klasifikasi Tingkat Resiko Bahaya Gempa Bumi (Fauzi, 2001)              |
| <b>Tabel 2. 5</b> Ukuran Regangan dan Sifat Dinamika Tanah (Nakamura, 1997) 23     |
| Tabel 4. 1 Nilai frekuensi dominan, periode dominan dan faktor amplifikasi         |
| setiap site pengukuran                                                             |
| Tabel 4. 2 Klasifikasi Nilai Frekuensi Dominan Dan Periode Dominan                 |
| <b>Tabel 4. 3</b> Klasifikasi Nilai Amplifikasi                                    |
| Tabel 4. 4 Nilai Indeks Kerentanan Tanah (Kg) dan Peak Ground Acceleration         |
| (α) dari setiap site pengukuran                                                    |
| <b>Tabel 4. 5</b> Klasifikasi nilai Indeks Kerentanan Tanah                        |
| <b>Tabel 4. 6</b> Klasifikasi nilai Peak Ground Acceleration Titik Pengukuran      |
| <b>Tabel 4. 7</b> Nilai ground shear strain dan klasifikasinya                     |
| Tabel 4. 8 Pembobotan Parameter-parameter Potensi Likuifaksi                       |
| Tabel 4. 9    Hasil Pembobotan Dari Keseluruhan Parameter                          |



## DAFTAR GAMBAR

| Gambar 2. 1 Peta Geologi Daerah Panas Bumi Bora Kabupaten Sigi Provinsi   |
|---------------------------------------------------------------------------|
| Sulawesi Tengah (Wibowo, dkk., 2011)                                      |
| Gambar 2. 2 Peta Hidrogeologi Palu (Arief & Hidayat, 1993)                |
| Gambar 2. 3 Peta Hidrogeologi Palu, Penampang G-H (Arief & Hidayat, 1993) |
|                                                                           |
| Gambar 2. 4 Penampang hambatan jenis AB (desa Bora)                       |
| Gambar 2. 5 Genangan/mata air baru Balaroa (Widodo, dkk., 2019) 31        |
| Gambar 2. 6 Penampang Geolistrik Biromaru                                 |
| Gambar 3. 1 Peta lokasi titik pengukuran mikrotremor panas bumi           |
| Gambar 3. 2 Bagan Alir Penelitian                                         |
| Gambar 4. 1 Kurva HVSR GTB_01                                             |
| Gambar 4. 2 Peta Nilai Frekuensi Dominan                                  |
| Gambar 4. 3 Peta Sebaran Nilai Amplifikasi                                |
| Gambar 4. 4 Peta Sebaran Nilai Indeks Kerentanan Tanah 46                 |
| Gambar 4. 5 Peta Sebaran Peak Ground Acceleration                         |
| Gambar 4. 6 Peta sebaran nilai GSS 50                                     |
| Gambar 4. 7 Peta Potensi Bencana Likuifaksi 55                            |
| Gambar 4.8 Grafik Bobot Total Potensi Likuifaksi                          |



#### BAB I

## PENDAHULUAN

#### I.1. Latar Belakang

Indonesia merupakan salah satu negara yang kaya akan sumber energi panas bumi, karena berada pada daerah terdepan di zona tektonik aktif. Energi panas bumi adalah energi panas yang tersimpan dalam batuan di bawah permukaan bumi dan fluida yang terkandung di dalamnya. Potensi panas bumi di Indonesia mencapai 40% cadangan panas bumi dunia. Hal ini ditunjukkan Indonesia memiliki 129 gunung api yang berpotensi sebagai daerah pengembangan panas bumi. Dapat ditinjau pada Wilayah kerja Panas Bumi (WKP) Bora yang berada di Sigi, Sulawesi Tengah merupakan salah satu potensi energi terbarukan yang dapat menunjang kebutuhan energi listrik daerah Sigi. Energi panas bumi ini dapat dimanfaatkan sebagai sumber daya energi yang ramah lingkungan dan minim polusi. Hal ini dikarenakan energi panas bumi memiliki tingkat emisi yang sangat rendah dibandingkan dengan energi lainnya, serta merupakan salah satu solusi terbaik untuk mengatasi keterbatasan energi saat ini yang umumnya menggunakan energi tak terbarukan (DEN, 2022).

Berdasarkan hal tersebut, data inventarisasi yang dimiliki oleh Dinas Energi dan Sumber Daya Mineral Provinsi Sulawesi Tengah (2009) menyampaikan bahwa daerah Bora memiliki cadangan terduga panas bumi sebesar 93 Mwe yang dapat



Optimized using trial version www.balesio.com ii kebutuhan energi listrik Kabupaten Sigi dan beberapa daerah di Kota hingga dapat menjadi Solusi dari kebutuhan energi daerah Provinsi Sulawesi Tengah yang pada umumnya masih harus dipasok bahan bakar dari daerah lain, karena daerah Sulawesi Tengah tidak memiliki sumber energi fosil seperti minyak bumi, gas dan batu bara. Hal ini menimbulkan biaya tinggi dalam memenuhi kebutuhan energi. Dalam rangka memenuhi kebutuhan energi yang semakin meningkat melalui pemerintah daerah berupaya mencari sumber energi lain untuk memenuhi kebutuhan tersebut. (Bakrun, dkk., 2003).

Panas bumi Bora – Palu secara geologi berada di depresi Palu yang memanjang arah hampir utara-selatan. Pembentukan depresi ini berkaitan dengan aktivitas pergerakan sesar Palu Koro yang bergerak mengiri. Dari hasil pengukuran geodetik yang terpasang di kedua sisi blok yang bergerak diketahui bahwa sesar ini masih aktif dengan pergerakan mencapai 6,3 cm/tahun (PSDMBP, 2017).

Aktivitas tektonik diatas perlu analisis terhadap potensi bencana yang dapat diakibatkan, agar pengembangan energi panas bumi berjalan dengan baik. Gempa bumi dapat menghasilkan berbagai bencana alam yakni salah satunya likuifaksi pada daerah Sesar Palu Koro. Peristiwa likuifaksi saat gempa dapat ditandai dengan adanya pergerakan tanah dalam arah horizontal, rembesan air keluar dari rekahan tanah, bergeraknya bangunan miring atau turun, penurunan muka tanah, longsornya tanggul dan lereng. Pada bangunan yang berada pada daerah terlikuifaksi dapat berakibat terjadinya amblas, miring atau bergerak ke samping atau bahkan mengakibatkan keruntuhan bangunan (Hakam dan Darjanto, 2013).



likuifaksi dapat dianalisis menggunakan metode mikrotremor yang getaran oleh aktivitas bumi ataupun aktivitas manusia, biasanya metode

Optimized using trial version www.balesio.com ini digunakan untuk memperkirakan tingkat kerusakan yang timbul akibat gempa bumi dan juga dapat digunakan untuk mengetahui kondisi struktur bawah permukaan berdasarkan frekuensi dominannya dan faktor amplifikasinya. Dalam analisis mikrotremor spektrum komponen horizontal dibandingkan terhadap komponen vertikal atau dikenal dengan metode HVSR (*Horizontal to Vertical Spectral Ratio*). Parameter penting yang dihasilkan dari metode HVSR yaitu frekuensi dominan (f<sub>0</sub>) dan faktor amplifikasi (A<sub>0</sub>) (Arintalofa, dkk., 2020).

Menurut Warnana dkk. (2011) metode HVSR sangat cocok untuk menentukan nilai frekuensi natural dan amplifikasi yang dimiliki suatu daerah. Nilai tersebut akan menentukan nilai percepatan tanah maksimum dan ketebalan lapisan sedimen di daerah penelitian yang kemudian digunakan untuk menghitung nilai *ground shear strain* atau regang geser tanah. Nilai *ground shear strain* dapat digunakan untuk mengkarakterisasi dampak yang terjadi saat gempa bumi, seperti likuifaksi, tanah retak, penurunan tanah, tanah longsor dan bergetarnya tanah. Pada likuifaksi, selain nilai *ground shear strain* dapat juga menggunakan sebaran akuifer bawah permukaan sebagai salah satu faktor penyebab likuifaksi. Karena, pada sebuah kondisi tertentu akuifer dapat menjadi salah satu faktor yang mendukung terjadinya likuifaksi karena mendapat energi (gempa) sehingga dapat bergerak dan merubah sebuah struktur tanah.

Berdasarkan penjelasan di atas, perlu dilakukan penelitian untuk mengetahui



Optimized using trial version www.balesio.com ikuifaksi pada daerah panas bumi Bora ketika terjadinya gempa bumi vitas Sesar Palu Koro. Potensi likuifaksi diketahui dengan menganalisis

hasil *Ground Shear Strain* serta sebaran akuifer bawah permukaan sebagai data pendukung utama.

## I.2. Rumusan Masalah

Adapun rumusan masalah dalam penelitian ini, sebagai berikut;

- 1. Bagaimana potensi likuifaksi di daerah panas bumi Bora dengan mikrozonasi *Ground Shear Strain* dan sebaran akuifer bawah permukaan?
- Bagaimana pengaruh potensi likuifaksi terhadap status WKP (Wilayah Kerja Panas Bumi) Bora, Sulawesi Tengah?

## I.3. Ruang Lingkup

Penelitian ini dibatasi pada daerah panas bumi Bora dengan koordinat 119°56'18"E-119°56'32"E dan 1°3'5"S-1°3'19"S. Data penelitian yang digunakan berupa data primer mikrotremor dan data sekunder akuifer bawah permukaan. Pada penelitian ini menggunakan analisis hasil *Ground Shear Strain* (GSS) serta sebaran akuifer bawah permukaan. Keluaran dari penelitian ini berupa peta sebaran potensi likuifaksi terhadap pengembangan panas bumi Bora.

## I.4. Tujuan Penelitian

Tujuan dalam penelitian ini, sebagai berikut:

1. Mengetahui potensi likuifaksi di daerah panas bumi Bora dengan mikrozonasi *Ground Shear Strain* dan sebaran akuifer bawah permukaan.



trial version www.balesio.com Mengetahui pengaruh potensi likuifaksi terhadap status WKP (Wilayah erja Panas Bumi) Bora, Sulawesi Tengah.

#### **BAB II**

## TINJAUAN PUSTAKA

#### II.1. Geologi Regional

Secara umum geomorfologi daerah Panas bumi Bora dapat dikelompokkan menjadi tiga satuan geomorfologi, yaitu: satuan perbukitan terjal, perbukitan bergelombang, dan satuan pedataran. Litologi penyusun daerah Bora terdiri dari batuan sedimen, beku intrusi dan metamorf berumur Pra-Tersier hingga Resen, terbagi menjadi tujuh satuan batuan (Simanjuntak, dkk., 1991). Pada Gambar 2.1 menunjukkan susunan stratigrafi batuan dari mulai yang tertua hingga termuda terdiri dari adalah satuan Sekis (Trs), Granit Geneis (Trg), Filit (Kf), Granit Salubi (Tgs), Granit Oloboju (Tgo), Sedimen (Qs), dan Aluvium (Qal).

#### Satuan batuan Sekis Hijau (Trs)

Satuan batuan Sekis hijau (metamorf) merupakan satuan batuan tertua sebagai *basement* yang berumur Trias (TrS). Batuan Sekis hijau ini tersingkap pada penorehan struktur sesar dijumpai pada bagian tebing sungai Binangga hingga ke bagian selatan di daerah Desa Pakuli dan Desa Simoro. Satuan ini tersingkap sebagai Sekis hijau, berwarna hijau tua, berlapis sebagai bidang foliasi, kompak, berbutir halus, lanau sampai lempung dan setempat rekahan terisi oleh urat-urat kwarsa maupun kalsit. Berdasaran referensi, umur satuan Sekis setara dengan

<sup>-</sup> Wana berumur Trias (Simanjuntak, dkk., 1991).





Gambar 2. 1 Peta Geologi Daerah Panas Bumi Bora Kabupaten Sigi Provinsi Sulawesi Tengah (Wibowo, dkk., 2011)

## Satuan Granit Geneis (Trgn)

Batuan granit geneis ini diperkirakan merupakan bagian dari tubuh instrusi granitoid regional yang berumur Trias (Trgn). Sebagian dari granit ini terlihat telah terubah menjadi batuan metamorf akibat proses tektonik regional yang telah berlangsung berulang kali di daerah ini. Kondisi batuannya kompak, berwarna abu-abu tua berbintik-bintik hitam, kehijauan, bertekstur porpiritik sampai phaneritik tersebar disebelah timur Desa Pandere, Sibalaya yang membentuk jalur perbukitan yang memanjang hingga ke utara di luar daerah penyelidikan. Satuan



nes ini masih memperlihatkan rekahan-rekahan, kekar kolom, yang diisi ran mineral baru seperti kwarsa, kalsit dan juga mineral pirit. sinya terdiri dari plagiokals, kwarsa, orthoklas, mika dan mineral opak.

#### Satuan Batuan Sabak-Filit (Km)

Satuan batuan filit, batu sabak, dan batu tanduk yang tersingkap di selatan baratdaya daerah penyelidikan yang mencirikan adanya perlapisan dan kontak dengan batuan granit di bagian utara yang merupakan tipe khas satuan batuan formasi Latimojong berumur Kapur Atas. Kondisi batuan ini agak lapuk, berbutir halus sekali, berwarna abu-abu kecoklatan, berlapis baik, retas. Komposisinya mineral lempung, mika-biotit dan mineral opak.

#### Satuan Batuan Granit (Tgr)

Satuan batuan granit ini mempunyai penyebaran paling luas. Granit ini masih kompak dan pada bagian permukaan mulai lapuk, berwarna putih-kelabu berbintik-bintik hitam, dengan komposisi mineral terdiri kwarsa, plagioklas, orthoklas, serta mineral gelap lainnya, bertekstur porfiritik-phaneritik dengan bentuknya euhedral-subhedral. Satuan granit (batholith) mengintrusi batuan yang telah ada seperti batuan metamorf yang merupakan instrusi besar secara regional yang berumur Miosen. Pada tubuh batuan granit ini terlihat adanya instrusi kecil-kecil berupa aplit atau rhyolite, yang tebalnya 2 - 50 cm. Seluruh puncak-puncak gunung yang tinggi sampai yang terendah dibangun oleh tubuh instrusi batuan granit ini berumur Miosen tengah – akhir.

#### Satuan Coluvial (Qcl)

Satuan ini terdiri dari konglomerat, batu pasir, setempat-setempat berselingan



Optimized using trial version www.balesio.com atu lempung karbonatan dan terlihat jelas dengan baik. Penyebarannya as diperkirakan menempati sekitar 15% yang membentuk bukit-bukit rendah serta daratan. Konglomerat berwarna coklat kemerahan hingga kekuningan, terdiri dari kepingan granit, diorite, andesit dan bauan malihan, berukuran pasir hingga kerakal, terpilah buruk dengan masa dasar pasir. Dari referensi menyebutkan bahwa satuan ini dikelompokkan ke dalam formasi Pakuli berumur Pleistosen Akhir. Pada umumnya Satuan Coluvial ini masih *unconsolidated* (kurang padat). Bagian barat dicirikan dengan batuan malihan, berupa filit, batu sabak dan batu tanduk yang mendominasinya. Sedangkan pada bagian timur ditempati oleh batuan granit dan sekis.

#### Aluvial (Qa)

Satuan Aluvium dijumpai daerah dataran rendah di bagian tengah daerah penyelidikan yaitu sepanjang aliran sungai besar Palu dan cabang-cabang yang alirannya menyatu dengan sungai besar. Satuan ini berasal dari hasil rombakan berbagai macam jenis batuan dari tua sampai termuda, baik itu batuan beku, sedimen maupun metamorf, kemudian terendapkan di daerah rendah seperti di sepanjang aliran sungai, lembah-lembah pegunungan berupa lumpur, pasir, kerikil, kerakal dan bongkah yang belum padu, berukuran sangat halus sampai terkasar (lempung-bongkah). Daerah alluvial ini secara umum telah menjadi areal persawahan masyarakat setempat (Bakrun, dkk., 2003).

Batuan tertua yang ada di daerah penyelidikan adalah batuan malihan yang terdiri dari sekis dan granit genes berumur Trias-Jura yang telah mengalami pemalihan



Optimized using trial version www.balesio.com ali. Dua satuan ini tertindih tidak selaras oleh batuan malihan (filit) Kapur Akhir. Pada Kala Miosen-Pliosen terjadi terobosan batuan beku yang membentuk batuan beku yang membentuk satuan granit Slaubi dan granit Oloboju. Satuan ini diperkirakan merupakan tubuh batolit besar yang menerobos satuan lain yang lebih tua. Dari hasil pentarikan umur (*dating*) menunjukkan bahwa umur satuan ini adalah  $6,7 \pm 0,2$  juta tahun atau pada Kala Miosen Atas. Pada Kala Plistosen terjadi pengendapan batuan sedimen yang mengisi zona depresi di bagian tengah daerah penyelidikan. Batuan sedimen ini kemudian sebagian ditutupi oleh endapan permukaan berupa alluvium yang proses pengendapannya masih berlangsung hingga sekarang.

Pola umum tektonik yang terbentuk di daerah penyelidikan terdiri dari struktur sesar-sesar normal, sesar obliq, dan sesar mendatar yang umumnya berarah relatif utara-selatan dan barat-timur. Terdapat 4 sturktur sesar yang berkembang di daerah penyelidikan yaitu Sesar Palu-Koro berarah utara-selatan, Sesar Sidera berarah barat-timur, Sesar Oloboju berarah barat-timur, dan Sesar bora berarah baratlaut-tenggara. Struktur sesar Palu-Koro diperkirakan mengontrol pemunculan mata air panas Mantikole dan Lompio, sesar Sidera mengontrol pemunculan mata air panas Sidera dan Sesar Bora yang mengontrol pemunculan mata air panas Bora. Batuan ubahan (alterasi) ditemuan di sekitar manifestasi tanah panas Bora. Hasil analisis dan interpretasi PIMA menunjukkan batuan telah mengalami ubahan hidrotermal menjadi kelomok alunit dan mineral lempung (montmorilonit) serta hallosyit sehingga dapat dikelompokkan ke dalam tipe ubahan *argillic*-



Optimized using trial version www.balesio.com *argillic*. Diperkirakan bahwa batuan ubahan berada pada lingkungan dan 1hi fluida bersifat asam dengan temperature rendah sampai tinggi (50°C -*W*ibowo, dkk, 2011).

#### II.2. Gelombang Seismik

Gelombang seismik adalah gelombang yang merambat didalam atau diluar permukaan bumi yang berasal dari sumber seismic, seperti gempa, ledakan, erupsi gunung api, longsor, badai, dentuman pesawat spersonik (Afnimar, 2009). Penjalaran energi gelombang seismik disebabkan karena adanya gangguan pada kerak bumi, misalnya adanya patahan atau adanya ledakan. Energi ini akan merambat ke seluruh bagian bumi dan dapat terekam oleh seismometer. Akibat yang ditimbulkan oleh adanya gelombang seismik dari gangguan alami, pergerakan lempeng (tektonik), bergeraknya patahan, aktivitas gunung api (vulkanik), dan sebagainya adalah apa yang kita kenal sebagai fenomena gempa bumi.

Gelombang seismik disebut juga gelombang elastik yang membawa energi kemudian menjalar ke segala arah di seluruh bagian bumi. Disebut gelombang elastik karena osilasi partikel-partikel medium terjadi akibat dari interaksi antara gradien stress melawan gaya-gaya elastik. Gelombang seismik dibedakan menjadi dua jenis, yaitu gelombang badan (*body wave*) dan gelombang permukaan (*surface wave*). Gelombang badan adalah gelombang yang menjalar dalam media elastik dan arah perambatannya ke seluruh bagian di dalam bumi. Berdasarkan gerak partikel pada media dan arah penjalarannya, gelombang ini dapat dibedakan menjadi gelombang P dan gelombang S (Arintalofa dkk., 2020).

# PDF PDF

Optimized using trial version www.balesio.com Celombang Primer (P)

elombang P merupakan gelombang longitudinal, karena simpangannya jajar dengan arah penjalarannya. Gelombang P dapat melewati semua medium dengan arah getarnya ke depan dan ke belakang sehingga materi yang dilaluinya mengalami tekanan dan peregangan. Gelombang P dapat menjalar pada semua medium baik padat, cair, maupun gas. Kecepatan penjalaran gelombang P yang dituliskan sebagai berikut (Haerudin dkk., 2019):

$$V_p = \sqrt{\frac{\kappa + \frac{4}{3}\mu}{\rho}}$$
(2.1)

dengan  $V_p$  merupakan kecepatan gelombang P (m/s),  $\kappa$  merupakan modulus Bulk (Pa),  $\mu$  merupakan rigiditas atau modulus geser (N/m<sup>2</sup>), dan  $\rho$  merupakan densitas (kg/m<sup>3</sup>).

2) Gelombang Sekunder (S)

Gelombang S atau gelombang transversal (shear wave) adalah salah satu gelombang badan (body wave) yang memiliki simpangan tegak lurus terhadap arah rambatnya. Kecepatan penjalaran gelombang S yang dituliskan sebagai berikut (Haeruddin dkk., 2019):

$$V_S = \sqrt{\frac{\mu}{\rho}} \tag{2.2}$$

Gelombang ini waktu tibanya setelah gelombang P, sehingga gelombang tercatat setelah gelombang P pada seismograph. Gelombang ini hanya merambat pada medium padat dan tidak dapat merambat pada fluida sehingga pada inti bumi bagian luar tidak dapat terdeteksi sedangkan pada ti bagian dalam mampu dilewati.



#### II.3. Gempabumi

Gempa bumi adalah getaran bumi yang dihasilkan oleh percepatan energi yang dilepaskan, energi ini menyebar ke segala arah dari pusat sumbernya. Gempa bumi dapat disebabkan oleh beberapa hal yaitu jatuhan meteor, aktivitas vulkanik (gempa vulkanik), longsoran, runtuhan-timbunan batuan di pertambangan, ledakan nuklir bawah tanah, pergerakan lempeng tektonik (gempa tektonik) dan lain-lain. Gempa tektonik adalah gempa yang perlu mendapat perhatian lebih karena mempunyai dampak destruktif yang besar, terlebih pada aktivitas pengembangan energi yang menggunakan sumber dari adanya pertemuan lempeng (Boen, 1985).

Energi yang dimaksud berupa pelepasan tegangan (*stress*) secara tiba-tiba dari dalam permukaan bumi. Energi tersebut bergerak secara tidak tetap (*transient*), kemudian akan menyebar ke segala arah hingga merambat ke permukaan bumi, yang diikuti oleh bencana-bencana pengikut gempabumi lainnya, contohnya likuifaksi pada gempabumi Palu 2019. Penyebab gempabumi seperti ini termasuk ke dalam gempabumi tektonik, dimana terjadi pergerakan lempeng bumi yang saling bertabrakan (konvergen), saling berjauhan (divergen), dan bersinggungan (*transform*). Gempabumi tektonik terjadi bila adanya penekanan pada batas-batas pertemuan lempeng, sehingga lempeng saling bertumbukan. Pertemuan lempeng dapat terjadi antara lempeng benua–lempeng benua, lempeng samudera – lempeng



Optimized using trial version www.balesio.com ona subduksi (Simanjuntak dan Olymphia, 2017).

Secara geografis Indonesia terletak di daerah katulistiwa dengan morfologi yang beragam dari daratan sampai pegunungan tinggi. Keragaman morfologi ini banyak dipengaruhi oleh faktor geologi terutama dengan adanya aktivitas pergerakan lempeng tektonik aktif di sekitar perairan Indonesia diantaranya adalah lempeng Eurasia, Australia dan lempeng Dasar Samudera Pasifik. Pergerakan lempeng-lempeng tektonik tersebut menyebabkan terbentuknya jalur gempabumi, rangkaian gunung api aktif serta patahan-patahan yang dapat berpotensi menjadi sumber gempa Sejumlah peristiwa bencana gempa bumi dengan magnitude besar akhir-akhir ini sering terjadi di beberapa wilayah Indonesia (Rais dan Somantri, 2021).

#### II.4. Mikrozonasi

#### **II.4.1.** Horizontal to Vertical Spectral Ratio (HVSR)

Analisis dengan HVSR dikenalkan oleh Nogoshi dan Igarashi (1971) yang selanjutnya di kembangkan oleh Nakamura (1989). Konsep dasar metode HVSR adalah adanya kesamaan antara rasio spektra horizontal ke vertikal dengan transfer gelombang dari batuan dasar ke permukaan (Nakamura, 1989). Parameter penting yang dihasilkan dari metode HVSR ialah frekuensi dominan dan amplifikasi tanah yang merupakan nilai puncak kurva HVSR, berkaitan dengan geologi setempat dan parameter fisik bawah permukaan (Sungkono dan Santosa, 2011). Frekuensi dominan adalah nilai frekuensi yang kerap muncul sehingga



sebagai nilai frekuensi dari suatu lapisan batuan yang tersusun di suatu ngan kata lain frekuensi dominan dapat menunjukkan jenis dan stik batuan di satu area. Amplifikasi merupakan perbesaran gelombang seismik yang terjadi akibat adanya perbedaan yang signifikan antar lapisan, dengan kata lain gelombang seismik akan mengalami perbesaran jika merambat pada suatu medium yang lebih lunak dibandingkan medium awal yang dilaluinya. Nakamura (1989) menghitung rasio antara spektrum horizontal dan vertikal ( $\frac{H}{v}(f)$ ) pada getaran *ambient* yang direkam dengan sensor seismik stasiun tunggal tiga komponen, dari setiap komponen merupakan sinyal dalam domain waktu, untuk itu dilakukan transformasi Fourier untuk mengubah sinyal dari domain waktu ke domain frekuensi. Proses transformasi Fourier dalam survey mikrotremor adalah mengubah gelombang seismik yang berdomain waktu menjadi domain frekuensi. Transformasi Fourier ini merupakan metode untuk mendekomposisi suatu gelombang seismik menjadi beberapa gelombang harmonik sinusoidal dengan frekuensi yang berbeda-beda. Sejumlah gelombang sinusoidal tersebut disebut sebagai Deret Fourier. Persamaan transformasi Fourier dalam kasus ini ditunjukkan pada persamaan 2.4 bedasarkan 2.3 sebagai berikut (Park, 2010):

$$X(f) = \int_{-\infty}^{\infty} x(t)e^{-j2\pi ft} dt$$
$$= \int_{-\infty}^{\infty} x(t)\cos(2\pi ft)dt - j\int_{-\infty}^{\infty} x(t)\sin(2\pi ft)dt \qquad (2.3)$$

dengan:

X(f) = fungsi dalam domain frekuensi

 $e^{-j2\pi ft}$  = fungsi Kernel



www.balesio.com

fungsi dalam domain waktu

frekuensi

n 2.3 tersebut yang digunakan untuk mengubah sinyal dari domain

waktu menjadi domain frekuensi. Setelah itu, persamaan tersebut didekati dengan persamaan yang ditunjukkan oleh 2.4 berikut, dengan m dan n adalah bilangan bulat.

$$\int_{-\infty}^{\infty} x(t)\cos(2\pi ft)dt \to \sum_{n} x(n\Delta t)\cos(2\pi fn\Delta t)\Delta t$$
$$= \sum_{n} x(n\Delta t)\cos(2\pi nm\Delta t\Delta f)\Delta t$$
$$= \sum_{n} x(n\Delta t)\cos\left(2\pi \frac{nm}{N}\right)\Delta t \qquad (2.4)$$

Dalam domain waktu, periode suatu sinyal dinyatakan sebagai T = N∆t, sedangkan pada domain frekuensi  $\Delta f = \frac{f_s}{N}$  dengan  $\Delta f$  menyatakan interval antar frekuensi dan fs =  $\frac{1}{\Delta t} = N\Delta f$ . Dengan demikian, pada persamaan 2.4  $\Delta t\Delta f = \frac{1}{N}$ , yang merupakan penghubung antara domain waktu dan domain frekuensi. Proses yang digunakan dalam penelitian ini yaitu FFT (Fast Fourier Transform). Prinsip kerja dari FFT adalah membagi sinyal hasil penyamplingan menjadi beberapa bagian yang kemudian masing-masing bagian diselesaikan dengan algoritma yang sama dan hasilnya dikumpulkan Kembali (Riyanto, dkk, 2009).

$$\frac{H}{V}(f) = \frac{\sqrt{|E(f)|^2 + |N(f)|^2}}{\sqrt{2|Z(f)|^2}}$$
(2.5)

dimana:

חי

Optimized using trial version www.balesio.com

 $\frac{H}{V}(f)$  = nilai perbandingan spektrum komponen horizontal dan komponen vertikal

= nilai amplitudo spektrum komponen timur-barat E(f)nilai amplitudo spektrum komponen utara-selatan nilai amplitudo spektrum komponen vertikal

15

dengan E(f) adalah spektrum pada horizontal *East-West*, N(f) adalah spektrum pada *North-south*, dan Z(f) adalah spektrum vertikal. Hasil yang diperoleh dari metode HVSR adalah kurva HVSR, dari kurva ini diperoleh parameter-parameter HVSR yaitu frekuensi dominan dan amplifikasi.

**Tabel 2. 1** Klasifikasi Nilai Frekuensi Dominan dan Periode Dominan oleh Kanai (BMKG,1998)

| Klasifikasi<br>Tanah | Frekuensi<br>Dominan<br>(Hz) | Periode<br>Dominan<br>(Hz) | Klasifikasi                                                                                                         | Deskripsi                                                                                             |
|----------------------|------------------------------|----------------------------|---------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|
| Jenis I              | 10-20                        | 0,05-0,15                  | Batuantersierataulebihtua.TerdiridaribatuanHardsandy gravel, dll                                                    | Ketebalan<br>sedimen<br>permukaannya<br>sangat tipis,<br>didominasi oleh<br>batuan keras              |
| Jenis II             | 4-10                         | 0,10-0,25                  | Batuan alluvial,<br>dengan<br>ketebalan 5 m.<br>Terdiri dari dari<br>sandy-gravel,<br>sandy hard clay,<br>loam, dll | Ketebalan<br>sedmien<br>permukaannya<br>masuk dalam<br>kategori<br>menengah 5-10<br>meter             |
| Jenis III            | 2,5-4                        | 0,25-0,40                  | Batuan alluvial,<br>dengan<br>ketebalan >5m.<br>Terdiri dari dari<br>sandy-gravel,<br>sandy hard clay,<br>loam, dll | Ketebalan<br>sedimen<br>permukaan<br>masuk dalam<br>kategori tebal,<br>sekitar 10-30<br>meter         |
| PDF                  | <2,5                         | >0,40                      | Batuan alluvial,<br>yang terbentuk<br>dari sedimentasi<br>delta, top soil,<br>lumpur,dll                            | Ketebalan<br>sedimen<br>permukaannya<br>sangatlah tebal<br>dengan<br>kedalaman 30<br>meter atau lebih |



Menurut Nakamura (2000), amplifikasi dapat terjadi akibat dari adanya perbesaran gelombang seismik karena perbedaan yang mencolok antar lapisan. Artinya gelombang seismik akan mengalami perbesaran jika melalui medium yang lebih lunak dari pada medium awal yang dilaluinya. Jika semakin besar perbedaan itu maka perbesaran gelombang juga semakin besar pula. Nilai penguatan amplifikasi tanah berkaitan dengan kontras impedansi lapisan dipermukaan dan lapisan dibawahnya. Apabila kontras impedansi kedua lapisan tersebut tinggi maka terjadi faktor penguatan yang tinggi pula, begitupun sebaliknya. Sehingga dikaitkan antara fungsi perbandingan kontras impedansi sebagai berikut:

$$A_0 = \frac{\rho_b V_b}{\rho_s V_s} \tag{2.6}$$

Di mana untuk  $A_0$  adalah faktor amplifikasi,  $\rho b$  adalah densitas batuan dasar (m/s),  $V_b$  adalah kecepatan rambat gelombang batuan dasar (m/s),  $\rho_s$  adalah Densitas batuan lunak (m/s),  $V_s$  adalah kecepatan rambat gelombang batuan lunak (m/s). Jika densitas basement dan lapisan permukaan sama, Nakamura (2000) merumuskan faktor amplifikasi sebagai berikut:

$$A_0 = V_b / V_s \tag{2.7}$$

dimana  $A_0$  faktor amplifikasi,  $V_b$  kecepatan gelombang geser pada batuan dasar (basement), dan Vs kecepatan gelombang geser pada lapisan sedimen. Klasifikasi

lifikasi tanah bisa dilihat pada Tabel 2.2.



PDF

| Zona | Klasifikasi   | Nilai Faktor Amplikasi |
|------|---------------|------------------------|
| 1    | Rendah        | $A_0 < 3$              |
| 2    | Sedang        | $3 \le A_0 < 6$        |
| 3    | Tinggi        | $6 \le A_0 < 9$        |
| 4    | Sangat Tinggi | $A_0 \ge 9$            |

Tabel 2. 2 Klasifikasi Nilai Amplifikasi (Sitorus dkk, 2017)

Salah satu parameter yang dinilai dalam pengukuran mikroseismik pada mikrozonasi gempa adalah adalah indeks kerentanan tanah (Kg). Nakamura (1989) menyatakan, Indeks Kerentanan tanah (Kg) suatu wilayah mengindentifikasikan tingkat kerentanan suatu lapisan tanah yang mengalami deformasi akibat gempa bumi. Nilai indeks kerentanan tanah (Kg) dapat dicari dengan persamaan:

$$K_g = \frac{A_0^2}{f_0}$$
(2.8)

dengan A<sub>0</sub> adalah amplifikasi dan f<sub>0</sub> adalah frekuensi dominan. Nilai Kg yang tinggi umumnya ditemukan pada tanah dengan litologi batuan sedimen yang lunak. Nilai yang tinggi tersebut mendeskripsikan bahwa daerah tersebut rentan terhadap gempa. Sebaliknya, nilai Kg yang kecil umumnya ditemukan pada tanah dengan batuan penyusun yang kuat dan stabil sehingga saat terjadi gempa, daerah tersebut hanya mengalami guncangan yang kecil. Klasifikasi nilai Kg dapat dilihat pada Tabel 2.3

**Tabel 2. 3** Klasifikasi Nilai Indeks Kerentanan Tanah (Kg) (Akkaya, 2020)

| Zona |   | Klasifikasi   | Nilai Indeks Kerentanan Tanah |  |  |
|------|---|---------------|-------------------------------|--|--|
| PDF  | 1 | Rendah        | $K_g \leq 3$                  |  |  |
|      | 2 | Sedang        | $3 < K_g \leq 5$              |  |  |
|      | 3 | Tinggi        | $5 < K_g \le 10$              |  |  |
| 0 B  | 4 | Sangat Tinggi | $K_g \ge 10$                  |  |  |



#### **II.4.2.** Peak Ground Accelaration (PGA)

Peak Ground Aceleration (PGA) Percepatan gelombang seismik atau biasa disebut percepatan tanah adalah salah satu parameter yang penting dalam seismologi teknik. Faktor sumber kerusakan dinyatakan dalam parameter percepatan tanah, sehingga untuk menggambarkan tingkat risiko gempabumi di suatu lokasi tertentu diperlukan adanya data PGA akibat getaran gempa bumi. Besar risiko gempa bumi yang mungkin terjadi disebabkan semakin besar nilai PGA yang pernah terjadi disuatu tempat. Nilai percepatan tanah maksimum merupakan percepatan tanah yang diperhitungkan pada perencanaan bangunan. Terdapat dua jenis nilai percepatan tanah yaitu percepatan tanah sesaat dan percepatan tanah maksimum. Percepatan tanah maksimum merupakan nilai yang dihitung pada titik amat atau titik penelitian di permukaan bumi dari sejarah gempabumi dengan dipilih nilai yang terbesar pada perhitungan, sedangkan untuk nilai percepatan tanah sesaat adalah nilai percepatan tanah pada saat terjadinya gempa bumi. Percepatan tanah max berbanding terbalik dengan periode getaran tanah dan berbanding lurus dengan amplitudo getaran tanah di permukaan bumi (Haerudin, dkk., 2019).

Ketika nilai periode getaran seismik (T) dan periode natural tanah ( $T_o$ ) sama maka akan terjadi resonansi, sehingga percepatan tanah akan mengalami penguatan yang disebut dengan percepatan tanah maksimum (Ozaki, 1977). Berdasarkan hal



Optimized using trial version www.balesio.com Kanai (1966) memformulasikan persamaan empiris percepatan tanah m dalam Douglas (2011) yang dirumuskan sebagai berikut.

$$a_{max} = G(T)a_0 \tag{2.9}$$

$$a_0 = \frac{1}{T} 10^{(0,61M) - \left(1,66 + \frac{3,6}{R}\right) \log R + (0,167 - \frac{1,83}{R})}$$
(2.10)

$$G(T) = \frac{1}{\sqrt{\left(1 - \left(\frac{T}{T_0}\right)^2\right)^2 + \left(\frac{0.2T}{T_0}\right)^2}}$$
(2.11)

dengan  $a_0$  merupakan percepatan tanah (gal),  $a_{max}$  merupakan percepatan tanah maksimum titik pengamatan (gal), T<sub>0</sub> merupakan periode predominan titik pengamatan (s), M merupakan magnitudo gempa (Skala Richter), R merupakan jarak hiposenter (km), G(T) merupakan faktor perbesaran.

Persamaan yang dapat digunakan untuk menghitung nilai PGA yaitu persamaan empiris oleh Fukushima dan Tanaka (1990):

$$log a_{\rm m} = 0.41Ms + \log(R + 0.032 \times 100.41Ms) - 0.0034R + 1.30 \quad (2.12)$$

dimana  $a_{\square}$ adalah PGA (gal), Ms adalah magnitude gelombang permukaan (SR) dan R adalah jarak hiposenter ke titik pengukuran. Untuk menghitung nilai R sendiri digunakan teorema Pythagoras:

$$R = \sqrt{\Delta^2 + h^2} \tag{2.13}$$

dengan  $\Delta$  adalah jarak episenter ke titik pengukuran dan h adalah hiposenter. Klasifikasi tingkat resiko bahaya gempa bumi berdasarkan nilai PGA dapat dilihat pada Tabel 2.4

PDF

Optimized using trial version www.balesio.com 4 Klasifikasi Tingkat Resiko Bahaya Gempa Bumi (Fauzi, 2001)

| Tingkat Resiko | Nilai PGA (gal) |
|----------------|-----------------|
| Sangat Kecil   | 0 - 25          |

| Kecil        | 25 - 50   |
|--------------|-----------|
| Sedang       | 50 - 125  |
| Besar        | 125 - 300 |
| Sangat Besar | > 300     |

#### **II.4.3.** Ground Shear Strain (GSS)

Menurut Nakamura (1997), *Ground Shear Strain* (GSS) atau kerentanan geser tanah dapat mempresentasikan kemampuan material lapisan tanah untuk bergeser ketika terjadi gempa bumi. Nilai dari *shear strain* dapat dihitung melalui persamaan Nakamura (2000) dengan pendekatan empiris, yaitu dengan melakukan perkalian antara indeks kerentanan tanah berdasarkan data mikrotremor dengan percepatan maksimum di batuan dasar, sebagai berikut:

$$\gamma = K_g \times (10^{-6}) a_{\text{m}} \tag{2.14}$$

 $\gamma$  merupakan nilai dari *ground shear strain*,  $K_g$  merupakan indeks kerentanan tanah,  $10^{-6}$  adalah ketetapan nilai *strain* pada satuan  $10^{-6}$  di lapisan tanah permukaan, dan  $a_{\Box}$ adalah percepatan gelombang seismik di batuan dasar (PGA).

*Ground Shear Strain* (GSS) pada lapisan tanah permukaan menggambarkan kemampuan material lapisan tanah untuk meregang atau bergeser saat terjadi gempabumi. Semakin besar nilai GSS akan menyebabkan lapisan tanah mengalami deformasi, seperti likuifaksi, rekahan tanah, longsoran, dan gerakan tanah lainnya. Untuk mencari nilai GSS di permukaan tanah, dapat pula menggunakan persamaan sebagai berikut:



$$\gamma = A_0 \frac{\delta}{h} \tag{2.15}$$

 $A_0$  merupakan amplifikasi,  $\delta$  merupakan deformasi lapisan permukaan tanah akibat gempa, dan *h* merupakan ketebalan lapisan sedimen. Nilai dari deformasi lapisan permukaan tanah ( $\delta$ ) dapat dihitung dengan menggunakan persamaan berikut:

$$\delta = \left(\frac{a}{\left((2\pi f_0)\right)^2}\right) \tag{2.16}$$

Jika disubstitusikan persamaan (2.16) ke persamaan (2.15) akan menghasilkan persamaan (2.17) sebagai berikut:

$$\gamma = \frac{A_0}{h} \left( \frac{a}{\left( (2\pi f_0) \right)^2} \right) \tag{2.17}$$

Hasil dari perhitungan nilai GSS diharapkan dapat menghasilkan nilai maksimum, oleh karenanya percepatan tanah yang digunakan juga bernilai maksimum. Sehingga, akan menjadi seperti pada persamaan berikut:

$$\gamma = \frac{A_0}{h} \left( \frac{a_{max}}{\left( \left( 2\pi f_0 \right) \right)^2} \right) \tag{2.18}$$

$$\gamma = \frac{A_0}{h} \frac{a_{max}}{4\pi^2 f_0^2}$$
(2.19)

Pada umumnya, permukaan tanah memiliki nilai GSS lebih dari  $10^{-3}$  akan mengalami deformasi non-linear, sedangkan untuk nilai GSS lebih dari  $10^{-2}$  lapisan tanah akan mengalami deformasi runtuhan (Nakamura, 1997). Nilai yang dihasilkan GSS menjelaskan fenomena-fenomena yang terjadi, seperti pada Tabel 2.5 yang menunjukkan fenomena tanah berdasarkan nilai regangan gesernya.



| Nilai<br>Regangan<br>Geser | 10 <sup>-6</sup> 10 | 0-5 | 10 <sup>-4</sup>            | 10-3 | 10-2                  | 10-1                |
|----------------------------|---------------------|-----|-----------------------------|------|-----------------------|---------------------|
| Fenomena                   | Gelombang, getaran  |     | Rekahan,<br>penurunan tanah |      | Longsor,<br>kompaksi, | tanah<br>likuifaksi |
| Sifat<br>Dinamis           | Elastis             |     | Elasto-plastis              |      | Runtuhan              |                     |

**Tabel 2. 5** Ukuran Regangan dan Sifat Dinamika Tanah (Nakamura, 1997)

### II.5. Likuifaksi

Pencairan tanah atau likuifaksi merupakan fenomena dimana pasir dan lanau jenuh kehilangan kekuatannya akibat goncangan secara intens. Pemicu likuifaksi yang terjadi di Sulawesi Tengah salah satunya adalah gempabumi akibat aktivitas sesar Palu-Koro hasil deformasi dengan pergerakan struktur sesar yang mendatar (*strike-slip*). Sesar Palu-Koro adalah sesar aktif utama di Pulau Sulawesi, pergerakan sesar Palu Koro merupakan pergerakan sesar terbesar kedua di Indonesia setelah sesar Yapen, Papua Barat. Menurut penelitian Lembaga Ilmu Pengetahuan Indonesia (LIPI), sesar Palu-Koro mengalami pergeseran membelah Pulau Sulawesi dengan kecepatan sekitar 30 hingga 40 milimeter pertahunnya. Pergerakan likuifaksi mengikuti jalur sesar dengan pergerakan mengiri (sinistral) (Anidhea dan Suliyanah, 2021).

Likuifaksi tanah (soil liquefaction) atau juga disebut likuifaksi gempa bumi (*earthquake liquefaction*) didefinisikan sebagai keruntuhan tanah (*soil failure*)



Optimized using trial version www.balesio.com langan kekuatan (*loss of strength*) dalam hal ini kuat geser tanah tersebut nyebabkan tanah yang tadinya padat berperilaku sementara sebagai cairan *vsicous fluid*). Fenomena ini terjadi umumnya pada tanah lepas (*unconsolidated*) yang jenuh air akibat terkena gelombang seismik S (gelombang sekunder), yang menyebabkan vibrasi/getaran tanah selama gempa bumi (perhimpunan ahli tanah, 2019). Secara geologis, pulau Sulawesi terbentuk dari proses tektonik yang cukup rumit. Pulau Sulawesi merupakan perpaduan dua rangkaian orogen, yakni busur kepulauan Asia Timur dengan pegunungan Sunda. Hal inilah yang menyebabkan hampir seluruh bagian pulau Sulawesi terdiri dari pegunungan sekaligus menjadi daerah paling berpegunungan di antara pulau lain yang ada di Indonesia (Boen, 1985).

Pada fenomena likuifaksi beberapa daerah di Sulawesi Tengah, tanah yang semula padat berubah menjadi fluida dengan pergerakan mengalir sehingga tanah tidak mampu menopang beban yang berada di atasnya dan menyebabkan amblasnya bangunan-bangunan, hingga dalam posisi miring ataupun longsor (Muntohar, 2012). Selama kurun waktu 20 tahun, beberapa kejadian likuifaksi telah terjadi pada wilayah Indonesia diantaranya likuifaksi yang terjadi akibat gempa bumi di Aceh pada tahun 2004 (MW 9,1), gempa bumi yang terjadi di Nias pada tahun 2005 (MW 8,7). Selain itu, likuifaksi juga terjadi akibat gempa bumi di wilayah Bantul pada tahun 2006 (MW 6,3), pada gempa bumi di Bengkulu tahun 2007 (MW 8,4), pada gempa bumi kota Padang tahun 2009 (MW 7,6), dan likuifaksi yang terjadi di Palu akibat gempa bumi pada tahun 2018 (MW 7,4) yang menyebabkan korban jiwa dan kerugian ekonomi yang besar.



Optimized using trial version www.balesio.com yang begitu besar akibat likuifaksi mengharuskan adanya analisis potensi pada wilayah yang mempunyai faktor-faktor penyebab likuifaksi.

24

Menganalisis potensi terjadinya likuifaksi diasumsikan selama berlangsungnya getaran gempa belum terjadi disipasi yang berarti di lapisan tanah, dengan kata lain belum terjadi redistribusi tekanan air pori pada massa tanah. Akibat beban siklik (beban gempa), tanah mengalami tekanan sebelum proses disipasi terjadi sehingga itu mengakibatkan tekanan air pori meningkat.muka air tanah sangat menentukan potensi terjadinya likuifaksi (Tijow, dkk., 2018)

#### II.6. Sebaran Akuifer

Akuifer merupakan tubuh batuan atau regolith tempat air tanah berada. Aliran air tanah sering kali melewati suatu lapisan akuifer yang di atasnya memiliki lapisan penutup yang bersifat kedap air (*impermeable*). Sedangkan, air tanah adalah air yang berada dan bergerak dalam tanah. Air yang terdapat dalam ruang antara butir-butir tanah disebut air lapisan dan air yang di celah-celah tanah atau dalam retakan disebut dengan air celah (Wahyuni, dkk., 2018).

Berdasarkan litologi, akuifer dapat dibagi beberapa macam, yakni akuifer bebas, akuifer setengah bebas, akuifer setengah tertekan, dan akuifer tertekan. Akuifer bebas (*unconfined aquifer*), adalah lapisan lolos air yang hanya Sebagian terisi oleh air dan berada diatas lapisan kedap air. Akuifer setengah bebas (*semi unconfined aquifer*), adalah peralihan antara akuifer setengah tertekan dengan akuifer bebas. Akuifer setengah tertekan (*semi confined aquifer*), adalah akuifer yang lapisan di atas atau di bawahnya masih mampu meloloskan air meskipn



Optimized using trial version www.balesio.com cil, akuifer tertekan (*confined aquifer*) adalah akuifer yang lapisan atas
a dibatasi oleh lapisan yang kedap air (Riskawati dan Abdullah, 2021).

Kondisi tertentu akuifer dapat menjadi salah satu faktor yang mendukung terjadinya likuifaksi karena mendapat energi (gempa) sehingga dapat bergerak dan merubah sebuah struktur tanah. Menurut Towhata (2008), likuifaksi dapat terjadi pada tanah yang berpasir lepas dan jenuh air, seiring dengan adanya kenaikan tekanan air pori saat terjadinya gempa bumi maka tekanan efektifnya akan berkurang seiring waktu. Kedudukan muka air tanah akan mengontrol potensi terjadinya likuifaksi. Likuifaksi umumnya terjadi pada daerah yang memiliki muka air tanah dangkal. Menurut Youd dkk. (1979), potensi likuifaksi dapat terjadi pada wilayah yang memiliki kedalaman muka air tanah hingga 15,2 m dengan tingkat kerentanan terhadap likuifaksi yang bervariasi. Kerentanan likuifaksi akan menurun dengan bertambahnya kedalaman muka air tanah.

Pengaruh akuifer terhadap likuifaksi dapat divalidasi dengan kasus likuifaksi pada daerah Sulawesi tengah yakni Petobo dan Balaroa pada tanggal 28 september 2018. Beberapa penelitian telah dilakukan dan publikasi telah diterbitkan baik dari dalam dan luar negeri, diantaranya oleh Bradley, et al. (2019) dan Watkinson & Hall (2019) yang keduanya menyatakan, bahwa likufaksi-longsor di Palu sangat terkait dengan sistem saluran dan irigasi yang ada di lokasi. Namun Watkinson & Hall (2019) tidak sepakat dengan Bradley, et al. (2019) dalam hal mekanisme likuifaksi-longsor di Balaroa, tetapi sepakat, bahwa airtanah dangkal merupakan faktor kunci dalam likuifaksi-longsor (Eko, dkk., 2019).



Optimized using trial version www.balesio.com opografi Palu yang berupa lembah yang dibatasi oleh dua tinggian di 1 di Timur, maka aliran airtanah secara umum akan berarah Barat–Timur

26

menuju dasar lembah Palu yang memanjang arah Baratlaut (Utara)–Tenggara (Selatan), yaitu Sungai Palu yang dapat dianggap sebagai luaran bagi sistem akuifer bebas dan muara utama aliran permukaan di lembah Palu. Demikian juga aliran airtanah dan aliran air permukaan akan mengarah dari Selatan ke Utara seperti ditunjukkan oleh aliran air Sungai Palu. Selanjutnya dengan kondisi topografi seperti itu, maka dapat diduga, bahwa imbuhan airtanah utama akan terjadi di daerah tinggian dan lerengnya di kedua tinggian (Eko, dkk., 2019).

Saluran irigasi Gumbasa dianggap berkontribusi pada likuifaksi-longsor dalam bentuk aliran infiltrasi dari dasar saluran yang tidak di-lining ke dalam sistem akuifer bebas di sebelah Barat saluran. Daerah di kiri dan kanan Sungai Palu dapat diduga menjadi zona airtanah produktif tinggi baik dalam sistem akuifer bebas maupun sistem akuifer tertekan.

Pada Gbr. 1a, Peta Hidrogeologi Lembar Palu dan Parigi (Arief & Hidayat, 1993) zona ini digambar dengan warna biru muda dan biru tua. Pada paper ini, diduga sistem akuifer bebas mempunyai tebal kira-kira 40-50 meter di bawah muka tanah dengan muka air tanah (MAT) berada di kedalaman 1-5 meter, sebaran digambar dengan warna biru muda (Gambar 2.2) di bawahnya terdapat lapisan semipermeabel dengan tebal kira-kira 10 meter dan berikutnya sistem akuifer semitertekan (tertekan) dijumpai di kedalaman mulai 60 meter (Gambar 2.3) dengan MAT di atas muka tanah, sebaran digambar dengan warna biru tua (Gambar 2.2)



Optimized using trial version www.balesio.com uh dari dasar lembah ke arah Barat maupun Timur, sistem akuifer semi-(tertekan) dapat dijumpai semakin dangkal namun dengan tekanan yang berkurang dan sebaliknya (Eko, dkk., 2019).



Gambar 2. 2 Peta Hidrogeologi Palu (Arief & Hidayat, 1993)



Gambar 2. 3 Peta Hidrogeologi Palu, Penampang G-H (Arief & Hidayat, 1993)



In sebaran akuifer juga dapat menggunakan metode geolistrik yang akan sifat resistivitas air tanah dalam peninjauannya. Metode geolistrik
I jenis merupakan salah satu metode geofisika yang dapat

menginterpretasikan jenis batuan atau mineral di bawah permukaan. Selain itu metode ini juga dapat mengetahui sifat kelistrikan medium batuan di bawah permukaan yang berhubungan dengan kemampuannya untuk menghantarkan listrik atau resistivitas. Pada metode geolistrik hambatan jenis ini, arus listrik diinjeksikan ke dalam bumi melalui 2 elektroda arus, dan mengukur beda potensial melalui 2 elektroda potensial. Dari hasil pengukuran arus dan beda potensial untuk setiap jarak elektroda yang berbeda diperoleh variasi harga hambatan jenis masing-masing lapisan di bawah permukaan. Berdasarkan nilai hambatan jenis bawah permukaan, dapat diinterpretasikan lapisan-lapisan tanah atau batuan yang mengandung air tanah (Irawati, dkk., 2016).



Gambar 2.4 Penampang hambatan jenis AB (Desa Bora)

Bedasarkan penampang pada gambar 2.4 terlihat 4 susunan lapisan dengan nilai



ı jenis yang bervariasi berkisar antara 22,06  $\Omega$ m –1176,71  $\Omega$ m pada n 150 m bmt (Bawah Muka Tanah). Terlihat susunan lapisan serta ıpisan yang diduga sebagai lapisan *aquifer* (warna hijau) yang tersebar hampir merata dari arah tenggara ke barat laut, lapisan ini memiliki nilai hambatan jenis berkisar 22,06  $\Omega$ m – 49,22  $\Omega$ m. Lapisan ini diduga sebagai lapisan batu lempung, batu pasir, lumpur dan napal dengan kedalaman maksimum batas atas kurang lebih 40 m bmt dan kedalaman minimum batas atasnya ialah 9 m bmt. Sedangkan kedalaman batas bawah maksimum sebesar 125 m bmt dengan ketebalan 40 m bmt.

Berdasarkan hasil penelitian di Desa Bora Kecamatan Sigi Biromaru Kabupaten Sigi maka dapat disimpulkan bahwa sebaran lapisan *aquifer* terdapat pada satuan batuan Molasa Celebes dan terdeteksi menyebar dekat permukaan hingga kedalaman 70 m bmt yang memanjang dan melebar ke arah tenggara hingga barat laut. Lapisan ini bernilai hambatan jenis lebih kecil dari 85  $\Omega$ m yang diduga merupakan batupasir dan batulempung, lumpur dan napal. Untuk potensi akumulasi *aquifer* terbesar dapat dijumpai pada lintasan 3 hingga kedalaman ± 62 m bmt (Irawati, dkk., 2016).

Sistem akuifer pasca gempa bumi bedasarkan penelitian yang dilakukan oleh Widodo, dkk., (2019) setelah terjadi bencana gempa bumi, Palu mengalami perubahan kondisi akuifer permukaan yaitu terdapat mata air baru dan terdapat koneksi hidraulik antara akuifer bebas dan akuifer semi tertekan/akuifer tertekan membuat muka air tanah naik ke permukaan sehingga timbul mata air baru.





Gambar 2. 5 Genangan/mata air baru Balaroa (Widodo, dkk., 2019) Daerah Sigi Biromaru memiliki dua jenis lapisan akuifer yakni akuitar dan akuifer semi tertekan bedasarkan interpretasi data geolistrik dan didukung oleh data *Log Bor* yang dapat dilihat pada gambar 2.5 (Santosa, dkk., 2021).



Gambar 2. 6 Penampang Geolistrik Biromaru

Akuifer semi tertekan yang terdapat di Biromaru pada elektrode 38 berdasarkan hasil pendugaan geolistrik terdapat pada kedalaman 50,25 -74,7 mdpt (Meter dari



Optimized using trial version www.balesio.com ın tanah) yang memilki nilai resistivity 0 - 25  $\Omega$ m dan diatasnya ın akuitar pada kedalaman 0 - 50,25 mdpt dengan nilai resistivity 25 -(Santosa, dkk., 2021).