DAFTAR PUSTAKA

- Alderton D,. & Elias, S. 2020 . "Encyclopedia of Geology". Academic Press. Pages.520-531
- Ali Hemmati, 2019. "The effect of mineralogy and textural characteristics on the strength of crystalline igneous rocks using image-based textural quantification". Engineering Geology. 266 (2020) 105467.
- Askin. A. 2019. "Gamma and neutron shielding characterizations of the Ag₂O-V₂O₅-M₀O₃-TeO₂ quaternary tellurite glass system with the Geant4 simulation toolkit and phy-X software'. Ceramics International, Volume 11. page. 062.
- Bronto, Sutikno. 2006. "Fasies Gunung api dan Aplikasinya". Indonesian Journal on Geoscience Geological Ageny Ministry of Energy and Mineral Resource, Vol 1 No 2.
- Ceyda, B. dan Safak, B. (2019). Application of Fourier Transform Infrared (FTIR) Spectroscopy to Analysis of Clays. Nevşehir Bilim ve Teknoloji Dergisi, Nevşehir Bilim ve Teknoloji Dergisi, (8)1, 37-46.
- Gordon, R. O, and Romano, O, A. 2018. "Igneous rocks formed by hypervelocity impact". Journal of Volcanology and Geothermal Research. Volume 353, 15 March 2018, Pages 25-54
- Heryanto, Abdullah, Bualkar, Tahir, Dahlang. 2018. "Determination of Binding EnergyFor Cu and Cu2o Based X-Ray Diffraction Spectrum". IOP Conf. Series: Journal of Physics: Conf. Series 979 (2018) 012055
- Koesoemadinata, R.P. 1981. "Prinsip-prinsip Sedimentasi", Bandung : Digilib ITB.
- Kong, D, Xiao Y, Wu, S. Tang, N. Ling, J. Wang, F. 2017. Komparative evaluation of designing asphalt treated base mixture with composite aggregate types. Contruction and Building Materials, Wuhan, 430074, China

ne E, Sayyed M. I, Sidek H. A. A, Matori K. A, Zaid M. H. M. 2020. *Effect of bismuth and lithium substitution on radiation shielding properties of zinc borate glass system using Phy-X/PSD simulation*. Results in Physics cs 20, 103768

- Leeuwen, T. v. Steve, A. Arasin., 2007. "Petrologic, isotopic, and radiometric age constraints on the origin and tectonic history of the Malino Metamorphic Complex, NW Sulawesi". Indonesia. Journal of Asian Earth Sciences, Volume 29, page. 751-777.
- Lujan, M.J dan Ary, T.S. 2014. "Crystalline Silica Primer", Branch of Industrial Minera : U.S
- Massinai, M.,A., Syam, M.,R., dan Massinai, M.,F.,I. 2022. "Characterictics of Rock Minerals of the Camba Formation". Advances in Physics Research, 5, 95.
- Massinai, M.,A., Bundang, S., Ismullah, M.,F.,I. dan Hidayat, W. 2019. "Tipologi Sistem Akuifer Endapan Gunungapi". Jurnal Geomine. 7(2).
- Merwade V.M, Maidment D.R, dan J.A. Golff, 2006. "Anisotropic Considerstion While Interpolating River Channel Bathymetry", Journal of Hydrology, Vol.331 page.731-747
- Meutter J. D. and Goormaghtigh E. 2021 "Evaluation of protein secondary structure from FTIR spectra improved after partial deuteration" European Biophysics Journal 10, 1007
- Pambudi, M.A.R., Suprapto, S.Si, M.Sc. 2018. Penentuan Kadar Tembaga(Cu) dalam Sampel Batuan Mineral. Jurnal Sains dan Seni, 7(2), 2337-3520.
- Patel, C. M., Patel, C. D., Rami, J. M., Patel, K. R. 2020. *Optical Spectroscopic Study of Natural Rock's Minerals*. Belanda: Elsevier.
- Skoog, D.A., Holler, F.J. dan Crouch, S.R. 2016. *Principles of Instrumental Analysis 7th Edition*. Boston: Cengange Learning.
- Smith, B.C. 2011. *Fundamental of Fourier Transform Infrared Spectroscopy*. Florida : CRC Press.
- Sukamto, R., 1982. "Peta Geologi Lembar Pangkajene dan Watampone bagian Barat". Sulawesi Selatan 1:250.000. Bandung: Pusat Penelitian dan Pengembangan Geolog.
- Sumaryono, Triyana, Y.D. (2011). "Simulasi Aliran Bahan Rombakan Di Gunung Bawakaraeng". Sulawesi Selatan. Jurnal Lingkungan Dan Bencana Geologi, 2(3), 192-202.

Optimized using trial version www.balesio.com I, S., dan Silviana, S., 2020. "Synthesis and Characterization of SiO2/ZnO from Zinc Waste and Mount Merapi Volcanic Ash". Jurnal Kimia Sains Dan Aplikasi, 23(10),365–369.

- Suseno, J. E. dan Firdausi, K. S. 2008. Rancang Bangun Spektroskopi FTIR (Fourier Transform Infrared) untuk Penentuan Kualitas Susu Sapi. Jurnal Berkala Fisika, 11(1), 23-28.
- Watson, D.F. dan Philip G.M., 1985. "A Refinement of Inverse Distance Weighted Interpolation. Geoprocessing", Volume 2 page.315-327
- Yin, Y., Yin, J., Zhang, W., Tian, H., Hu, Z., Ruan, M., Xu, H., Liu, L., Yan, X., Chen, D. 2018. FT-IR and micro-Raman spectroscopic characterization of minerals in high-calcium coal ashes, Journal of The Energi Institute, (91)1, 389-396.
- Yunitasari Handini Devi, Jhonatan, S. "Evaluasi Metode Penentuan Half Value Layer (HVL) Menggunakan Multi Purpose Detector (MPD) Barracuda Pada Pesawat Sinar-X Mobile". Youngster Physics Journal, hal 113-118, 2014.
- Zhao, Q, H, and Rewes, R, R., 2020. "Heating characteristics of igneous rockforming minerals under microwave irradiation", International Journal of Rock Mechanics and Mining Sciences. 135 (2020) 104519.

LAMPIRAN

1. Sampel BT 1

2. Sampel BT 2

3. Sampel BT 3

4. Sampel BT 4

5. Sampel BT 5

6. Sampel Jembatan Merah

7. Sampel Kebun Lembanna

8. Sampel POS 1.1 BWK

9. Sampel POS 1 BWK

10. Sampel Takapala

11. Sampel Jalan Lembanna

Lampiran Metode XRD

Â

Optimized using trial version www.balesio.com

Match! Phase Analysis Report

Sample: TEST SAMPLE

Sample I	Data			
File name	0		BT 1 UNHAS raw	
File path			E:/TAMineralogi/Penguijan XRD	
Data colle	ected		Aug 24, 2022 16:29:35	
Data rand	90		10.080° - 90.080°	
Number	of points		4001	
Step size			0.020	
Rietveld r	efinement conv	erged	No	
Alpha2 si	ubtracted		No	
Backgrou	ind subtr.		No	
Data smo	othed		No	
2theta co	rrection		0.08°	
Radiation	1		X-rays	
Waveleng	ath		1.540598 A	
				Matched Phases
Index	Amount (%)	Name	F	Formula sum
A	58.4	Albite	A	N NA 06 513
C	10.1	Foldata		
0	10.7	Epidote		N2.52 C82 F80.00 013 513
e e	10.7	Quartz		12 51
6	81	Unidentifie	r noak area	82.03
	0.1	Gindemane	in press area	
A: Albite	(58.4 %)			
Formula	sum		AI Na OB SI3	
Entrynun	nber		96-900-2200	
Figure-of	-Merit (FoM)		0.858502	
Total num	ber of peaks		250	
Peaks in	range		250	
Peaks m	atched		172	
Intensity	scale factor		0.60	
Space gr	oup		C -1	
Crystal s	ystem		triclinic (anorthic)	
Unit cell			a= 8.1400 Ab= 12.7910 Ac= 7.1320) A α= 93.940° β= 116.540 ° γ= 88.460 °
Vicor			0.83	
Calc. den	isity		2.628 g/cm ³	
Referenc	e		Meneghinello E., Alberti A., Cruciani feldspar is from Stintino, Sardinia, Ita	G., "Order-disorder process in the tetrahedral sites af albite Sample: 1070-7d Note: this sample of aly", American Mineralogist 84, 1144-1151 (1999)
B: Wollas	stonite (16.1 %)			
Formula	sum		Ca O3 Si	
Entry num	iber		96-900-5778	
Figure-of-	Merit (FoM)		0.805099	
Total num	ber of peaks		498	
Peaks in	range		498	
Peaks m	atched		280	
internative	scale factor		0.19	
Space on	000		P-1	
Crustal si	stern		trictinic (anorthic)	
Unit call	Paterin		a= 7 9258 Å h= 7 3202 Å r= 7 0653 Å	A on 00 055" 8= 05 217 #v= 103 428 #
Bear			0.04	de serene he acesti de tensiene.
Calc dee	alla.		2 D4E alumi	
Carc. gen	IS ILY		Obachi V "Rohmethalicallu twinned	environme of operative and wollde basis Sample, MOTT: Divelop and Chamie buol Moorale 10
ruelereite	•		217-229 (1984)	arounes of elevane and woneshine cample. Not it , mans and champary of minerals 14,
C- Enidad	144 7 841			
Econula	10 (11.7 M)		M2 32 Co2 Ex0 88 O13 50	
Formula	sum		PE2.32 G82 FE0.00 013 313	
Entry nun	1DOF		90-900-2161	
Total	-mont (POM)		0.104010	
Inter num	oer of peaks		440	
Peaks In	range		416	
Peaks m	Dertas		249	
Intensitys	cale factor		0.13	
Space gr	oup		P121/m1	
Crystal sy	stem		monoclinic	Carl Constraints and the
Unit cell			a= 8.8910 Å b= 5.6240 Å c= 10.1640) Aβ= 115.440 *
licor			0.88	
Calc. den	sity		3.423 g/cm ^a	
Referenc	0		Giuli G., Bonazzi P., Menchetti S., "Al- Mineralogist 84, 933-936 (1999)	Fe disorder in synthetic epidotes: Asingle-crystal X-ray diffraction study Sample: CC11c*, American
			and the section of	
D: Quart	t (10.7 %)			
Formula	sum		U2 5i	
Entrynun	1ber		96-901-2605	
Figure-of-	-Merit (FoM)		0.797303	
Total num	ber of peaks		31	
Peaks in	range		25	
Peaks m	atched		22	
Intensity	scale factor		0.48	
Space gr	oup		P3121	
-			trigonal (hexagonal axes)	
			a= 4.5940 A c= 5.2000 A	
JF			3.63	
-			3.149 g/cm ²	
2			Hazen R. M. Finger L. W. Hemley R.	.1. Mao H. K., "High-pressure crystal chemistry and amorphization of alpha-quartz Locality synthetic
K-			Sample: P = 9.5 GPa*, Solid State Cr	ommunications 72, 507-511 (1989)
1			a service and a service product of the	
m				
100				

E: Hematike (3.1 %) Fe2 03 Formula sum Fe2 03 Entry number 96-901-6458 Figure-of-Merit (FoM) 0.748769 Total number of peaks 34 Peaks in range 29 Peaks matched 22 Intensity scale factor 0.15 Space group R -3 c Crystal system trigonal (hexagonal axes) Unit cell a 5.0066 Ac= 13.6411 A Vicor 4.00 Calc. density 5.373 g/cm³ Reference Engrit L. W., Hazen R. M., "Crystal structure and isothermal compression of Fe203, Cr203, and V203 to 50 kbars Note: P = 43.9 kbar", Journal of Applied Physics **51**, 5362-5367 (1980)

Search-Match

Settings

Reference database used	COD-Inorg REV173445 2016.01.04
Automatic zeropoint adaptation	Yes
Minimum figure-of-merit (FoM)	0.60
2theta window for peak corr.	0.30 deg.
Minimum rel. int. for peak corr.	1
Parameter/influence 2theta	0.50
Parameter/influence intensities	0.50
Parameter multiple/single phase(s)	0.50

Elements

Selection Criteria

Match! Phase Analysis Report

Sample: TEST SAMPLE

Sample Data File name File path BT_2 UNHAS.raw E:TAMneralogi/Pengujian XRD Aug 24, 2022 16:29:35 9:920* - 89:920* Data collected Data range Number of points Step size Rietveld refinement converged 4001 0.020 No Apha2 subtracted No Background subtr. Data smoothed 2theta correction No No -0.08° Radiation X-rays 1.540598 A Wavelength Matched Phases Name Epidote Abite Wollastonite Formula sum Al2.32 Ca2 Fe0.68 O13 Si3 Al Na O8 Si3 Ca O3 Si Index Amount (%) 57.4 25.0 AB C 7,6 DE 6.1 Quartz 02 Si Fe2 03 3.9 Hematite 14.1 Unidentified peak area A: Epidote (57.4 %) Al2.32 Ca2 Fe0.68 O13 Si3 Formula sum Formula sum Entry number Figure-of-Merit (FoM) Total number of peaks Peaks in range Peaks matched Intensity scale factor 96-900-2181 0.879350 500 390 121 0.31 P 1 21/m 1 Space group Space group Crystal system Unit cell Vicor Calc. density Reference P 1 2 m 1 monoclinic a = 8.8910 Å b= 5.6240 Å c= 10.1640 Å β= 115.440 ⁴ 0.88 3.423 g/cm³ Giuli G. Bonaza P. Menchetti S., "A-Fe disorder in synthetic epidotes: Asingle-crystal X-ray diffraction study Sample: CC11c", American Mineralogist 84, 933-936 (1999) B: Albite (25.0 %) Al Na O8 Si3 96-900-0530 0.732121 Formula sum Entry number Figure-of-Merit (FoM) Total number of peaks 252 Total number of peak Peaks in range Peaks matched Intensity scale factor Space group Crystal system 252 96 0.11 C -1 C - 1 triclinic (anorthic) a = 8.2508 Ab= 12.9489 Ac= 7.1431 Aα= 91.161° β= 116.169 ° γ= 90.030 ° 0.73 2.544 g/cm³ Prewitt C. T., Sueno S., Papike J. J., "The crystal structures of high albite and monalbite at high temperatures T = 950 deg C feldspar", American Mineralogist 61, 1213-1225 (1976) Unit cell Vicor Calc. density Reference C: Wollastonite (7.6 %) Ca O3 Si 96-900-5779 0.663419 Formula sum Formula sum Entry number Figure-of-Merit (FoM) Total number of peaks Peaks in range Peaks matched 488 488 108 Intensity scale factor 0.09 P 1 21/a 1 Space group Crystal system Unit cell Vicor Calc. density monoclinic a=15.4240 Åb=7.3240 Åc=7.0692 Åβ=95.371° 1.89 2.911 g/cm³ Ohashi X. "Polysynthetically-twinned structures of enstatite and wollastonite Sample: WO2M". Physics and Chemistry of Minerals 10. Reference 217-229 (1984) D: Quartz (6.1 %) Formula sum O2 Si Entry number Figure-of-Merit (FoM) Total number of peaks Peaks in range 96-901-2602 0.724389 34 27 10 Peaks matched Intensity scale factor 0.16 Space group Crystal system Unit cell P 31 2 1 trigonal (hexagonal axes) a= 4.8120 Åc= 5.3270 Å 4.38 Vicor

> 2.802 g/cm⁴ Hazen R. M., Finger L. W., Hemley R. J., Mao H. K., "High-pressure crystal chemistry and amorphization of alpha-quartz Locality: synthetic Sample: P = 2.0 Gpa", Solid State Communications 72, 507-511 (1989)

Optimized using trial version www.balesio.com

E: Hematite (3.9 %)

E rrematue (3.5 %) Formula sum Entry number Figure-of-Merit (FoM) Total number of peaks Peaks in range Peaks matched Intensity scale factor Space group Crystal system Unit cell Vicor Calc. density Reference Fe2 O3 96-901-2693 0.615770 192 145 145 47 0.09 P 43 21 2 tetragonal a = 3.396 Ac = 8.3220 A 3.86 4.886 g(m³) Greaves C., "Apowder neutron diffraction investigation of vacancy ordering and covalence in gamma-Fe2O3 Locality: synthetic Sample: T = 4 K", Journal of Solid State Chemistry **49**, 325-333 (1963)

Search-Match

Settings

Reference database used	COD-Inorg REV173445 2016.01.04
Automatic zeropoint adaptation	Yes
Minimum figure-of-merit (FoM)	0.60
2theta window for peak corr.	0.30 deg.
Minimum rel, int. for peak corr.	1
Parameter/influence 2theta	0.50
Parameter/influence intensities	0.50
Parameter multiple/single phase(s)	0.50

Selection Criteria

Elements:

Elements that must be present: O, Na, Al, Si, K, Ca, Fe Elements that must NOT be present: All elements not mentioned above

Diffraction Pattern Graphics

trial version www.balesio.com

Match! Phase Analysis Report

Sample: TEST SAMPLE

Sample	Data						
File nam	10	BT_3 UNHAS.raw					
File path		E:/TAMineralogi/Pen	igujian XRD				
Data col	lected	Aug 24, 2022 16:29:	35				
Data ran	ge	9.970° - 89.970°					
Number	of points	4001					
Step size	0	0.020					
Rietveld	refinement con	verged No					
Alpha2 s	subtracted	No					
Backgro	und subtr.	No					
Data sm	oothed	No					
2theta co	orrection	-0.03°					
Radiatio	n	X-rays					
Wavelen	igth	1.540598 A					
			Matched Phases				
Index	Amount (%)	Name	Formula sum				
A	68.4	Albite	Al Na O8 Si3				
B	21.4	Gobbinsite	Al3 Ca0.3 H12 K1.125 Na1.3 O21.325 Si5				
C	7.6	Quartz	O2 Si				
D	2.7	Hematite	Fe2 O3				
	2.9	Unidentified peak area					
A: Albite	e (68.4 %)						
Formula	sum	Al Na O8 Si3					
Entry nu	mber	96-900-0529					
Figure-o	f-Merit (FoM)	0.851650					
Total nur	mber of peaks	251					
Peaks in	n range	251					
Peaks m	natched	168					
Intensity	scale factor	0.67					
Space g	roup	C -1					
Crystal s	system	triclinic (anorthic)					
Unit cell		a= 8.2296 Ab= 12.93	336 Åc=7.1357 Åα=91.956°β=116.232 °γ=90.078 °				
l/lcor		0.74					
Calc. de	nsity	2.556 g/cm ³					
Referen	ce	Prewitt C. T., Sueno S	S., Papike J. J., "The crystal structures of high albite and monalbite at high temperatures T = 750 deg C feldspar",				
		American Mineralogi	ist 61, 1213-1225 (1976)				
B: Epido	oto (24.4 %)						
Formula	sum	Al2.32 Ca2 Fe0.68 C	213 Si3				
Entrynu	mber	96-900-2181					
Figure-o	f-Merit (FoM)	0.711783	0.711783				
Total nun	mber of peaks	500					
Peaks in	range	380					
Peaks m	natched	179	179				
Intensity scale factor		0.23	0.23				
Space g	roup	P 1 21/m 1	P 121/m 1				
Crystal s	rmotay.	monoclinic					
Unit cell	a contract	a= 8.8910 Åb= 5.62	40 Åc= 10.1640 ÅB= 115.440 "				
Acor		0.88					
Calc. de	maity	3.423 g/cm ³					
Reference	CB	Giuli G, Bonazzi P, M	Menchetti 5., "Al-Fe disorder in synthetic epidotes: Asingle-crystal X-ray diffraction study Sample: CC11c", American				
		Mneralogist 84, 933	F936 (1999)				
C: Quart	tz (8.5 %)						
Formula	BUM	-02 Si					
Entrynur	mber	96-901-2603					
Figure-o	f-Merit (FoM)	0.794242					
Total nur	mber of peaks	32					
Peaks in	1 range	25					
Peaks m	natched	14					
Intensity scale factor		0.36					
Space group		P 31 2 1	P 31 2 1				
Crystal s	ystem	trigonal (hexegonal :	trigonal (hexagonal axes)				
Unit cell		a= 4.7050 Ac= 5.25	a= 4.7050 Å c= 5.2500 Å				
Moor		3.93	3.93				
Calc. density		2.974 g/cm*	2.974 g/cm³				
Reference	ce	Hazon R. M., Finger Sample: P = 5.1 CP	L. W., Hemley R. J., Mao H. K., 'High-pressure crystal chemistry and amorphization of alpha-quartz Locality synthetic all Solid State Communications 72, 507-511 (1989).				
2011/20124	100 17 IN 1922 AUGUS	sandpart = 0.1 GPs	a statement water statement and a set of a state of a statement of the sta				
D: Wolla	stonite (5.7 %)						
Formula	sum	Ca O3 Si					
Entry nur	mber	96-900-5779	96-900-5779				
Figure-o	f-Merit (FoM)	0.719627					
Total nun	mber of peaks	488					
Peaks in	range	488					
Danks of	natched	159					
- oaka m	scale factor	0.12					
Intensity	the statement of the statement of						
Intensity Space o	roup	P121/a1					
Intensity Space g Crystal s	roup iystem	P 1 21/a 1 monoclinic					

E: Hematite (2.1 %) Formula sum Entry number Figure-of-Merit (FoM) Total number of peaks Fe2 O3 Peaks in range Peaks matched Intensity scale factor Space group Crystal system Unit cell l/lcor Calc. density Reference

Fe2 O3 96-901-6458 0.733390 34 27 14 14 0.09 R-3 c trigonal (hexagonal axes) a= 5.0066 Å c= 13.6411 Å 4.00 9.00 5.373 g/cm³ Finger L. W., Hazen R. M., "Crystal structure and isothermal compression of Fe2O3, Cr2O3, and V2O3 to 50 kbars Note: P = 43.9 kbar", Journal of Applied Physics 51, 5362-5367 (1980)

Search-Match

Settings Reference database used Automatic zeropoint adaptation Minimum figure-of-merit (FoM) 2theta window for peak corr. Minimum rel. int. for peak corr. Parameter/influence 2theta Parameter/influence 2theta COD-Inorg REV173445 2016.01.04 Yes 0.60 0.30 deg. 1 0.50 Parameter/influence intensities 0.50 Parameter multiple/single phase(s) 0.50

Selection Criteria

Bements:

Elements that must be present: O. Na. Al. Si, K. Ca. Fe Elements that must NOT be present: All elements not mentioned above

Match! Phase Analysis Report

Sample: TEST SAMPLE

File name	e		BT_4 UNHAS.raw E:/TAMineralogi/Penguijan XRD			
Data colle	ected		Aug 24, 2022 16:29:35			
Data rang	ge		9.960° - 89.960°			
Number	of points		4001			
Step size	1		0.020			
Rietveld	refinement con	verged	No			
Alpha2 si	ubtracted		No			
Backgrou	ind subtr.		No			
2thela co	oothed		0.049			
Radiation	necuon		X-rays			
Waveleng	gth		1.540598 A			
				Matched Phases		
Index	Amount (%)	Name		Formula sum		
A	66.5	Albite		Al Na O8 Si3		
в	10.8	Quartz		02 Si		
0	10.4	Mollastoni		A2.32 G2 F60.65 O13 SI3		
E	3.0	Wonastoni	e .	Ga G3 G3		
	3.1	Unidentifie	d peak area	F82 03		
A- Albita	(66 5 %)					
Formula	sum		AI Na O8 Si3			
Entry nun	nber		96-900-0529			
Figure-of	-Merit (FoM)		0.865669			
Total num	nber of peaks		251			
Peaks in	range		251			
Peaks m	atched		165			
Intensity	scale factor		0.63			
Space gr	oup		C -1			
Crystal s	ystem		triclinic (anorthic)	7 4 04 0669 8- 116 222 8 00 078 9		
Unit cell			a= 6.2296 A D= 12.9336 A c= 7.135 0.74	M AG= 91.900 β= 116.232 ° γ= 90.078 °		
Calc der	sitv		2.556 a/cm ³			
Reference	is ity		Prewitt C T Sueno S Panike I I	"The cristal structures of high albite and monalbite at high temperatures T = 750 deg C felden		
Reference			American Mineralogist 61, 1213-12	(116 crystal structures of high alone and inchalone at high emperatures 1 – 755 deg o leidap		
B: Quart	z (10.8 %)					
Formula	sum		02 51			
Entry nun	Marit (EoM)		90-901-2003			
Total num	nber of neaks		32			
Peaks in	range		25			
Peaks matched			12			
Intensity scale factor			0.54			
Space gr	quo		P 31 2 1			
Crystal s	ystem		trigonal (hexagonal axes)			
Unit cell			a= 4,7050 Å c= 5,2500 Å			
Vicor	100		3.93			
Calc. der	nsity		2.974 g/cm ³			
Reference	28		Sample: P = 5.1 GPa*, Solid State	R. J., Mao H. K., "High-pressure crystal chemistry and amorphization of alpha-quartz Locality: sy Communications 72, 507-511 (1989)		
C: Epido	te (10.4 %)					
Formula	sum		Al2.32 Ca2 Fe0.68 O13 Si3			
Entry nun	nber		96-900-2181			
Figure-of	-Merit (FoM)		0.637691			
Peake in	rance		405			
Peaks m	atched		181			
Intensity	scale factor		0.12			
Space or	oup		P 1 21/m 1			
Crystal s	ystem		monoclinic			
Unit cell	1		a= 8.8910 Å b= 5.6240 Å c= 10.164	IO Åβ= 115.440 °		
Vicor			0.88			
Calc. der	nsity		3.423 g/cm ³			
Reference			Giuli G., Bonazzi P., Menchetti S., "Al-Fe disorder in synthetic epidotes: Asingle-crystal X-ray diffraction study Sample: CC11c", America Mineralogist 84, 933-936 (1999)			
	stonite (9.0 %)					
D: Wolfs	Sum (9.0 %)		Ca O3 Si			
D: Wolla	Formula sum		96-900-5779			
D: Wolla Formula Entry nur	nber		0.741167			
D: Wolla Formula Entry nur Figure-of	nber f-Merit (FoM)					
D: Wolla Formula Entry nun Figure-of Total nun	mber f-Merit (FoM) nber of peaks		488			
D: Wolla Formula Entry nun Figure-of Total nun Peaks in	nber f-Merit (FoM) nber of peaks range		488 488			
D: Wolla Formula Entry nun Figure-of Total nun Peaks in Peaks m	nber f-Merit (FoM) nber of peaks range atched		488 488 151			
D: Wolla Formula Entry nun Figure-of Total num Peaks in Peaks m Intensity	nber f-Merit (FoM) nber of peaks range atched scale factor		488 488 151 0.22			
D: Wolla Formula Entry nun Figure-of Total nun Peaks in Peaks m Intensity Space gr	nber f-Merit (FoM) nber of peaks range atched scale factor roup		488 488 151 0.22 P 1 21/a 1			
D: Wolla Formula Entry nun Figure-of Total nun Peaks in Peaks m Intensity Space gr Crystal s	her Merit (FoM) nber of peaks range atched scale factor roup ystem		488 488 151 0.22 P 1 21/a 1 monoclinic			
D: Wolla Formula Entry nun Figure-of Total nun Peaks in Peaks in Peaks m Intensity Space gr Crystal s Unit cell	hber f-Merit (FoM) nber of peaks range latched scale factor roup ystem		488 488 151 0.22 P 1 21/a 1 monoclinic a= 15.4240 Ab=7.3240 Ac=7.065	¥2 Aβ= 95.371 °		
D: Wolla Formula Entry nur Figure-ol Total nun Peaks in Peaks m Intensity Space gr Crystal s Unit cell	f-Merit (FoM) nber of peaks range latched scale factor roup ystem		488 488 151 0.2 1/a 1 monoclinic a = 15.4240 Åb= 7.3240 Åc= 7.069 1.89	22 Aβ= 95.371 °		
D: Wolla Formula Entry nun Figure-of Total nun Peaks in Peaks m Intensity Space gr Crystal s Unit cell	nber f-Merit (FoM) nber of peaks range alched scale factor roup ystem		488 488 151 0.22 P 1.21/a 1 monoclinic a = 15.4240 Ab= 7.3240 Ac= 7.069 1.89	i2 Åβ= 95.371 *		

E: Hematike (3.2 %) Formula sum Entry number Figure-of-Merit (FoM) Total number of peaks Peaks in range Peaks matched Intensity scale factor Space group Crystal system Unit cell Vicor Calc. density Reference

Fe2 O3 96-400-2384 0.708856 233 177 80 0.12 P n a 21 orthorhombic a = 5.0850 Ab= 8.7740 Åc= 9.4680 Å 2.99 5.022 gicm³ Gich M, Frontera C., Ritter C., Roig A, Nogues J., Taboada E., Molins E., Macedo WAA, Ardisson J.D., Hardy V, Rechenberg H.R., Sort J., Skumryev V., *High- and Iow-temperature crystal and magnetic structure of epsilon-Fe2 O3 and their correlation to its magnetic properties*, Chemistry of Materials (1,1989-) **18**, 3889-3897 (2007)

Search-Match

Settings

-	
Reference database used	COD-Inorg REV173445 2016.01.04
Automatic zeropoint adaptation	Yes
Minimum figure-of-merit (FoM)	0.60
2theta window for peak corr.	0.30 deg.
Minimum rel. int. for peak corr.	1
Parameter/influence 2theta	0.50
Parameter/influence intensities	0.50
Parameter multiple/single phase(s)	0.50

Selection Criteria

Elements:

Elements that must be present:	O, Na, Al, Si, K, Ca, Fe
Elements that must NOT be present:	All elements not mentioned above

Diffraction Pattern Graphics

PDF PDF

Match! Phase Analysis Report

Sample: TEST SAMPLE

Sample Data File name File path Data collected Data range Number of points Step size Rietveld refinement converged Alpha2 subtracted Background subtr. Data smoothed 2theta correction Radiation Wavelength BT_5 UNHAS.raw E:/TAMineralogi/Pengujian XRD Aug 24, 2022 16:29:35 10.040° - 90.040° 4001 0.020 No No No No 0.04° X-rays 1.540598 A

Name Abite Epidote Quartz Wollastonite Amount (%) Index 46.5 21.5 20.8 8.4 ABCDE 2.8 1.8 Hematile Unidentified peak area

Formula sum A Na O8 Si3 A2.32 Ca2 Fe0.68 O13 Si3 O2 Si Ca O3 Si Fe2 03

Matched Phases

A: Albite (46.5 %)	
Formula sum	A Na O8 Si3
Entrynumber	96-900-2204
Figure-of-Merit (FoM)	0.854735
Total number of peaks	249
Peaks in range	249
Peaks matched	195
Intensity scale factor	0.48
Space group	C-1
Crystal system	triclinic (anorthic)
Unit cell	a= 8.1520 Ab= 12.8310 Ac= 7.1100 Ac= 93.460° B= 116.520 ° y= 89.720 °
Moor	0.80
Calc. density	2.623 g/om*
Reference	Menephinello E., Alberti A., Cruciani G., "Order-disorder process in the letrahedral sites af albite Sample: 1090-12d Note: this sample of feldspar is from Stintino, Sardinia, Italy", American Mineralogist 84, 1144-1151 (1999)

B: Epidote (21.5 %) Formula sum Entry number Figure-of-Merit (FoM) Total number of peaks Peaks in range Peaks matched Intensity scale factor Space group Crystal system Unit cell Ificor Calc. density Reference

A2.32 Ca2 Fe0.68 O13 Si3 96-900-2181 0.701345 500 388 235 235 0.25 P 1 21/m 1 manaclinic = 8.6910 Ab= 5.6240 Ac= 10.1640 Aβ= 115.440 ° 0.88 0.88 3.423 g/cm^a Gluil G., Bonazzi P., Menchetti S., "Al-Fe disorder in synthetic epidotes: Asingle-crystal X-ray diffraction study Sample: CC11c", American Mineralogist 84, 933-936 (1999)

C: Quartz (20.8 %) Formula sum Entry number Figure-of-Merit (FoM) Total number of peaks Peaks in range Peaks matched Intensity scale factor Space group Constal system Space group Crystal system Unit cell I/Icor Calc. density Reference

O2 Si 96-901-1497 0.733149 0.733149 31 24 17 0.71 P 31 2 1 trigonal (hexagonal axes) a= 4.6040 Å c= 5.2070 Å a= 4.6940 Ac= 5.2010 A 2.64 3.129 g/cm³ Glinnemann J., King H. E., Schulz H., Hahn T, La Placa S. J., Dacol F., "Crystal structures of the low-temperature quartz-type phases of SiO2 and GeO2 at elevated pressure P = 10.2 GPa = 102 kbar", Zeitschrift für Kristallographie **198**, 177-212 (1992)

D: Wallastonite (8.4 %)

Optimized using trial version www.balesio.com

Ca O3 Si Ca 03 Si 96-900-5779 0.783944 488 488 195 0.21 P121/a1 a= 15.4240 Åb= 7.3240 Åc= 7.0692 Åβ= 95.371 * 1.89

E: Hematite (2.8 %) Formula sum Entry number Figure-of-Merit (FoM) Total number of peaks Fe2 Q3 96-901-5066 0.718321 34 27 21 0.15 R -3 c trigonal axes) a = 5.0249 A c= 13.7163 A 4.01 5.304 g/cm³ Finger L. W., Hazen R. M., "Crystal structure and isothermal compression of Fe2O3, Cr2O3, and V2O3 to 50 kbars Note: P = 15.4 kbar", Journal of Applied Physics **51**, 5362-6367 (1980) Search-Match Total number of peak Peaks in range Peaks matched Intensity scale factor Space group Crystal system Unit cell I/Icor Calc. density Reference

Settings

Gerniga	
Reference database used	COD-Inorg REV173445 2016.01.04
Automatic zeropoint adaptation	Yes
Minimum figure-of-merit (FoM)	0.60
2theta window for peak corr.	0.30 deg.
Minimum rel. int. for peak corr.	1
Parameter/influence 2theta	0.50
Parameter/influence intensities	0.50
Parameter multiple/single phase(s)	0.50

Selection Criteria

Elements:

Elements that must be present:	O, Na, Al, Si, K, Ca, Fe
Elements that must NOT be present:	All elements not mentioned above

Diffraction Pattern Graphics

Match! Phase Analysis Report

Sample: TEST SAMPLE

Sample Data File name File path Data collected Data range Number of points Step size Rietveld refinement converged Apha2 subtracted Background subtr. Data smoothed 2theta correction Radiation Wavelength

nount (%)

52.1 18.9 15.9 10.6

Index An

AB

CD E Name

BT_6 POS 1 Bawakaraeng raw E:/TAMineralogi/Pengujian XRD Aug 24, 2022 16:29:35 10.060° - 90.060° 4001 0.020 No No No No 0.06° X-rays 1.540598 Å

Matched Phases

peak area		

Formula sum Al Na OB Si3 Al2.32 Ca2 Fe0.68 O13 Si3 O2 Si Ca O3 Si Fe2 03

Name Albite Epidote Quartz Wollastonite Hematite Unidentified p 2.5 A: Albite (52.1 %) Formula sum Entry number Figure-of-Merit (FoM) Total number of peaks ALNa OS SI3 96-900-0526 0.863770 250 Peaks in range Peaks matched 250 187 Intensity scale facto Space group Crystal system 0.56 C -1 triclinic (a triclinic (anorthic) a=8.1530 Ab= 12.8694 Ac=7.1070 Aα= 93.521° β= 116.458 ° γ= 90.257 ° 0.78 Unit cell Moor 2.816 g/cm³ Previtt C. T., Sueno S., Papike J. J., "The crystal structures of high albite and monalbite at high temperatures T = 24 deg C feldspar", American Mineralogist 61, 1213-1225 (1976) Calc. density Reference

Reference

Hazen R. M. Finger L. W., Hemley R. J. Maio H. K., "High-pressure crystal chemistry and amorphization of alpha-quartz Locality synthetic. Sample: P = 2.0 Gpa", Solid State Communications 72, 507-511 (1989).

B: Epidote (18.9 %) Formula sum

Formula sum Entry number Figure-of-Merit (FoM) Total number of peaks Peaks in range Peaks matched Intensity scale factor Space group Crystal system Unit cell Vicor Calc. density Reference

Al2 32 Ca2 Fe0 68 013 Si3 96-900-2181 0.703538 500 380 217 0.23 P 1 21/m 1 monoclinic a= 8.8910 Ab= 5.6240 Ac= 10.1640 AB= 115.440 ° 88.0 3.423 a/cm* Sixes guinin Guill G, Bonazzi P, Menchetti S, "Al-Fe disorder in synthetic epidotes: Asingle-crystal X-ray diffraction study Sample: CC11c", American Mneralogist 84, 933-936 (1999)

C: Quartz (15.9 %)

Formula sum Entry number Figure-of-Merit (FoM) Figure-of-Ment (FoM) Total number of peaks Peaks in range Peaks matched Intensity scale factor Space group Crystal system Unit cell Vicor Mon Calc. density Reference

O2 Si 96-901-2602 0.780634 34 25 15 0.95 P 31 2 1 trigonal (hexagonal axes) a= 4.8120 A c= 5.3270 A 4.38 * 3.50 2.802 g/cm² Hazen R. M, Finger L. W, Hemley R. J., Mao H. K., "High-pressure crystal chemistry and amorphization of alpha-quartz Locality: synthetic Sample: P = 2.0 Gpa", Solid State Communications 72, 507-511 (1989)

D: Wollastonite (10.6 %)

Ca O3 Si 96-900-5779

0.27 P 1 21/a 1

1.89

monoclinic a= 15.4240 Åb= 7.3240 Åc= 7.0692 Åβ= 95.371 °

Formula sum Entry number Figure-of-Merit (FoM) Total number of peaks Peaks in range Peaks matched in factor

Optimized using trial version www.balesio.com

E: Hematite (2.5 %) E: Hematite (2.5 %) Formula sum Entry number Figure-of-Merit (FoM) Total number of peaks Peaks in range Peaks matched Intensity scale factor Space group Crystal system Unit cell Unit cell Vicor Calc. density Reference

Fe2 O3 96-901-5504 0.731588 34 27 27 20 0.14 R-3 c trigonal (hexagonal axes) a= 5.0020 Å c= 13.6202 Å 4.03

5.391 g/cm³
Finger L. W., Hazen R. M., "Crystal structure and isothermal compression of Fe2O3, Cr2O3, and V2O3 to 50 kbars Note: P = 52.4 kbar", Journal of Applied Physics 51, 5362-5367 (1980)

Search-Match

Settings

 Settings
 COD

 Reference database used
 COD

 Automatic zeropoint adaptation
 Yes

 Minimum figure-of-merit (FoM)
 0.60

 Zheta window for peak corr.
 0.30

 Minimum rel. int. for peak corr.
 1

 Parameter/influence 2theta
 0.50

 Parameter/influence intensities
 0.50

 Parameter/influence intensities
 0.50
 COD-Inorg REV173445 2016.01.04 0.60 0.30 deg.

Selection Criteria

Elements:

O, Na, Al, Si, K, Ca, Fe Elements that must be present: Elements that must NOT be All elements not mentioned above present:

Diffraction Pattern Graphics

trial version www.balesio.com

Optimized using trial version www.balesio.com

Match! Phase Analysis Report

Sample: TEST SAMPLE

Sample	Data					
File nan	10	BT 7 POS 1 1 BAM	AKARAENG raw			
File pat	1	E/TAMneralogi/Pe	ngulian XRD			
Data col	liected	Aug 24, 2022 16:29	35			
Data rar	ge	9.920* - 89.920*				
Number	of points	4001				
Step siz	9	0.020				
Rietveld	refinement con	verged No				
Apha2 a	subtracted	No				
Backgro	und subtr.	No				
Data sm	noothed	No				
2theta o	orrection	-0.08"				
Radiatic	an .	X-rays				
Waveler	າຕິຍາ	1.540598 A				
			Matched Phases			
ALC: NO	American (MC)		Frank som			
maex	Amount (76)	Wellerheite	Concerning Sum			
	28.1	Albite				
č	197	Enidote	A/2 32 Ca2 Fait 68 O13 S/3			
ň	85	Quartz	(2.5)			
	6.0	Manasiofarita	Es2 Mn Od			
F	2.8	Hematite	Fa2 (3)			
20	8.6	Unidentified peak area	152.00			
A: Wolk	astonite (36.9 %	9				
Formula	sum	Ca O3 Si				
Entry nu	mber	90-900-6779				
Figure-c	Marit (PoM)	0.855583				
Total nur	mber of peaks	488				
Peaks in	n range	468				
Peaks n	natched	196				
Intensity	scale factor	0.72				
Space g	troup	P 1 21/a 1				
Crystal	system	monoclinic				
Unit cell		8= 15.4240 AD= 7.	3240 AC= 7.0692 AB= 95.371 *			
Colo de	and the	1.09				
Calc. de	insity.	2.911 gidm*	Release triangle to start the artestike and unitariante Sciences (APVSF) Desires and Chamlete of Mensies (A			
Maskien	Ce.	217,220 (1084)	Ohashi Y, "Polysynthetically-byinned structures of enstatite and wolfastionite Sample: WOZM", Physics and Chemistry of Minerals 10, 217, 200 (1984)			
		Ell-EEu (1004)				
R Albit	w (28 1 %)					
Enemaile	a fager ver	ALNo OR SIS				
Entry ou	mber	96,000,0526				
Figure-	Marit (FoM)	0.840026				
Total nu	mber of peaks	250				
Poaks is	n ranna	250				
Peaks	natched	192				
Intensit	v scale factor	0.23				
Snace o	mup	C -1				
Crystal	system	triclinic (anorthic)				
Unit cell		a= 8 1530 Ab= 12	8894 Åc= 7 1070 Å a= 93 521° 8= 116 458 °v= 90 257 °			
Vicor		0.78				
Calc. de	ansity	2.616 gicm*				
Referen	ice .	Prewitt C. T. Suend	S., Papike J. J., "The crystal structures of high albite and monalbite at high temperatures T = 24 deg C feldspar",			
		American Mineralo	gist 61, 1213-1225 (1976)			
12/12/19/2						
C: Epid	ote (19.7 %)					
Formula	sum	Al2.32 Ca2 Fe0.68	Q13.263			
Entry nu	mber	96-900-2181				
Figure-0	of-Merit (FoM)	0.782438				
Total nu	mber of peaks	500				
Peaks	n range	500				
Poaks r	natched	215				
intensity	y scale factor	0.18				
Opece 5	honb	F121001				
Crystal	system	monocinic				
Unit cell		a= 8.8910 AD= 5.6	240 AC= 10.1640 Ap= 115.440 *			
Cole de	and the second second	0.88 2.423 almost				
Calc. Of	many	Chill C. Bacarri D.	Manchelli C. M. Es discolar la scalación suidable. Asianía central V es differences de la Campia CC142 Amarican			
Reserve		Monthlogist 84, 03	. wenchen o., were disorder in synnedic epidoles. Asingle-crystal X-ray diffraction study Sample: CC11c", American (3.936 (1999)			
		insteratograt 04, 35				
D: Quar	tz (6.5 %)					
Formula	asum	02 Si				
Entry nu	mber	96-901-1496				
Figure-	of-Merit (FoM)	0.777125				
Total nu	mber of peaks	32				
Peaks in	n range	32				
Peaks r	natched	16				
Intensity	y scale factor	0.18				
Space o	group	P 31 2 1				
Crystal	system	trigonal (hexagona	laxes)			
		a= 4.6764 Ac= 5.2	475 A			

Optimized using trial version www.balesio.com

E: Magnesioferrite (6.0 %) Formula sum Entry number Figure-of-Merit (FoM) Total number of peaks Fe2 Mg O4 96-900-3786 0.713709 34 34 12 0.29 Peaks in range Peaks matched Intensity scale factor F d -3 m Space group Crystal system cubic a = 8.3730 A 4.78 4.75 Gydm³ Antao S. M. Hassan I., Crichton W. A. Parise J. B., "Effects of high pressure and high temperature on cation ordering in magnesioferrite, MgFe2O4, using in situ synchrotron X-ray powder diffraction up to 1430 K and 6 GPa Sample: T = 1130 K, P = 5 GPa during heating", American Mineralogist 90, 1500-1505 (2005) cubic Unit cell Vicor Calc. density Reference F: Hematite (2.8 %) Formula sum Entry number Figure-of-Merit (FoM) Total number of peaks Fe2 O3 96-901-4881 0.672333 0.67 34 34 16 0.11 Peaks in range Peaks matched Intensity scale factor Space group Crystal system Unit cell R -3 c trigonal (hexagonal axes) a= 5.0143 Å c= 13.6733 Å 3.91 Vicor Calc. density Reference

5.94 g/cm³ Finger L. W., Hazen R. M., "Crystal structure and isothermal compression of Fe2O3, Cr2O3, and V2O3 to 50 kbars Note: P = 31.4 kbar", Journal of Applied Physics **51**, 5362-5367 (1980)

Search-Match

Settings	
Reference database used	COD-Inorg REV173445 2016.01.04
Automatic zeropoint adaptation	Yes
Minimum figure-of-merit (FoM)	0.60
2theta window for peak corr.	0.30 deg.
Minimum rel. int. for peak corr.	1
Parameter/influence 2theta	0.50
Parameter/influence intensities	0.50
Parameter multiple/single phase(s)	0.50

Selection Criteria

Elements

Optimized using trial version www.balesio.com

Elements that must be present: O. Na, Ma, Al, Si, K, Ca, Fe Elements that must NOT be All elements not mentioned above present:

Diffraction Pattern Graphics

Optimized using trial version www.balesio.com

Match! Phase Analysis Report

Sample: TEST SAMPLE

Sample Data File name File nath Data collected Data range Number of points Step size Riebeld refinement converged Apha2 subtracted Background subfr. Data smoothed 2theta correction Radiation Wavelength

BT_8 KEBUN.raw E/TAMneralog/Pengujian XRD Aug 24, 2022 16:29:35 10.080° - 90.080° 4001 0.020 No No No No No 0.08° X-rays 1.540588 Å

Matched Phases

Index Amount (%) Name A 36.5 Abite B 26.9 Wollastonite C 24.6 Epidote D 6.8 Magnesioferrite E 3.6 Quartz F 1.6 Hematite 7.1 Unidentified peak area Formula sum Al Na O8 Si3 Ca O3 Si Al2:32 Ca2 Fe0.68 O13 Si3 Fe2 Mg O4 O2 Si Fe2 O3

A: Albite (36.5 %)

Formula sum Entry number Figure-of-Merit (FoM) Total number of peaks Peaks in range Peaks matched Intensity scale factor Space group Crystal system Unit cell Vicor Calc. density Reference Al Na Q8 Si3 96-900-0587 0.861927 251 251 259 0.47 C -1 triclinic (anorthic) a = 82770 Ab = 12.8600 Ac = 7.1810 Ac = 93.300° β = 116.200° γ = 87.600° 0.82 2.544 g/cm³ Winter J. K., Ghose S., Okamura F. P., "Ahigh-temperature study of the thermal expansion and the anisotropy of the sodium atom in low albite T = 970 deg C Note: this sample of feldspar is from Tiburon, Marin County, California, USA", American Mneralogist **62**, 921-931 (1977)

B: Wollastonite (26.9 %)

Formula sum Entry number Figure-of-Merit (FoM) Total number of peaks Peaks in range Peaks matched Intensity scale factor Space group Crystal system Unit cell Ufoor Calc. density Reference

 $\begin{array}{l} 96{-}900{-}5779\\ 0.844714\\ 488\\ 488\\ 207\\ 0.80\\ P\ 1\ 21/a\ 1\\ monoclinic\\ a=\ 15.4240\ Ac=7.0692\ A\beta=95.371\ ^{o}\\ 1.89\\ 2.911\ g/cm^{3}\\ Ohashi \ Y, \ Polysynthetically-twinned structures of enstatile and wollastonite Sample: WO2M", Physics and Chemistry of Minerals 10, 217-229 (1984)\\ 217{-}229 (1984) \end{array}$

C: Epidote (24.6 %)

Creptote (24.0 m) Formula sum Entry number Figure-of-Merit (FoM) Total number of peaks Peaks in range Peaks matched Inlensity scale factor Space group Crystal system Unit cell *Vicor* Calc. density Reference

 Number of the formation of the formatio of the formation of the formation of the formation of

D: Magnesioferrite (6.8 %) Formula sum

Entry number Figure-of-Merit (FoM) Total number of peaks Peaks in range Peaks matched Intensity scale factor Space group

Optimized using trial version www.balesio.com Fe2 Mg O4 96-900-3785 0.825138 34 17 14 0.51

F d -3 m cubic

Al2.32 Ca2 Fe0.68 O13 Si3

Ca O3 Si

E: Quartz (3.6 %)	
Formula sum	02 Si
Entrynumber	96-901-3322
Figure-of-Merit (FoM)	0.754786
lotal number of peaks	35
Peaks in range	29
Peaks matched	25
intensity scale factor	0.27
Space group	P 32 2 1
Crystal system	trigonal (hexagonal axes)
Unit cell	a= 4.9134 A c= 5.4051 A
Noor	4.74
Calc. density	2.649 g/cm ³
Reference	Antao S. M., Hassan I., Wang J., Lee P. L., Toby B. H., "State-of-the-art high-resolution powder x-ray diffraction (HRPXRD) illustrated with
	Rietveld structure refinement of quartz, sodalite, tremolite, and meionite Locality, not specified*, The Canadian Mneralogis146, 1501- 1509 (2008)
F: Hematite (1.6 %)	
Formula sum	F#2 03
Entry number	96-901-4881
Figure-of-Merit (FoM)	0.754279
lotal number of peaks	34
Peaks in range	29
Peaks matched	24
intensity scale factor	0.10
Space group	R-3c
Crystal system	trigonal (hexagonal axes)
Unit cell	a= 5.0143 Ac= 13.6733 Å
loor	3.91
Calc, density	5.344 a/cm ³
Reference	Finger L. W. Hazen R. M. "Crystal structure and isothermal compression of Fe203. Cr203, and V203 to 50 kbars. Note: P = 31.4 kbar*
A LAN LAN AN	Journal of Applied Physics 51, 5362-5367 (1980)

Search-Match

Settings

Gerunga	
Reference database used	COD-Inorg REV173445 2016.01.04
Automatic zeropoint adaptation	Yes
Minimum figure-of-merit (FoM)	0.60
2theta window for peak corr.	0.30 deg.
Minimum rel. int. for peak corr.	1
Parameter/influence 2theta	0.50
Parameter/influence intensities	0.50
Parameter multiple/single phase(s)	0.50

Selection Criteria

Elements:

Optimized using trial version www.balesio.com

Elements that must be present: O. Na, Mg, Al, Si, K, Ca, Fe Elements that must NOT be present:

All elements not mentioned above

Diffraction Pattern Graphics

Unregistered copy

-

#

6

Optimized using trial version www.balesio.com Color Cu-Ka1 (1.540598 A)

Ξ

re

D 1000

♦ Matchl

Match! Phase Analysis Report

Sample: TEST SAMPLE

Sample	Data			
File nar	ne	E	T_9 Jembatan Merah.raw	
File pat	h	E	2:/TAMineralogi/Pengujian XRD	
Data co	llected	-	Aug 24, 2022 16:29:35	
Data rai	rofeciete		1.900* - 89.900*	
Step siz	a a	-	020	
Rietveld	refinement con	verged N	No	
Apha2	subtracted	1	No	
Backgro	ound subtr.	,	No	
Data sn	noothed	,	No	
2theta c	orrection		0.04°	
Magaala	anth		L-rays	
VVa verier	igui	1	1.040080 A	
				Matched Phases
Index	Amount (%)	Name	Fr	ormula sum
A	47.3	Albite	A	Na OB SI3
в	28.1	Epidote	A	2.32 Ca2 Fe0.68 O13 Si3
6	6.6	Magnesiofe	s C	a Us Si a2 Ma Od
E	6.3	Quartz	0	2 Si
F	3.0	Hematite	Fr	B2 O3
	3.8	Unidentified	f peak area	
A: Albit	o (47.3 %)			
Formula	sum	/	N Na OB Si3	
Entry nu	mber	5	16-900-0527	
Figure-	mber of peaks		050	
Peaks i	n range		250	
Peaks	natched	2	201	
Intensit	scale factor	0	0.72	
Space g	roup	0	D -1	
Crystal	system	5	riclinic (anorthic)	
Unit cel		8	H=8.1829 Ab= 12.8947 Ac= 7.1190	A α= 93.041° β= 116.352 ° γ= 90.172 °
Mcor	and the).76	
Referen	insity	-	Prewitt C T Sueno S Panike I I "	The crustal structures of high albite and monalbite at high temperatures T = 350 deg C feldspar*
Teleforer		1	American Mineralogist 61, 1213-122	5 (1976)
B: Epid	ote (28.1 %)			
Formula	sum	4	N2.32 Ca2 Fe0.68 O13 Si3	
Entry nu	mber	4	#6-900-2181	
Figure-	of-Merit (FoM)		1.857920	
Reake 1	mber of peaks		100	
Peaks	natched		179	
Intensit	scale factor	č	50	
Space o	aroup	F	P 1 21/m 1	
Crystal	system	1	nonoclinic	
Unit cel	R.	3	= 8.8910 Ab= 5.6240 Ac= 10.1640	Aβ= 115.440 °
Floor		6	1.88	
Calc. de	Insity	3	1.423 g/cm*	
Referer	00		auli G., Bonazzi P., Menchetti S., "A-P Mineralogist 84, 933-936 (1999)	e disorder in synthetic epidotes: Asingle-crystal X-ray diffraction study Sample: CC11C', American
C: Woll	astonite (8.8 %)			
Formula	sum	(Ca O3 Si	
Entry nu	mber	6	6-900-5779	
Figure-	of-Merit (FoM)	0	1.784959	
Total nu	mber of peaks		188	
Peaks I	n range		188	
intensit	escale factor	2	33	
Space (roup	F	P 1 21/a 1	
Crystal	system		nonoclinic	
Unit cel	1	2	s= 15.4240 Ab= 7.3240 Ac= 7.0692	Aβ= 95.371 °
1/Icor		3	1.89	
Calc. de	insity		1911 g/cm*	
Reierer	ca		217-229 (1984)	sedoures of ensited and wonasionite sample: woow , Physics and Chemisey of Minerals 10,
D: Mar	nesioferrite (* 1	5 961		
Formula	a sum	1.14/	en2 Min O4	
Entry nu	mber		36-900-3798	
Figure-	of-Marit (FoM)	0	817313	
Total nu	mber of peaks	2	16	
Peaks i	n range	1	7	
Peaks r	naiched	1	15	
Space	yscale actor		-d-3m	
Crystel	system		cubic	
Unit cel	1		a= 8.4479 Å	
1000				
PDF				
		4	1.02 1.407 o/cm ³	
~7		4	Antao S. M. Hassan L. Crichton W A	Parise J. B., "Effects of high pressure and high temperature on cation ordering in magnesioferrite

Antao S. M., Hassan I., Crichton W. A., Parise J. B., "Effects of high pressure and high temperature on cation ordering in magnesioferri MgFe2O4, using in situ synchrotron X-ray powder diffraction up to 1430 K and 6 GPa Sample: T = 1430 K, P = 3 GPa during heating", American Mneralogist 90, 1500-1505 (2005)

E: Quartz (6.3 %) 02 Si Formula su Formula sum Entry number Figure-of-Merit (FoM) 96-900-0781 0.823753 Total number of peaks 32 27 Peaks in range Peaks matched 25 Intensity scale factor Space group 0.33 P 32 2 1 Crystal system Unit cell Vicor Calc. density Reference trigonal (hexagonal axes) a= 4.7020 Ac= 5.2560 A 2.64 2.04 2.974 gicm³ Levien L., Prewitt C. T., Weidner D. J., "Structure and elastic properties of quartz at pressure P = 61.4 kbar", American Mineralogist 65, 920-930 (1980) F: Hematite (3.0 %) Formula sum Entry number Figure-of-Merit (FoM) Total number of peaks Peaks in range Peaks matched Integrity acids factor Fe2 O3 96-901-6458 0.767794 34 27 25 Intensity scale factor 0.24 Intensity scale t Space group Crystal system Unit cell I/loor Calc. density R-3c rk - 3 t trigonal (hexegonal axes) a= 5.0066 Ac= 13.6411 Å 4.00 5.373 g/cm² Reference Finger L. W., Hazen R. M., "Crystal structure and isothermal compression of Fe203, Cr203, and V203 to 50 kbars. Note: P = 43.9 kbar", Journal of Applied Physics 51, 5362-5367 (1980)

Search-Match

Settings Reference database used COD-Automatic zeropoint adaptation Yes Minimum figure-of-merit (FoM) 0.60 Zheta window for peak corr. 0.30 / Minimum rel. int. for peak corr. 1 Parameter/influence ztheta 0.50 Parameter/influence intensities 0.50 Parameter multiple/single phase(s) 0.50 0.30 deg.

COD-Inorg REV173445 2016.01.04

Selection Criteria

Flements:

Optimized using trial version www.balesio.com

Elements that must be present: O, Na, Mg, Al, Si, K, Ca, Fe Elements that must NOT be present:

All elements not mentioned above

Diffraction Pattern Graphics

Optimized using trial version www.balesio.com

Match! Phase Analysis Report

Sample: TEST SAMPLE

Sample Data	
File name	BT_10 Jala
File path	E:/TAMinera
Data collected	Aug 24, 202
Data range	9.950° - 89.
Number of points	4001
Step size	0.020
Rietveld refinement converged	No
Alpha2 subtracted	No
Background subtr.	No
Data smoothed	No
2theta correction	-0.05°
Radiation	X-rays
Wavelength	1.540598 Å

BT_10 Jalan Lembanna.raw E:/TAMneralogi/Pengujian XRD 9.950° - 89.950° 4001 0.020 No No No No No No -0.05°

Al Na O8 Si3

96-900-2204

0.828025

Ca O3 Si

Matched Phases

Index	Amount (%)	Name
Α	38.6	Albite
в	24.0	Wollastonite
C	22.0	Epidote
D	7.2	Hematite
E	4.6	Quartz
F	3.7	Magnesioferrite
	9.1	Unidentified peak area

Formula sum Al Na O8 Si3 Ca O3 Si Al2.32 Ca2 Fe0.68 O13 Si3 Fe2 O3 O2 Si Fe2 Mg O4

A: Albite (38.6 %)

Formula sum Entry number Figure-of-Merit (FoM) Total number of peaks Peaks matched Intensity scale factor Space group Crystal system Unit cell Vicor Calc. density Reference

249 249 165 0.74 C -1 triclinic (anorthic) a = 8.1520 Åb = 12.8310 Åc = 7.1100 Å α= 93.460° β= 116.520 ° γ= 89.720 ° 0.80 2.623 g/cm³ Meneghinello E., Alberti A., Cruciani G., "Order-disorder process in the tetrahedral sites af albite Sample: 1090-12d Note: this sample of feldspar is from Stintino, Sardinia, Italy", American Mineralogist **84**, 1144-1151 (1999)

B: Wollastonite (24.0 %)

be provide the set of the set of

C: Epidote (22.0 %) Formula sum

Entry number Figure-of-Merit (FoM) Total number of peaks Peaks in range Peaks matched Intensity scale factor Space group Crystal system Unit cell Vicor Calc. density Reference

96-900-2181 0.804009 500 416 257 0.46 P1 21/m 1 monodinic a= 8.8910 Åb= 5.6240 Åc= 10.1640 Åj= 115.440 " 0.88 3.423 g/cm^{*}

3.423 g/cm³ Giuli G., Bonazzi P., Menchetti S., "Al-Fe disorder in synthetic epidotes: Asingle-crystal X-ray diffraction study Sample: CC11c", American Mineralogist 84, 933-936 (1999)

D: Hematite (7.2 %) Formula sum Entry number Figure-of-Merit (FoM) Total number of peaks Peaks in range Peaks matched Intensity scale factor Space group Crystal system

PDF PDF

Optimized using trial version www.balesio.com 66-152-8613 0.806597 468 437 136 0.57 P 41 21 2 bitragonal a = 8.3320 Åc= 25.1130 Å

Fe2:03

A2 32 Ca2 Fe0.68 O13 Si3

3.27 4.865 g/cm³

Jorgensen J.E., Mosegaard L., Hanson J.C., Jensen T.R., Thomsen L.E., "Formation of gamma-Fe2 O3 nanoparticles and vacancy ordering: an in situ x-ray powder diffraction study", Journal of Solid State Chemistry **180**, 180-185 (2007)

E: Quartz (4.6 %)	
Formula sum	C2 Si
Entry number	96-901-2602
Figure-of-Merit (FoM)	0.745278
Total number of peaks	34
Peaks in range	27
Peaks matched	23
Intensity scale factor	0.48
Space group	P3121
Crystal system	trigonal (hexagonal axes)
Unit cell	a= 4.8120 Å c= 5.3270 Å
Moor	4.38
Calc. density	2.802 g/cm ³
Reference	Hazen R. M., Finger L. W., Hemley R. J., Mao H. K., 'High-pressure crystal chemistry and amorphization of alpha-quartz Locality: synthetic Sample: P = 2.0 Gpa', Solid State Communications 72, 507-511 (1989)
F: Magnesioferrite (3.7 %)	
Formula sum	Fe2 Mp O4
Entrynumber	96-900-3794
Figures of Mart (Fold)	0.747388

F: Ma Form Entry Figure-of-Merit (FoM) Total number of peaks Total number of Peaks in range Peaks matched Intensity scale fr Space group Crystal system Unit cell Ulcor Calc. density Reference

96:900-371--0747286 35 17 15 0.41 F d -3 m cubic a = 8.4101 Å 4.70 4.466 gicm³ Antao S. M., Hassan I., Crichton W. A., Parise J. B., "Effects of high pressure and high temperature on cation ordering in magnesiofernite, MgFe2O4, using in situ synchrotron X-ray powder diffraction up to 1430 K and 6 GPa Sample: T = 1090 K, P = 3 GPa during heating", American Mineralogist 90, 1500-1505 (2005) Search-Match

Settings
Reference database
Automatic zeropoint a
Mnimum figure-of-m
2theta window for per
Minimum rel. int. for p
Parameterlinfluence
Parameter/influence
Parameter multiple/s

rence database used	COD-inorg REV173445 2016
matic zeropoint adaptation	Yes
mum figure-of-merit (FoM)	0.60
ta window for peak corr.	0.30 deg.
num rel. int. for peak corr.	1
meterlinfluence 2theta	0.50
meterfinfluence intensities	0.50
meter multiple/single phase(s) 0.50

Selection Criteria

Bements:

Eleme ents that must be present: O, Na, Mg, Al, Si, K, Ca, Fe Elements that must NOT be All elements not mentioned above present:

Diffraction Pattern Graphics

Match! Phase Analysis Report

Sample: TEST SAMPLE

Sample File nam File path Data coll Data ran Number Step sizz Rietveld Alpha2 s Backgrou Data sm 2theta co Radiatio Wavelen	Data ie lected gg of points a refinement conv ubtracted und subtr. oothed prrection n gth	B1 E: Au 10 40 0.1 0.1 No No No No No No No No No No No No No	T_11 Takapala.raw /TA Mneralogi/Pengujian XRD ug 24, 2022 16:29:35 0.110° - 90.110° 001 0 0 0 0 0 0 0 0 11° rays 540598 Å	Matched Phases				
Index	Amount (%)	Name		Formula sum				
Α	41.7	Quartz		O2 Si				
в	33.5	Wollastonite		Ca O3 Si				
c	13.9	Hematite		Fe2 03				
D	10.9	Unidentified p	nte peak area	Fez Mg 04				
A: Quart	tz (41.7 %)							
Formula	sum	0	2 Si					
Entry nur	mber	96	6-901-2604					
Figure-o	FMerit (FOM)	0.	0.771820					
Peaks in	ranne	24	24					
Peaks m	atched	24	24					
Intensity	scale factor	0.	0.61					
Space g	roup	P	P3121					
Crystal s	ystem	tri	trigonal (hexagonal axes)					
Unit cell		a=	a= 4,6250 A c= 5.2160 A					
Calc de	neity	3.	.59 096 a/cm ³					
Reference	Ce	Ha	azen R. M., Finger L. W., Hemley I ample: P = 8.0 GPa", Solid State (R. J., Mao H. K., "High-pressure crystal chemistry and amorphization of alpha-quartz Locality: synthetic Communications 72, 507-511 (1989)				
B: Wolla	stonite (33.5 %)							
Formula	sum	Ci	a O3 Si					
Entry nu	mber (Marit (EaM)	96	5-900-5779 778206					
Total nur	nher of neaks	48	88					
Peaks in	range	48	88					
Peaks m	natched	20	00					
Intensity	scale factor	0.	.26					
Space g	roup	P	1 21/a 1					
Crystal s	system	m	onoclinic					
Unit cell		a	= 15.4240 Ab= 7.3240 Ac= 7.069	92 Aβ= 95.371 °				
I/Icor	naltu	1.	011 c/cm3					
Calc. de	nsity	2.	.911 g/cm° hashi V. "Polysynthotically twinns	ad etructures of enetatite and wellastenite Sample: WOOM! Diverse and Chemistry of Manarala 40				
Releren	08	21	17-229 (1984)	eu suucures or ensidere drid Wolldstonite Sample. WOZM , Physics drid Chemistry of Minerals 10,				

C: Hematite (13.9 %) Formula sum Entry number Figure-of-Merit (FoM) Total number of peaks Peaks in range Peaks matched Intensity scale factor Space group Crystal system Unit cell Vicor l/lcor Calc. density Reference

Fe2 O3 96-901-6458 0.771630 34 27 25 0.23 R-3 c trigonal (hexagonal axes) a = 5.0066 Ac= 13.6411 A 4.00 5.373 g/cm³ Finger L. W., Hazen R. M., "Crystal structure and isothermal compression of Fe2O3, Cr2O3, and V2O3 to 50 kbars Note: P = 43.9 kbar", Journal of Applied Physics **51**, 5362-5367 (1980)

D: Magnesioferrite (10.9 %) Formula sum Entry number Figure of-Merit (FoM) Total number of peaks Peaks in range Peaks matched

lor

Optimized using trial version www.balesio.com Fe2 Mg O4 96-900-3787 0.778526

99-avo c... 0.778526 34 16 14 0.21 F d-3 m cubic a = 8.3730 Å 4.76 4.525 g/cm³ Anao S, Hassan I, Orichion W.A, Parise J. B, "Effects of high pressure and high temperature on callon ordering in magnesioternite, MgFa2O4, using in situ synchrotron X-ray powder diffraction up to 1430 K and 6 GPa Sample: T = 1010 K, P = 5 GPa during cooling". American Minimalogist **90**: 1500-1505 (2005)

Search-Match

Settings Reference database used
 Reference database used
 COD

 Aubmatic zeropoint adaptation
 Yes

 Minimum figure-of-merit (FOM)
 0.60

 2theta window for peak corr.
 0.30 d

 Minimum rel. int. for peak corr.
 1

 Parameter/influence lintensities
 0.50

 Parameter/influence intensities
 0.50

 Parameter/influence lintensities
 0.50
 Yes 0.60 0.30 deg.

COD-Inorg REV173445 2016.01.04

Selection Criteria

Elements:

Elements that must be present: O, Na, Mg, Si, K, Ca, Fe Elements that must NOT be All elements not mentioned above present:

Diffraction Pattern Graphics

trial version www.balesio.com

Lampiran Metode FTIR

1. Hasil Metode FTIR sampel BT1

SHIMADZU

No.	Peak	Intensity	Corr. Intensity	Base (H)	Base (L)	Area	Corr. Area
1	391.55	42.951	0.9	399.26	378.05	7.661	0.137
2	426.27	37.742	20.361	495.71	401.19	25.667	7.97
3	543.93	73.503	7.367	555.5	497.63	3.997	0.736
4	578.64	64.693	19.165	619.15	557.43	7.562	3.615
5	636.51	85.739	13.288	657.73	621.08	1.413	1.253
6	719.45	94.16	5.145	754.17	690.52	0.993	0.799
7	786.96	89.24	8.889	810.1	756.1	1.692	1.291
8	862.18	94.78	4.965	896.9	825.53	0.772	0.694
9	908.47	99.177	0.321	1230.58	898.83	101.787	100.961
10	1028.06	22.112	77.172	1230.58	910.4	101.751	100.774
11	1286.52	96.707	2.69	1334.74	1255.66	0.513	0.325
12	1379.1	98.72	0.657	1394.53	1365.6	0.119	0.042
13	1475.54	98.278	0.207	1479.4	1469.76	0.068	0.005
14	1523.76	98.689	0.827	1531.48	1512.19	0.082	0.037
15	1631.78	84.532	14.934	1697.36	1556.55	4.831	4.501
16	1751.36	98.935	0.774	1766.8	1737.86	0.085	0.048
17	1874.81	99.157	0.425	1888.31	1865.17	0.067	0.024
18	2372.44	95.034	4.001	2397.52	2353.16	0.529	0.352
19	2852.72	98.588	1.446	2879.72	2806.43	0.168	0.165
20	2926.01	96.877	2.224	2951.09	2879.72	0.467	0.262
21	3111.18	98.891	0.661	3145.9	3051.39	0.234	0.089
22	3450.65	68.488	0.838	3558.67	3437.15	18.421	0.496
23	3630.03	74.25	3.534	3645.46	3610.74	4.188	0.352

2. Hasil Metode FTIR sampel BT2

() SHIMADZU

No.	Peak	Intensity	Corr. Intensity	Base (H)	Base (L)	Area	Corr. Area
1	439.77	14.222	83.0067	532.35	343.33	82.5791	80.1888
2	547.78	97.6375	2.0255	561.29	534.28	0.1648	0.1253
3	582.5	96.3772	3.2085	605.65	561.29	0.3973	0.3161
4	632.65	90.1619	9.5227	651.94	605.65	1.083	1.0107
5	767.67	33.219	66.6585	815.89	653.87	36.9439	36.8946
6	823.6	96.9604	2.9653	837.11	815.89	0.0886	0.086
7	846.75	98.4813	0.8938	852.54	837.11	0.0506	0.0188
8	1022.27	6.3247	93.2935	1209.37	879.54	195.5986	195.0475
9	1278.81	95.0364	4.7698	1327.03	1240.23	0.7606	0.6855
10	1342.46	98.8583	0.7245	1352.1	1327.03	0.0948	0.0527
11	1421.54	98.5824	0.1301	1423.47	1406.11	0.0692	0.0046
12	1510.26	98.4548	0.9797	1521.84	1496.76	0.1266	0.0642
13	1548.84	98.2993	0.3704	1558.48	1546.91	0.0633	0.0112
14	1637.56	58.3724	40.9538	1730.15	1573.91	13.7687	13.2819
15	1751.36	98.6646	0.2833	1762.94	1747.51	0.0747	0.0105
16	1924.96	98.8499	0.5401	1936.53	1882.52	0.1425	0.0537
17	2154.49	98.8347	0.0293	2237.43	2148.7	0.3896	0.0076
18	2314.58	96.9186	1.7274	2333.87	2270.22	0.5325	0.2009
19	2762.06	98.1309	1.229	2825.72	2634.76	0.9564	0.4167
20	2852.72	97.297	1.9998	2885.51	2825.72	0.3777	0.1921
21	2924.09	95.7202	3.2778	2953.02	2885.51	0.6558	0.3679
22	3039.81	96.8591	2.8043	3109.25	2978.09	0.8064	0.616
23	3153.61	98.9936	0.6155	3184.48	3120.82	0.1674	0.0599
24	3562.52	42.5823	4.2437	3579.88	3205.69	78.9603	12.5416

3. Hasil Metode FTIR sampel BT3

SHIMADZU

No.	Peak	Intensity	Corr. Intensity	Base (H)	Base (L)	Area	Corr. Area
1	374.19	33.8631	3.8246	376.12	343.33	8.601	1.2448
2	391.55	26.946	5.746	410.84	376.12	18.285	1.379
3	414.7	31.1661	1.4698	503.42	412.77	25.6191	2.5619
4	543.93	69.7178	12.394	557.43	503.42	4.0553	1.2092
5	582.5	65.8592	19.2162	621.08	559.36	7.547	3.759
6	640.37	79.7192	19.6698	665.44	623.01	2.0989	1.9823
7	673.16	97.5015	1.4794	682.8	665.44	0.1185	0.039
8	736.81	74.5279	3.5258	744.52	688.59	4.5664	1.054
9	777.31	71.233	14.6933	813.96	746.45	7.5388	3.037
10	821.68	95.8747	2.9362	829.39	815.89	0.1411	0.0649
11	979.84	55.5421	44.014	1083.99	858.32	37.9639	37.5339
12	1161.15	76.2361	22.9783	1278.81	1085.92	12.0244	11.4638
13	1305.81	98.7446	1.1111	1325.1	1280.73	0.1006	0.0742
14	1487.12	99.1172	0.6307	1500.62	1463.97	0.0901	0.0576
15	1633.71	85.4525	13.869	1707	1560.41	5.0237	4.5887
16	1759.08	98.5894	0.599	1772.58	1745.58	0.1367	0.0411
17	1886.38	99.243	0.2527	1896.03	1870.95	0.0681	0.0172
18	2316.51	97.4738	1.6742	2337.72	2276	0.4037	0.208
19	2628.98	98.7913	1.0037	2827.64	2538.32	0.8617	0.6701
20	2854.65	98.7847	1.1365	2885.51	2827.64	0.14	0.119
21	2926.01	97.5648	2.1665	2978.09	2885.51	0.4425	0.3278
22	3068.75	99.3397	0.5003	3126.61	3016.67	0.1634	0.0877
23	3442.94	78,7827	1,3395	3460.3	3151.69	15,1449	1.0462

4. Hasil Metode FTIR sampel BT4

() SHIMADZU

No.	Peak	Intensity	Corr. Intensity	Base (H)	Base (L)	Area	Corr. Area
1	424.34	48.251	50.773	493.78	343.33	28.689	28.037
2	545.85	65.754	8.146	557.43	495.71	5.587	0.87
3	586.36	57.91	11.503	621.08	559.36	12.418	2.685
4	634.58	69.692	7.378	680.87	623.01	4.792	0.792
5	731.02	85.172	5.179	750.31	682.8	3.132	1.043
6	779.24	84.014	8.183	813.96	752.24	3.467	1.403
7	819.75	98.12	1.355	831.32	813.96	0.067	0.031
8	866.04	97.171	2.471	894.97	831.32	0.43	0.331
9	1024.2	46.884	31.669	1087.85	908.47	37.903	22.277
10	1109.07	66.473	5.161	1228.66	1089.78	14.46	2.82
11	1263.37	97.685	1.966	1301.95	1230.58	0.329	0.221
12	1340.53	98.501	1.094	1361.74	1301.95	0.198	0.098
13	1423.47	99.149	0.057	1429.25	1417.68	0.042	0.002
14	1485.19	99.023	0.228	1504.48	1479.4	0.073	0.008
15	1629.85	93.645	6.107	1697.36	1539.2	2.179	2.055
16	1749.44	98.417	1.103	1768.72	1730.15	0.172	0.092
17	1897.95	99.463	0.145	1913.39	1888.31	0.048	0.007
18	2370.51	96.024	2.375	2397.52	2353.16	0.483	0.205
19	2854.65	97.511	1.542	2879.72	2752.42	0.4	0.061
20	2924.09	95.387	3.677	2991.59	2879.72	1.047	0.617
21	3014.74	99.261	0.32	3120.82	2991.59	0.083	0.017
22	3423.65	84.948	1.088	3441.01	3120.82	9.072	-1.804

5. Hasil Metode FTIR pada sampel BT5

SHIMADZU

No.	Peak	Intensity	Corr. Intensity	Base (H)	Base (L)	Area	Corr. Area
1	383.83	54.181	19.65	405.05	343.33	10.121	3.481
2	424.34	57.056	17.156	457.13	406.98	8.448	2.808
3	482.2	82.565	16.774	526.57	459.06	2.807	2.643
4	543.93	91.891	7.556	557.43	526.57	0.575	0.506
5	582.5	70.586	29.355	611.43	557.43	4.231	4.223
6	638.44	79.86	20.128	661.58	613.36	2.346	2.337
7	667.37	98.498	1.763	675.09	661.58	0.019	0.033
8	790.81	63.02	37.286	819.75	675.09	14.062	14.199
9	856.39	96.759	2.901	883.4	831.32	0.419	0.341
10	1018.41	22.511	30.569	1074.35	885.33	76.464	32.059
11	1097.5	29.433	15.974	1193.94	1076.28	40.641	12.102
12	1257.59	95.199	4.588	1288.45	1230.58	0.512	0.454
13	1336.67	97.726	1.446	1367.53	1313.52	0.323	0.138
14	1442.75	98.354	0.944	1463.97	1431.18	0.148	0.065
15	1487.12	99.206	0.217	1500.62	1483.26	0.04	0.01
16	1529.55	98.947	0.427	1533.41	1516.05	0.032	0.011
17	1633.71	90.535	4.682	1654.92	1562.34	2.462	1.131
18	1664.57	93.868	0.293	1701.22	1662.64	0.6	-0.012
19	1726.29	98.778	0.581	1743.65	1716.65	0.092	0.034
20	1884.45	97.526	1.166	1924.96	1869.02	0.408	0.156
21	1938.46	99.282	0.163	1944.25	1924.96	0.053	0.009
22	2146.77	99.275	0.377	2227.78	2092.77	0.285	0.084
23	2353.16	96.625	2.107	2372.44	2337.72	0.337	0.151
24	2854.65	98.229	0.895	2881.65	2819.93	0.319	0.09
25	2924.09	97.052	2.035	2989.66	2881.65	0.748	0.336
-	9.96	99.449	0.02	3097.68	3068.75	0.067	0.001
DF	9.08	80.909	0.161	3448.72	3421.72	2.473	0.014
	9.38	83.287	0.769	3572.17	3529.73	3.253	0.152

6. Hasil metode FTIR pada sampel Jembatan Merah

🗄 SHIMADZU

No.	Peak	Intensity	Corr. Intensity	Base (H)	Base (L)	Area	Corr. Area
1	354.9	99.23	0.767	360.69	345.26	0.019	0.021
2	416.62	77.579	7.498	453.27	399.26	4.568	1.556
3	470.63	94.369	5.187	487.99	453.27	0.483	0.415
4	542	71.256	12.278	559.36	495.71	5.22	1.762
5	572.86	76.061	6.713	611.43	561.29	4.258	1.394
6	636.51	89.144	10.74	659.66	613.36	1.073	1.052
7	696.3	99.065	0.521	704.02	684.73	0.046	0.014
8	763.81	91.821	7.285	808.17	705.95	2.321	1.941
9	1001.06	52.903	47.447	1085.92	846.75	41.092	41.577
10	1155.36	89.425	10.141	1220.94	1087.85	3.777	3.525
11	1236.37	98.452	1.094	1259.52	1220.94	0.14	0.06
12	1288.45	98.221	1.225	1321.24	1259.52	0.277	0.129
13	1384.89	98.565	1.282	1398.39	1367.53	0.104	0.083
14	1444.68	98.334	1.173	1463.97	1431.18	0.138	0.08
15	1492.9	98.852	0.1	1498.69	1490.97	0.035	0.002
16	1529.55	98.762	0.67	1535.34	1517.98	0.057	0.021
17	1633.71	88.339	5.273	1654.92	1562.34	2.721	0.984
18	1666.5	91.836	0.798	1703.14	1662.64	0.773	0.011
19	1730.15	98.494	1.211	1745.58	1707	0.151	0.104
20	1759.08	98.881	0.893	1774.51	1745.58	0.091	0.064
21	1815.02	98.802	0.813	1830.45	1799.59	0.106	0.055
22	1859.38	98.975	0.656	1870.95	1845.88	0.083	0.042
23	1905.67	99.331	0.321	1923.03	1896.03	0.057	0.021
24	2160.27	99.868	0.014	2171.85	2140.99	0.016	0.001
25	2355.08	93.547	3.841	2387.87	2339.65	0.718	0.29
-	.39	99.716	0.05	2567.25	2490.1	0.07	0.004
DF	.72	99.172	0.601	2885.51	2831.5	0.105	0.057
	.09	98.563	1.114	2949.16	2885.51	0.203	0.125
S I	.24	99.461	0.377	3084.18	3032.1	0.071	0.035
APP 3	09	67 813	0 134	3508 52	3487.3	3 562	0.01

7. Hasil metode FTIR sampel batuan Kebun Lembanna

🕀 SHIMADZU

No.	Peak	Intensity	Corr. Intensity	Base (H)	Base (L)	Area	Corr. Area
1	370.33	51.893	32.042	405.05	347.19	10.873	4.651
2	416.62	59.494	6.099	472.56	406.98	8.886	1.306
3	574.79	58.125	41.83	665.44	474.49	25.689	25.635
4	696.3	98.97	0.85	715.59	665.44	0.152	0.131
5	729.09	98.47	1.085	758.02	715.59	0.136	0.055
6	833.25	99.3	0.329	842.89	821.68	0.052	0.017
7	970.19	39.272	60.451	1082.07	844.82	52.297	52.004
8	1145.72	86.978	12.818	1224.8	1083.99	4.404	4.28
9	1240.23	98.87	0.789	1255.66	1226.73	0.079	0.035
10	1286.52	97.598	1.861	1338.6	1255.66	0.444	0.248
11	1355.96	99.27	0.553	1369.46	1338.6	0.057	0.028
12	1440.83	96.75	2.119	1463.97	1396.46	0.585	0.298
13	1475.54	98.667	0.158	1506.41	1471.69	0.11	0.011
14	1525.69	99.24	0.631	1539.2	1506.41	0.062	0.047
15	1635.64	70.208	29.535	1745.58	1539.2	14.056	13.825
16	1757.15	99.344	0.465	1770.65	1747.51	0.046	0.027
17	1811.16	98.949	0.586	1828.52	1791.87	0.119	0.046
18	1880.6	99.332	0.258	1892.17	1867.09	0.06	0.016
19	1928.82	99.537	0.195	1942.32	1915.31	0.043	0.012
20	2100.48	99.708	0.08	2194.99	2059.98	0.143	0.023
21	2368.59	96.455	1.74	2397.52	2351.23	0.471	0.16
22	2534.46	99.07	0.921	2596.19	2449.6	0.272	0.262
23	2652.12	98.953	1.101	2715.77	2596.19	0.176	0.205
24	2814.14	98.335	0.812	2835.36	2715.77	0.318	0.066
25	2852.72	98.436	0.757	2885.51	2835.36	0.214	0.062
26	2024.09	98.012	1.598	2953.02	2885.51	0.292	0.179
DE	.61	99.632	0.118	3111.18	3076.46	0.041	0.008
	.45	39.281	60.782	3747.69	3113.11	146.831	146.791

8. Hasil metode FTIR sampel batuan 1.1 BWK

🕀 SHIMADZU

No.	Peak	Intensity	Corr. Intensity	Base (H)	Base (L)	Area	Corr. Area
1	349.12	93.4881	6.8574	356.83	341.4	0.2478	0.2706
2	424.34	54.0645	17.8988	487.99	393.48	15.7508	4.5131
3	545.85	66.7417	5.9392	555.5	489.92	5.8652	0.5886
4	574.79	63.5625	13.8262	615.29	557.43	8.1323	3.0382
5	636.51	85.4704	14.0865	659.66	617.22	1.4321	1.3523
6	677.01	95.0387	3.197	690.52	661.58	0.3815	0.1693
7	786.96	97.1542	2.4131	808.17	742.59	0.4784	0.3284
8	975.98	35.712	64.0827	1082.07	808.17	71.9647	71.7071
9	1153.43	79.3474	20.4032	1228.66	1083.99	8.2049	8.0458
10	1244.09	98.1386	1.3217	1267.23	1228.66	0.1887	0.0913
11	1288.45	97.7152	1.6303	1340.53	1267.23	0.3525	0.1723
12	1357.89	99.1563	0.5831	1367.53	1340.53	0.0632	0.0302
13	1386.82	97.913	0.9109	1396.46	1367.53	0.1763	0.0579
14	1444.68	93.5902	4.6347	1481.33	1396.46	1.6062	0.9521
15	1535.34	96.7625	0.3313	1543.05	1533.41	0.1046	-0.0013
16	1635.64	80.2	19.4075	1714.72	1560.41	7.2165	6.9536
17	1759.08	99.3023	0.7385	1772.58	1751.36	0.0201	0.0287
18	1882.52	99.352	0.328	1890.24	1869.02	0.0389	0.0138
19	2081.19	99.4978	0.025	2198.85	2075.41	0.1936	-0.0016
20	2358.94	96.4332	1.9935	2395.59	2337.72	0.5811	0.2735
21	2642.48	98.8976	0.5285	2709.99	2613.55	0.2238	0.0675
22	2789.07	98.7989	1.2067	2829.57	2709.99	0.2005	0.2199
-	.65	98.3985	1.3268	2881.65	2829.57	0.1821	0.118
DF	.09	96.7574	2.4525	2951.09	2885.51	0.4869	0.2728
2	3.17	99.5422	0.2214	3043.67	2985.81	0.064	0.0172
SK.	66	46.9474	1.3803	3487.3	3097.68	72.8782	9.2852

9. Hasil metode FTIR sampel batuan Pos 1 BWK

🕀 SHIMADZU

	Peak	Intensity	Corr. Intensity	Base (H)	Base (L)	Area	Corr. Area
1	422.41	20.0143	79.6922	491.85	343.33	59.8813	59.6682
2	547.78	44.5797	9.9881	557.43	493.78	10.5733	1.2843
3	576.72	41.5179	19.6998	619.15	559.36	16.1022	5.4855
4	638.44	74.3866	25.539	665.44	621.08	2.7156	2.7034
5	675.09	96.96	2.908	684.73	665.44	0.0914	0.0804
6	717.52	86.105	13.6128	756.1	684.73	2.4775	2.3896
7	786.96	83.7546	15.9518	808.17	758.02	2.1204	2.0573
8	981.77	17.4175	82.488	1083.99	825.53	114.4875	114.4031
9	1147.65	59.0853	40.6036	1246.02	1085.92	18.8239	18.7041
10	1274.95	99.4821	0.7829	1292.31	1263.37	-0.0057	0.0313
11	1315.45	96.5062	1.1491	1323.17	1292.31	0.2092	0.0159
12	1361.74	94.0014	4.0273	1398.39	1325.1	1.2504	0.6027
13	1442.75	98.287	0.9799	1460.11	1421.54	0.206	0.0796
14	1529.55	97.9564	0.2956	1533.41	1516.05	0.132	0.0116
15	1635.64	70.0438	29.395	1745.58	1560.41	12.9336	12.4711
16	1755.22	99.1032	0.4649	1772.58	1747.51	0.0636	0.0306
17	1882.52	98.7117	0.2879	1896.03	1869.02	0.1372	0.0193
18	2316.51	96.8002	1.9114	2337.72	2274.07	0.539	0.2351
19	2553.75	99.0083	0.259	2580.76	2434.17	0.3895	0.0376
20	2652.12	98.002	1.3821	2731.2	2580.76	0.6885	0.2925
21	2852.72	98.3135	0.9972	2883.58	2833.43	0.2231	0.0876
00	1.09	97.2946	1.9884	2951.09	2883.58	0.4147	0.2232
PDF	3.44	31.6457	68.1527	3749.62	3088.03	189.2468	188.3592

10. Hasil metode FTIR sampel batuan Jalan Lembanna

3 SHIMADZU

No.	Peak	Intensity	Corr. Intensity	Base (H)	Base (L)	Area	Corr. Area
1	378.05	29.2134	26.1999	391.55	343.33	16.0411	6.3357
2	408.91	30.6274	18.6821	478.35	393.48	28.5094	10.1886
3	570.93	22.1542	77.9864	727.16	480.28	83.9388	83.8918
4	740.67	98.0451	1.4677	761.88	729.09	0.1334	0.0746
5	800.46	91.5964	7.8733	815.89	769.6	0.6003	0.5006
6	962.48	27.2582	72.557	1029.99	815.89	61.3339	61.054
7	1049.28	95.3454	4.4947	1076.28	1031.92	0.536	0.489
8	1149.57	69.947	30.1098	1232.51	1083.99	11.9622	12.0154
9	1261.45	93.9457	2.9484	1276.88	1234.44	0.6193	0.1708
10	1286.52	94.4887	1.5541	1303.88	1276.88	0.4716	0.0511
11	1336.67	96.71	1.8343	1357.89	1323.17	0.2982	0.1025
12	1382.96	98.622	0.8656	1406.11	1357.89	0.197	0.0893
13	1456.26	97.6548	1.2589	1487.12	1440.83	0.2624	0.1126
14	1510.26	98.811	1.1486	1531.48	1498.69	0.0658	0.0948
15	1639.49	44.3979	55.9918	1759.08	1531.48	28.6996	29.0526
16	1799.59	98.5723	0.2076	1809.23	1782.23	0.1523	0.0125
17	1869.02	99.2913	0.3081	1880.6	1857.45	0.055	0.0146
18	1921.1	98.842	0.3518	1936.53	1901.81	0.1453	0.0256
19	2090.84	98.6524	0.061	2104.34	2075.41	0.1658	0.0033
20	2364.73	94.8566	2.7545	2397.52	2335.8	0.9817	0.3595
21	2563.4	98.7763	0.8036	2596.19	2447.67	0.4804	0.1742
22	2652.12	97.8807	1.8549	2708.06	2596.19	0.4323	0.3037
23	2808.36	94.6117	3.059	2833.43	2717.7	1.1814	0.4313
DE	.79	94.9214	3.1067	2881.65	2833.43	0.6323	0.2924
DF	.09	92.554	6.2814	2951.09	2881.65	1.0839	0.7852
22	.1	99.7669	0.317	3076.46	3041.74	0.0116	0.0243
	.66	8.7185	3.8385	3772.76	3493.09	160.2456	19.1986

Optimized using trial version www.balesio.com

11.Hasil metode FTIR sampel batuan Takapala

() SHIMADZU

No.	Peak	Intensity	Corr. Intensity	Base (H)	Base (L)	Area	Corr. Area
1	395.41	38.7774	4.1539	399.26	343.33	15.1481	3.8452
2	426.27	36.3155	18.7027	495.71	401.19	25.9081	6.1437
3	543.93	58.4832	13.3716	557.43	497.63	7.4887	1.8114
4	578.64	55.2637	20.1063	617.22	559.36	10.2439	4.2336
5	638.44	75.599	24.7183	677.01	619.15	2.9098	2.964
6	773.46	80.1204	19.5368	812.03	688.59	7.6721	7.4788
7	819.75	95.7774	4.2844	827.46	812.03	0.1125	0.1166
8	850.61	93.084	6.3745	858.32	827.46	0.532	0.5029
9	1002.98	54.4695	44.6077	1082.07	860.25	35.5519	34.4217
10	1149.57	75.3379	24.597	1226.73	1083.99	9.6004	9.552
11	1251.8	99.0263	0.7505	1273.02	1242.16	0.0605	0.0344
12	1319.31	98.6803	1.117	1344.38	1292.31	0.1472	0.1039
13	1442.75	98.4376	0.9571	1460.11	1421.54	0.1803	0.0775
14	1487.12	98.2905	0.6359	1498.69	1460.11	0.2109	0.0553
15	1529.55	98.176	0.7175	1543.05	1516.05	0.1686	0.0381
16	1633.71	90.9998	4.2475	1654.92	1562.34	2.3685	0.9819
17	1660.71	94.0153	0.8169	1705.07	1654.92	0.674	0.0522
18	1728.22	99.1119	0.9703	1743.65	1705.07	0.0596	0.0811
19	1759.08	99.0564	0.7615	1772.58	1743.65	0.0749	0.0526
20	1859.38	99.3114	0.4651	1870.95	1843.95	0.0574	0.0298
21	2160.27	99.318	0.0285	2179.56	2115.91	0.1809	0.0034
DE	3.16	96.1164	2.0264	2397.52	2337.72	0.5298	0.1717
DF	2.83	98.9904	0.7347	2671.41	2557.61	0.3352	0.1718
Z	1.65	98.4266	0.6405	2879.72	2823.79	0.2839	0.062
	1.09	97.4458	1.1958	2953.02	2879.72	0.5625	0.1395
an	2.81	98.6984	0.3785	3120.82	2983.88	0.4289	0.0621
	2.94	79.4975	0.088	3446.79	3421.72	2.4727	0.007

Tabel Gugus Fungsi Dominan

1. Sampel batuan BT1

3 SHIMADZU

(Grafik transmisi terhadap bilangan gelombang FTIR sampel BT1)

Daerah serapan senyawa (cm ⁻¹)	Transmisi (%)	Gugus Fungsi	Jenis Mineral
1028,06	22,112	Si–O–(Mg,Al)	Kaolinite
426,27	37,742	Si–O	Feldspars
578,64	64,693	Si–O, Si–O–Al	Anhydrite
3450,65	68.488	Н–О–Н	Kaolinite

(Daerah	serapan	senyawa	sampel	BT1)
---------	---------	---------	--------	--------------

Berdasarkan hasil identifikasi spektrum gelombang dari sampel batuan BT1 dengan titik koordinat 5°18'47,26" LS - 125 °54'41,6" BT, didapatkan hasil:

> Bilangan gelombang 1028,06 cm⁻¹ merupakan jenis mineral Kaolinite dengan gugus fungsi Si–O–(Mg,Al).

- Bilangan gelombang 426,27 cm⁻¹ merupakan jenis mineral *Feldspars* dengan gugus fungsi Si–O.
- Bilangan gelombang 578,64 cm⁻¹ merupakan jenis mineral Anhydrite dengan gugus fungsi Si–O–Al.
- Bilangan gelombang 3450,65 cm⁻¹ merupakan jenis mineral *Kaolinite* dengan gugus fungsi H–O–H.
- 2. Sampel batuan BT2

(Grafik transmisi terhadap bilangan gelombang FTIR sampel BT2)

(Daerah serapan senyawa sampel BT2)

	Daerah serapan senyawa (cm ⁻¹)	Transmisi (%) Gugus Fungsi		Jenis Mineral	
	1022,27	6,3247	Si–O–Si, Si–O	Kaolinite	
	439,77	14,222	Si-O	Feldspars	
	767,67	33,219	Si–O, Si–O–A l	Quartz	
DF	52	42,5823	Н–О–Н	Kaolinite	
P)	56	58.3724	Н–О–Н	Aromatic C=C	

Berdasarkan hasil identifikasi spektrum gelombang dari sampel batuan BT2 dengan titik koordinat 5°18'31,64" LS - 125 °54'41,52" BT, didapatkan hasil:

- Bilangan gelombang 1022,27 cm⁻¹ merupakan jenis mineral *Kaolinite* dengan gugus fungsi Si–O–Si, Si–O.
- Bilangan gelombang 439,77 cm⁻¹ merupakan jenis mineral Feldspars dengan gugus fungsi Si–O.
- Bilangan gelombang 767,67 cm⁻¹ merupakan jenis mineral *Quartz* dengan gugus fungsi Si–O, Si–O–Al.
- Bilangan gelombang 3562,52 cm⁻¹ merupakan jenis mineral *Kaolinite* dengan gugus fungsi H–O–H.
- Bilangan gelombang 1637,56cm⁻¹ merupakan jenis mineral Aromatic C=C dengan gugus fungsi H–O–H.
- 3. Sampel batuan BT3

ספ

(Daerah serapan senyawa sampel BT3)

Daerah serapan senyawa (cm ⁻¹)	Transmisi (%)	Gugus Fungsi	Jenis Mineral
391,55	26,946	Si-O	Feldspars
979,84	55,5421	Si-O-(Mg,Al)	Kaolinite
582,50	65.8592	Si-O, Si-O-Al	Anhydrite
543,93	69.7178	Si–O, Si–O–Fe	Kaolinite
777,31	71.233	Si–O, Si–O–Al	Quartz

Berdasarkan hasil identifikasi spektrum gelombang dari sampel batuan BT3 dengan titik koordinat 5°18'27,48" LS - 125 °54'20,35" BT, didapatkan hasil:

- Bilangan gelombang 391,55 cm⁻¹ merupakan jenis mineral *Feldspars* dengan gugus fungsi Si–O.
- Bilangan gelombang 979,84 cm⁻¹ merupakan jenis mineral *Kaolinite* dengan gugus fungsi Si–O–(Mg,Al).
- Bilangan gelombang 582,50 cm⁻¹ merupakan jenis mineral Anhydrite dengan gugus fungsi Si–O, Si–O–Al.
- Bilangan gelombang 1161,15 cm⁻¹ merupakan jenis mineral *Quartz* dengan gugus fungsi Si–O–(Mg,Al).
- Bilangan gelombang 543,93 cm⁻¹ merupakan jenis mineral *Kaolinite* dengan gugus fungsi Si–O, Si–O–Fe.

4. Sampel batuan BT4

SHIMADZU

(Grafik transmisi terhadap bilangan gelombang FTIR sampel BT4)

Daerah serapan senyawa (cm ⁻¹)	Transmisi (%)	Gugus Fungsi	Jenis Mineral
1024,20	46.884	Si–O– (Mg, Al)	Kaolinite
424,34	48.251	Si–O, Si–O–Fe	Feldspars
586,36	57.91	Si–O, Si–O–Al	Anhydrite
545,85	65.754	Si–O, Si–O–Fe	Kaolinite
634,58	69.692	Si-O, Si-O-Al	Feldspars

(Daerah serapan senyawa sampel BT4)

Berdasarkan hasil identifikasi spektrum gelombang dari sampel batuan BT4 dengan titik koordinat 5°18'27,93" LS - 125 °54'2,50" BT, didapatkan hasil:

> Bilangan gelombang 1024,20 cm⁻¹ merupakan jenis mineral Kaolinite dengan gugus fungsi Si–O– (Mg, Al).

- Bilangan gelombang 424,34 cm⁻¹ merupakan jenis mineral *Feldspars* dengan gugus fungsi Si–O, Si–O–Fe.
- Bilangan gelombang 586,36 cm⁻¹ merupakan jenis mineral Anhydrite dengan gugus fungsi Si–O, Si–O–Al.
- Bilangan gelombang 545,85 cm⁻¹ merupakan jenis mineral Kaolinite dengan gugus fungsi Si–O, Si–O–Fe.
- 5. Sampel batuan BT5

() SHIMADZU

(Grafik transmisi terhadap bilangan gelombang FTIR sampel BT5)

Daerah serapan senyawa (cm ⁻¹)	Transmisi (%)	Gugus Fungsi	Jenis Mineral
1018,41	22.511	Si–O– (Mg, Al)	Kaolinite
383,81	54.181	Si–O, Si–O–Al	Feldspars
424,34	57.056	Si–O, Si–O–Al	Feldspars
PF 1	63.02	Si–O, Si–O–Fe	Quartz.
0	70.586	Si–O, Si–O–Al	Anhydrite

(Daerah serapan senyawa sampel batuan BT5)

Berdasarkan hasil identifikasi spektrum gelombang dari sampel batuan BT5 dengan titik koordinat 5°18'20,01" LS - 125 °53'57,37" BT, didapatkan hasil:

- Bilangan gelombang 1018,41 cm⁻¹ merupakan jenis mineral Kaolinite dengan gugus fungsi Si–O– (Mg, Al).
- Bilangan gelombang 383,81 cm⁻¹ merupakan jenis mineral *Feldspars* dengan gugus fungsi Si–O, Si–O–Al.
- Bilangan gelombang 424,34 cm⁻¹ merupakan jenis mineral *Feldspars* dengan gugus fungsi Si–O, Si–O–Al.
- Bilangan gelombang 790,81 cm⁻¹ merupakan jenis mineral *Quartz* dengan gugus fungsi Si–O, Si–O–Fe.
- Bilangan gelombang 582,50 cm⁻¹ merupakan jenis mineral Anhydrite dengan gugus fungsi Si–O, Si–O–Al.
- 6. Sampel batuan Jembatan Merah

www.balesio.com

(Grafik transmisi terhadap bilangan gelombang FTIR sampel batuan Jembatan Merah)

Daerah serapan senyawa (cm ⁻¹)	Transmisi (%)	Gugus Fungsi	Jenis Mineral
1001,06	52.903	Si–O– (Mg, Al)	Kaolinite
3483,09	54.181	Н–О–Н	Kaolinite
542,00	63.02	Si–O	Kaolinite

(Daerah serapan senyawa sampel batuan Jembatan Merah)

Berdasarkan hasil identifikasi spektrum gelombang dari sampel batuan BT5 dengan titik koordinat 5°15'2,51" LS - 125 °54'19,46" BT, didapatkan hasil:

- Bilangan gelombang 1001,06 cm⁻¹ merupakan jenis mineral Kaolinite dengan gugus fungsi Si–O–(Mg, Al).
- Bilangan gelombang 3493,09 cm⁻¹ merupakan jenis mineral *Kaolinite* dengan gugus fungsi H–O–H.
- Bilangan gelombang 542,00 cm⁻¹ merupakan jenis mineral *Kaolinite* dengan gugus fungsi Si–O.
- 7. Sampel batuan Kebun Lembanna

🕀 SHIMADZU

(Grafik transmisi terhadap bilangan gelombang FTIR sampel batuan Kebun Lembanna)

Daerah serapan senyawa (cm ⁻¹)	Transmisi (%)	Gugus Fungsi	Jenis Mineral
3510,45	39.281	Н–О–Н	Kaolinite
970,19	39.272	Si–O– (Mg, Al)	Kaolinite
574,79	58.125	Si–O, Si–O–Al	Metakaolinite
416,62	59.494	Si–O, Si–O–Fe	Feldspars
1635,64	70.208	Н–О–Н	Aromatic C=C

(Daerah serapan senyawa sampel batuan Kebun Lembanna)

Berdasarkan hasil identifikasi spektrum gelombang dari sampel batuan Kebun Lembanna dengan titik koordinat 5°15'14,99" LS - 125 °53'20,68" BT, didapatkan hasil:

- Bilangan gelombang 3510,45 cm⁻¹ merupakan jenis mineral *Kaolinite* dengan gugus fungsi H–O–H.
- Bilangan gelombang 970,19 cm⁻¹ merupakan jenis mineral *Kaolinite* dengan gugus fungsi Si–O– (Mg, Al).

- Bilangan gelombang 574,79 cm⁻¹ merupakan jenis mineral Metakaolinite dengan gugus fungsi Si–O, Si–O–Al.
- Bilangan gelombang 1635,64 cm⁻¹ merupakan jenis mineral Aromatic C=C dengan gugus fungsi H–O–H.
- Bilangan gelombang 416,62 cm⁻¹ merupakan jenis mineral Feldspars dengan gugus fungsi Si–O, Si–O–Fe.

trial version www.balesio.com

8. Sampel batuan Pos 1.1 BWK

(Grafik transmisi terhadap bilangan gelombang FTIR sampel batuan Pos 1.1 BWK)

(Daerah serapan senyawa sampel batuan Pos 1.1 BWK)

Daerah serapan senyawa (cm ⁻¹)	Transmisi (%)	Gugus Fungsi	Jenis Mineral
975,98	35.712	Si–O– (Mg, Al)	Kaolinite
3477,66	46.9474	Н–О–Н	Kaolinite
424,34	54.0645	Si–O, Si–O–Fe	Feldspars
574,79	63.5625	Si–O, Si–O–Al	Metakaolinite
545,85	66.7417	Si–O, Si–O–Fe	Kaolinite

Berdasarkan hasil identifikasi spektrum gelombang dari sampel batuan Pos 1.1 BWK dengan titik koordinat 5°16'1,62" LS - 125 °53'43,94" BT, didapatkan hasil:

> Bilangan gelombang 975,98 m⁻¹ merupakan jenis mineral *Kaolinite* dengan gugus fungsi Si–O– (Mg, Al).

- Bilangan gelombang 3477,66 cm⁻¹ merupakan jenis mineral *Kaolinite* dengan gugus fungsi H–O–H.
- Bilangan gelombang 424,34 cm⁻¹ merupakan jenis mineral *Feldspars* dengan gugus fungsi Si–O, Si–O–Fe.
- Bilangan gelombang 574,79 cm⁻¹ merupakan jenis mineral Metakaolinite dengan gugus fungsi Si–O, Si–O–Al.
- Bilangan gelombang 545,85 cm⁻¹ merupakan jenis mineral Kaolinite dengan gugus fungsi Si–O, Si–O–Fe.
- 9. Sampel batuan Pos 1 BWK

(Grafik transmisi terhadap bilangan gelombang FTIR sampel batuan Pos 1 BWK)

	Daerah serapan senyawa (cm ⁻¹)	Transmisi (%)	Gugus Fungsi	Jenis Mineral
PDI	7	17.4175	Si–O– (Mg, Al)	Kaolinite
	1	20.0143	Si–O, Si–O–Fe	Feldspars
	44	31.6457	Н–О–Н	Kaolinite

(Daerah serapan senyawa sampel batuan Pos 1 BWK)

576,72	41.5179	Si–O, Si–O–Fe	Kaolinite
1635,64	70.0438	Н–О–Н	Aromatic C=C

Berdasarkan hasil identifikasi spektrum gelombang dari sampel batuan Pos 1 Bawakaraeng dengan titik koordinat 5°16'1,62" LS - 125 °53'43,94" BT, didapatkan hasil:

- Bilangan gelombang 981,77 m⁻¹ merupakan jenis mineral *Kaolinite* dengan gugus fungsi Si–O– (Mg, Al).
- Bilangan gelombang 424,41 cm⁻¹ merupakan jenis mineral Feldspars dengan gugus fungsi Si–O, Si–O–Fe.
- Bilangan gelombang 3483,44 cm⁻¹ merupakan jenis mineral *Kaolinite* dengan gugus fungsi H–O–H.
- Bilangan gelombang 576,72 cm⁻¹ merupakan jenis mineral *Kaolinite* dengan gugus fungsi Si–O, Si–O–Fe.
- Bilangan gelombang 1635,64 cm⁻¹ merupakan jenis mineral Aromatic C=C dengan gugus fungsi H–O–H.

10. Sampel batuan Jalan Lembanna

() SHIMADZU

(Grafik transmisi terhadap bilangan gelombang FTIR sampel batuan Jalan Lembanna)

(Daerah serapan senyawa sampel batuan Jalan Lembanna)

Daerah serapan senyawa (cm ⁻¹)	Transmisi (%)	Gugus Fungsi	Jenis Mineral
3504,66	8.7185	Н–О–Н	Kaolinite
570,93	22.1542	Si–O, Si–O–Fe	Metakaolinite
962,48	27.2582	Si–O– (Mg, Al)	Kaolinite
408,91	30.6274	Si–O, Si–O–Fe	Feldspars
1639,49	44.3979	Si–O– (Mg, Al)	Aromatic $C=C$
1149,57	69.947	Si–O– (Mg, Al)	Anhydrite

Berdasarkan hasil identifikasi spektrum gelombang dari sampel batuan Jalan Lembanna dengan titik koordinat 5°15'2,24" LS - 125 °54'15,27" BT,

PDF in hasil:

- Bilangan gelombang 570,93 cm⁻¹ merupakan jenis mineral Metakaolinite dengan gugus fungsi Si–O, Si–O–Fe.
- Bilangan gelombang 962,48 cm⁻¹ merupakan jenis mineral *Kaolinite* dengan gugus fungsi Si–O– (Mg, Al).
- Bilangan gelombang 408,91 cm⁻¹ merupakan jenis mineral Feldspars dengan gugus fungsi Si–O, Si–O–Fe.
- Bilangan gelombang 1639,49 cm⁻¹ merupakan jenis mineral
 Aromatic C=C dengan gugus fungsi Si–O– (Mg, Al).
- Bilangan gelombang 1149,57 cm⁻¹ merupakan jenis mineral *Anhydrite* dengan gugus fungsi Si–O– (Mg, Al).
- 11. Sampel batuan Takapala

() SHIMADZU

(Grafik transmisi terhadap bilangan gelombang FTIR sampel batuan Takapala)

Daerah serapan senyawa (cm ⁻¹)	Transmisi (%)	Gugus Fungsi	Jenis Mineral
426,27	36.3155	Si–O, Si–O–Fe	Feldspars
578,64	55.2637	Si–O, Si–O–Fe	Anhydrite
1002,98	54.4695	Si–O– (Mg, Al)	Kaolinite
638,44	75.599	Si–O, Si–O–Al	Feldspars

(Daerah serapan senyawa sampel batuan Takapala)

Berdasarkan hasil identifikasi spektrum gelombang dari sampel batuan Takapala dengan titik koordinat 5°16'32,56" LS - 125 °51'25,95" BT, didapatkan hasil:

- Bilangan gelombang 426,27 cm⁻¹ merupakan jenis mineral Feldspars dengan gugus fungsi Si–O, Si–O–Fe.
- Bilangan gelombang 578,64 cm⁻¹ merupakan jenis mineral Anhydrite dengan gugus fungsi Si–O, Si–O–Fe.
- Bilangan gelombang 1002,98 cm⁻¹ merupakan jenis mineral Kaolinite dengan gugus fungsi Si-O- (Mg, Al).
- Bilangan gelombang 638,44 cm⁻¹ merupakan jenis mineral Feldspars dengan gugus fungsi Si–O, Si–O–Al.

TABEL GUGUS FUNGSI DOMINAN

Sampel	Nilai Puncak Grafik FTIR				
	Daerah serapan senyawa (cm ⁻¹)	Transmisi (%)	Gugus Fungsi	Jenis Mineral	
BT1	1028,06	22,112	Si–O–(Mg,Al)	Kaolinite	
BT2	1022,27	6,3247	Si–O–Si, Si–O	Kaolinite	
BT3	391,55	26,946	Si–O	Feldspars	
BT4	1024,20	46.884	Si–O– (Mg, Al)	Kaolinite	
BT5	1018,41	22.511	Si–O– (Mg, Al)	Kaolinite	
Jembatan Merah	1001,06	52.903	Si–O– (Mg, Al)	Kaolinite	
Kebun Lembanna	970,19	39.272	Si–O– (Mg, Al)	Kaolinite	
POS 1.1 Bawakaraeng	975,98	35.712	Si–O– (Mg, Al)	Kaolinite	
POS 1 Bawakaraeng	981,77	17.4175	Si–O– (Mg, Al)	Kaolinite	
Jalan Lembanna	3504,66	8.7185	Н–О–Н	Kaolinite	
Takapala	426,27	36.3155	Si–O, Si–O–Fe	Feldspars	

