#### **DAFTAR PUSTKA**

- M. S. Nogueira, "Biophotonic telemedicine for disease diagnosis and monitoring during pandemics: Overcoming COVID-19 and shaping the future of healthcare," *Photodiagnosis Photodyn Ther*, vol. 31, p. 101836, Sep. 2020, doi: 10.1016/j.pdpdt.2020.101836.
- [2] T. Pan, D. Lu, H. Xin, and B. Li, "Biophotonic probes for bio-detection and imaging," *Light: Science and Applications*, vol. 10, no. 1. Springer Nature, Dec. 01, 2021. doi: 10.1038/s41377-021-00561-2.
- [3] G. Kassab *et al.*, "Safety and delivery efficiency of a photodynamic treatment of the lungs using indocyanine green and extracorporeal near infrared illumination," *J Biophotonics*, vol. 13, no. 10, Oct. 2020, doi: 10.1002/jbio.202000176.
- [4] S. D. Astuty, Y. Handayani, R. Abdullah, St. Hajar, and P. M. Tabaika, "Effect Of Energy Radiant Laser On Photoantimicrobial To Degradation Staphylococcus Epidermidis Biofilm Cells Mediated Sensitizer Of Nano Silver-Chlorophyll Jatropha Leaf," *Indonesian Physical Review*, vol. 6, no. 1, pp. 132–145, Jan. 2023, doi: 10.29303/ipr.v6i1.214.
- [5] D. de C. R. Picco, L. L. R. Cavalcante, R. L. B. Trevisan, A. E. Souza-Gabriel, M. C. Borsatto, and S. A. M. Corona, "Effect of curcumin-mediated photodynamic therapy on Streptococcus mutans and Candida albicans: A systematic review of in vitro studies," *Photodiagnosis Photodyn Ther*, vol. 27, pp. 455–461, Sep. 2019, doi: 10.1016/j.pdpdt.2019.07.010.
- [6] B. Pucelik and J. M. Dąbrowski, "Photodynamic inactivation (PDI) as a promising alternative to current pharmaceuticals for the treatment of resistant microorganisms," 2022, pp. 65–108. doi: 10.1016/bs.adioch.2021.12.003.
- [7] L. Sheng, X. Li, and L. Wang, "Photodynamic inactivation in food systems: A review of its application, mechanisms, and future perspective," *Trends Food Sci Technol*, vol. 124, pp. 167– 181, Jun. 2022, doi: 10.1016/j.tifs.2022.04.001.
- [8] M. Gallardo-Villagrán, D. Y. Leger, B. Liagre, and B. Therrien, "Photosensitizers Used in the Photodynamic Therapy of Rheumatoid Arthritis," *Int J Mol Sci*, vol. 20, no. 13, p. 3339, Jul. 2019, doi: 10.3390/ijms20133339.
- [9] T. Kiesslich, A. Gollmer, T. Maisch, M. Berneburg, and K. Plaetzer, "A Comprehensive Tutorial on *In Vitro* Characterization of New Photosensitizers for Photodynamic Antitumor Therapy and Photodynamic Inactivation of Microorganisms," *Biomed Res Int*, vol. 2013, pp. 1–17, 2013, doi: 10.1155/2013/840417.
- [10] J. A. Willis *et al.*, "Photodynamic viral inactivation: Recent advances and potential applications," *Appl Phys Rev*, vol. 8, no. 2, Jun. 2021, doi: 10.1063/5.0044713.
- [11] M. C. S. Vallejo *et al.*, "An Insight into the Role of Non-Porphyrinoid Photosensitizers for Skin Wound Healing," *Int J Mol Sci*, vol. 22, no. 1, p. 234, Dec. 2020, doi: 10.3390/ijms22010234.

- [12] A. Escudero, C. Carrillo-Carrión, M. C. Castillejos, E. Romero-Ben, C. Rosales-Barrios, and N. Khiar, "Photodynamic therapy: photosensitizers and nanostructures," *Mater Chem Front*, vol. 5, no. 10, pp. 3788–3812, 2021, doi: 10.1039/D0QM00922A.
- [13] J. Shen *et al.*, "In Vitro Effect of Toluidine Blue Antimicrobial Photodynamic Chemotherapy on *Staphylococcus epidermidis* and *Staphylococcus aureus* Isolated from Ocular Surface Infection," *Transl Vis Sci Technol*, vol. 8, no. 3, p. 45, Jun. 2019, doi: 10.1167/tvst.8.3.45.
- [14] D. R. 2, S. A. 3, A. T. 4, A. B. Jaber Ghorbani 1, "Photosensitizers in antibacterial photodynamic therapy: an overview," *Laser Ther*, vol. 27, no. 4, pp. 293–302, Dec. 2018, doi: 10.5978/islsm.27\_18-RA-01.
- [15] T.-O. Peulen and K. J. Wilkinson, "Diffusion of Nanoparticles in a Biofilm," *Environ Sci Technol*, vol. 45, no. 8, pp. 3367–3373, Apr. 2011, doi: 10.1021/es103450g.
- [16] S. D. Astuti *et al.*, "The antifungal agent of silver nanoparticles activated by diode laser as light source to reduce C. albicans biofilms: an in vitro study," *Lasers Med Sci*, vol. 34, no. 5, pp. 929–937, Jul. 2019, doi: 10.1007/s10103-018-2677-4.
- [17] A. Gibała *et al.*, "Antibacterial and Antifungal Properties of Silver Nanoparticles—Effect of a Surface-Stabilizing Agent," *Biomolecules*, vol. 11, no. 10, p. 1481, Oct. 2021, doi: 10.3390/biom11101481.
- [18] M. Piksa, C. Lian, I. C. Samuel, K. J. Pawlik, I. D. W. Samuel, and K. Matczyszyn, "The role of the light source in antimicrobial photodynamic therapy," *Chem Soc Rev*, vol. 52, no. 5, pp. 1697–1722, 2023, doi: 10.1039/D0CS01051K.
- [19] N. Rasiukevičiūtė *et al.*, "The Effect of Monochromatic LED Light Wavelengths and Photoperiods on Botrytis cinerea," *Journal of Fungi*, vol. 7, no. 11, p. 970, Nov. 2021, doi: 10.3390/jof7110970.
- [20] S. D. Astuty, Suhariningsih, A. Baktir, and S. D. Astuti, "The efficacy of photodynamic inactivation of the diode laser in inactivation of the Candida albicans biofilms with exogenous photosensitizer of papaya leaf chlorophyll," *J Lasers Med Sci*, vol. 10, no. 3, pp. 215–224, 2019, doi: 10.15171/jlms.2019.35.
- [21] A. Mirfasihi, B. Malek Afzali, H. Ebrahimi Zadeh, K. Sanjari, and M. Mir, "Effect of a Combination of Photodynamic Therapy and Chitosan on *Streptococcus mutans* (An In Vitro Study)," *J Lasers Med Sci*, vol. 11, no. 4, pp. 405–410, Oct. 2020, doi: 10.34172/jlms.2020.64.
- [22] Z. Liu *et al.*, "Photodynamic immunotherapy of cancers based on nanotechnology: recent advances and future challenges," *J Nanobiotechnology*, vol. 19, no. 1, p. 160, Dec. 2021, doi: 10.1186/s12951-021-00903-7.
- [23] S. Kwiatkowski *et al.*, "Photodynamic therapy mechanisms, photosensitizers and combinations," *Biomedicine & Pharmacotherapy*, vol. 106, pp. 1098–1107, Oct. 2018, doi: 10.1016/j.biopha.2018.07.049.

- [24] J. H. Correia, J. A. Rodrigues, S. Pimenta, T. Dong, and Z. Yang, "Photodynamic Therapy Review: Principles, Photosensitizers, Applications, and Future Directions," *Pharmaceutics*, vol. 13, no. 9, p. 1332, Aug. 2021, doi: 10.3390/pharmaceutics13091332.
- [25] M. M. Kim and A. Darafsheh, "Light Sources and Dosimetry Techniques for Photodynamic Therapy," *Photochem Photobiol*, vol. 96, no. 2, pp. 280–294, Mar. 2020, doi: 10.1111/php.13219.
- [26] D. L. Sai, J. Lee, D. L. Nguyen, and Y.-P. Kim, "Tailoring photosensitive ROS for advanced photodynamic therapy," *Exp Mol Med*, vol. 53, no. 4, pp. 495–504, Apr. 2021, doi: 10.1038/s12276-021-00599-7.
- [27] A. Baptista, C. P. Sabino, S. C. Núñez, W. Miyakawa, A. A. Martin, and M. S. Ribeiro, "Photodynamic damage predominates on different targets depending on cell growth phase of Candida albicans," *J Photochem Photobiol B*, vol. 177, pp. 76–84, Dec. 2017, doi: 10.1016/j.jphotobiol.2017.10.013.
- [28] L. Misba, S. Zaidi, and A. U. Khan, "Efficacy of photodynamic therapy against Streptococcus mutans biofilm: Role of singlet oxygen," *J Photochem Photobiol B*, vol. 183, pp. 16–21, Jun. 2018, doi: 10.1016/j.jphotobiol.2018.04.024.
- [29] J. Zimmermann, A. Zeug, and B. Röder, "A generalization of the Jablonski diagram to account for polarization and anisotropy effects in time-resolved experiments," *Phys. Chem. Chem. Phys.*, vol. 5, no. 14, pp. 2964–2969, 2003, doi: 10.1039/B303138A.
- [30] S. Gao et al., "Membrane intercalation-enhanced photodynamic inactivation of bacteria by a metallacycle and TAT-decorated virus coat protein," *Proceedings of the National Academy of Sciences*, vol. 116, no. 47, pp. 23437–23443, Nov. 2019, doi: 10.1073/pnas.1911869116.
- [31] B. Pucelik and J. M. Dąbrowski, "Photodynamic inactivation (PDI) as a promising alternative to current pharmaceuticals for the treatment of resistant microorganisms," 2022, pp. 65–108. doi: 10.1016/bs.adioch.2021.12.003.
- [32] F. Cieplik *et al.*, "Antimicrobial photodynamic therapy what we know and what we don't," *Crit Rev Microbiol*, vol. 44, no. 5, pp. 571–589, Sep. 2018, doi: 10.1080/1040841X.2018.1467876.
- [33] E. V. Bergmann *et al.*, "Photoactivation of Erythrosine in simulated body fluids," *Spectrochim Acta A Mol Biomol Spectrosc*, vol. 259, p. 119867, Oct. 2021, doi: 10.1016/j.saa.2021.119867.
- [34] N. Ghosh, A. Das, S. Chaffee, S. Roy, and C. K. Sen, "Reactive Oxygen Species, Oxidative Damage and Cell Death," in *Immunity and Inflammation in Health and Disease*, Elsevier, 2018, pp. 45–55. doi: 10.1016/B978-0-12-805417-8.00004-4.
- [35] Sri.Dewi. Astuty, "Fotodinamik antimikroba laser diode dan oksigenasi dengan fotosensitizer klorofil ekstrak daun pepaya untuk mereduksi biofilm C.albicans," Universitas Airlangga, Indonesia, 2019.

- [36] J. C. Finlay and A. Darafsheh, "Light Sources, Drugs, and Dosimetry," in *Biomedical Optics in Otorhinolaryngology*, New York, NY: Springer New York, 2016, pp. 311–336. doi: 10.1007/978-1-4939-1758-7\_19.
- [37] R. La Spina *et al.*, "Synthesis of Citrate-Stabilized Silver Nanoparticles Modified by Thermal and pH Preconditioned Tannic Acid," *Nanomaterials*, vol. 10, no. 10, p. 2031, Oct. 2020, doi: 10.3390/nano10102031.
- [38] Rahisuddin, S. A. AL-Thabaiti, Z. Khan, and N. Manzoor, "Biosynthesis of silver nanoparticles and its antibacterial and antifungal activities towards Gram-positive, Gram-negative bacterial strains and different species of Candida fungus," *Bioprocess Biosyst Eng*, vol. 38, no. 9, pp. 1773–1781, Sep. 2015, doi: 10.1007/s00449-015-1418-3.
- [39] P. S. Yerragopu, S. Hiregoudar, U. Nidoni, K. T. Ramappa, A. G. Sreenivas, and S. R. Doddagoudar, "Chemical Synthesis of Silver Nanoparticles Using Tri-sodium Citrate, Stability Study and Their Characterization," *Int Res J Pure Appl Chem*, pp. 37–50, Mar. 2020, doi: 10.9734/irjpac/2020/v21i330159.
- [40] E. N. Gecer, R. Erenler, C. Temiz, N. Genc, and I. Yildiz, "Green synthesis of silver nanoparticles from *Echinacea purpurea* (L.) Moench with antioxidant profile," *Particulate Science and Technology*, vol. 40, no. 1, pp. 50–57, Jan. 2022, doi: 10.1080/02726351.2021.1904309.
- [41] H. Zhang *et al.*, "Silver nanoparticles-doped collagen–alginate antimicrobial biocomposite as potential wound dressing," *J Mater Sci*, vol. 53, no. 21, pp. 14944–14952, Nov. 2018, doi: 10.1007/s10853-018-2710-9.

# Lampiran 1. Perhitungan Energi Penyinaran

| 1.<br>� | LED Merah<br>Transmitansi dan % serap   |                                                              |  |  |  |  |  |  |  |
|---------|-----------------------------------------|--------------------------------------------------------------|--|--|--|--|--|--|--|
| ·       | λιερ                                    | = 620  nm                                                    |  |  |  |  |  |  |  |
|         | Ahs                                     | -0.112                                                       |  |  |  |  |  |  |  |
|         | T                                       | $-10^{-A}$                                                   |  |  |  |  |  |  |  |
|         | 1                                       | $= 10^{-(0,112)}$                                            |  |  |  |  |  |  |  |
|         |                                         | = 0.773                                                      |  |  |  |  |  |  |  |
|         | % serap                                 | $= (1-T) \times 100\%$                                       |  |  |  |  |  |  |  |
|         | / · · · · · · · · · · · · · · · · · · · | $= (1-0.773) \times 100\%$                                   |  |  |  |  |  |  |  |
|         |                                         | = 22,7%                                                      |  |  |  |  |  |  |  |
| *       | Intensitas LED                          |                                                              |  |  |  |  |  |  |  |
|         | $I_{\text{LED}}$                        | = 1221 Lux                                                   |  |  |  |  |  |  |  |
|         |                                         | $= 1221 \text{ x} (1,464 \text{ x} 10^{-4} \text{ mW/cm}^2)$ |  |  |  |  |  |  |  |
|         |                                         | $= 0,179 \text{ mW/cm}^2$                                    |  |  |  |  |  |  |  |
| *       | Intensitas Serap                        |                                                              |  |  |  |  |  |  |  |
|         | Iserap                                  | = % serap x I <sub>LED</sub>                                 |  |  |  |  |  |  |  |
|         |                                         | $= 22,7\% \text{ x } 0,179 \text{ mW/cm}^2$                  |  |  |  |  |  |  |  |
|         |                                         | $= 0,041 \text{ mW/cm}^2$                                    |  |  |  |  |  |  |  |
|         | a. Untu                                 | k t = 120 sekon                                              |  |  |  |  |  |  |  |
|         | E                                       | $= I_{serap} x t$                                            |  |  |  |  |  |  |  |
|         |                                         | $= 0,041 \times 120$                                         |  |  |  |  |  |  |  |
|         |                                         | $= 4,92 \text{ mJ/cm}^2$                                     |  |  |  |  |  |  |  |
|         | b. Untu                                 | k t = 240 sekon                                              |  |  |  |  |  |  |  |
|         | E                                       | $= I_{serap} \mathbf{x} \mathbf{t}$                          |  |  |  |  |  |  |  |
|         |                                         | $= 0.041 \times 240$                                         |  |  |  |  |  |  |  |
|         |                                         | $= 9,84 \text{ mJ/cm}^2$                                     |  |  |  |  |  |  |  |
|         | c. Untu                                 | k = 360 sekon                                                |  |  |  |  |  |  |  |
|         | E                                       | $= I_{serap} \mathbf{x} \mathbf{t}$                          |  |  |  |  |  |  |  |
|         |                                         | $= 0.041 \times 360$                                         |  |  |  |  |  |  |  |
|         | 1 17                                    | $= 14,/6 \text{ mJ/cm}^2$                                    |  |  |  |  |  |  |  |
|         | d. Untu                                 | k t = 480  sekon                                             |  |  |  |  |  |  |  |
|         | E                                       | $= I_{serap} X t$                                            |  |  |  |  |  |  |  |
|         |                                         | $= 0.041 \times 480$                                         |  |  |  |  |  |  |  |
|         | . The feel                              | $= 19,08 \text{ mJ/cm}^2$                                    |  |  |  |  |  |  |  |
|         | e. Untu                                 | K t = 600  sekon                                             |  |  |  |  |  |  |  |
|         | E                                       | $= I_{serap} X t$                                            |  |  |  |  |  |  |  |
|         |                                         | $= 0.041 \times 600$                                         |  |  |  |  |  |  |  |
| 2       |                                         | $= 24,00 \text{ mJ/cm}^2$                                    |  |  |  |  |  |  |  |
| 2.      | LED DIIU<br>Transmitansi dan % soran    |                                                              |  |  |  |  |  |  |  |
| **      | 1 ransmita                              | -450  mm                                                     |  |  |  |  |  |  |  |
|         | <sup>A</sup> LED biru                   | = 430 IIIII                                                  |  |  |  |  |  |  |  |

Abs = 1,711 Т  $= 10^{-A}$  $= 10^{-(1,711)}$ = 0,019% serap  $= (1-T) \times 100\%$ = (1-0,019) x 100% = 98,1% \* Intensitas LED = 961 Lux  $I_{\text{LED}}$  $= 961 \text{ x} (1,464 \text{ x} 10^{-4} \text{ mW/cm}^2)$  $= 0,141 \text{ mW/cm}^2$  Intensitas Serap = % serap x I<sub>LED</sub> Iserap  $= 98,1\% \text{ x } 0,141 \text{ mW/cm}^2$  $= 0,138 \text{ mW/cm}^2$ a. Untuk t= 120 sekon Е  $= I_{serap} x t$  $= 0,138 \ge 120$  $= 16,56 \text{ mJ/cm}^2$ b. Untuk t= 240 sekon E  $= I_{serap} x t$ = 0,138 x 240  $= 33,12 \text{ mJ/cm}^2$ c. Untuk t= 360 sekon Е  $= I_{serap} x t$ = 0,138 x 360  $= 49,68 \text{ mJ/cm}^2$ d. Untuk t= 480 sekon Е  $= I_{serap} x t$ = 0,138 x 480  $= 66,24 \text{ mJ/cm}^2$ e. Untuk t= 600 sekon  $= I_{serap} x t$ Е  $= 0,138 \ge 600$  $= 82,80 \text{ mJ/cm}^2$ 

### Lampiran 2. Data Mentah Optical density (OD) dengan Kode Perlakuan

|   | _      | _      | _      | _       |        | _ |   | -      | -      |        | _      |        |
|---|--------|--------|--------|---------|--------|---|---|--------|--------|--------|--------|--------|
|   | 1      | 2      | 3      | 4       | 5      | 6 | 7 | 8      | 9      | 10     | 11     |        |
| Α | 1.101  | 1.364  | 1.133  | 0.785   | 1.049  | Х | Х | 1.47   | 1.223  | 1.002  | 0.76   | 0.64   |
| В | 1.203  | 0.859  | 0.9009 | 0.1.169 | 0.912  | Х | Х | 1.1372 | 0.934  | 0.742  | 1.123  | 1.0346 |
| С | 1.201  | 0.9925 | 0.9523 | 0.793   | 0.6601 | Х | Х | 1.6451 | 0.958  | 1.087  | 0.881  | 1.0645 |
| D | Х      | Х      | Х      | Х       | Х      | Х | Х | Х      | Х      | Х      | Х      | Х      |
| E | 0.1962 | 0.1278 | 0.1553 | 0.0836  | 0.0707 | Х | Х | 0.186  | 0.1763 | 0.1645 | 0.1429 | 0.1174 |
| F | 0.1451 | 0.1185 | 0.0478 | 0.1164  | 0.0774 | Х | Х | 0.1911 | 0.1764 | 0.1623 | 0.1761 | 0.1201 |
| G | 0.1331 | 0.1357 | 0.1286 | 0.0785  | 0.0815 | Х | Х | 0.2014 | 0.1992 | 0.1785 | 0.1552 | 0.1557 |
| н | 1.439  | 1.354  | 1.526  | 1.455   | 1.148  | Х | Х | Х      | Х      | Х      | Х      | Х      |
|   |        |        |        |         |        |   |   |        |        |        |        |        |

## Nilai Optical Density (OD)

#### ✤ Kode Perlakuan

| 1    | 2    | 3    | 4    | 5    | 6 | 7 | 8    | 9    | 10   | 11   |      |
|------|------|------|------|------|---|---|------|------|------|------|------|
| L1B  | L2B  | L3B  | L4B  | L5B  | Х | Х | L1M  | L2M  | L3M  | L4M  | L5M  |
| L1B  | L2B  | L3B  | L4B  | L5B  | Х | Х | L1M  | L2M  | L3M  | L4M  | L5M  |
| L1B  | L2B  | L3B  | L4B  | L5B  | Х | Х | L1M  | L2M  | L3M  | L4M  | L5M  |
| Х    | Х    | Х    | Х    | Х    | Х | Х | Х    | Х    | Х    | Х    | Х    |
| CL1B | CL2B | CL3B | CL4B | CL5B | Х | Х | CL1M | CL2M | CL3M | CL4M | CL5M |
| CL1B | CL2B | CL3B | CL4B | CL5B | Х | Х | CL1M | CL2M | CL3M | CL4M | CL5M |
| CL1B | CL2B | CL3B | CL4B | CL5B | Х | Х | CL1M | CL2M | CL3M | CL4M | CL5M |
| C-   | C-   | C-   | C-   | C-   | Х | Х | Х    | Х    | Х    | Х    | Х    |

## ✤ Gambar Sampel



| Kelompok<br>Perlakuan | OD (λ=490) |       |         |        |       |           |       |        |        |       |  |  |
|-----------------------|------------|-------|---------|--------|-------|-----------|-------|--------|--------|-------|--|--|
|                       |            |       | LED Bir | u      |       | LED Merah |       |        |        |       |  |  |
|                       | 1          | 2     | 3       | Rerata | SD    | 1         | 2     | 3      | Rerata | SD    |  |  |
| C-                    | 1.439      | 1.354 | 1.526   | 1.440  | 0.086 | 1.439     | 1.354 | 1.526  | 1.440  | 0.086 |  |  |
| C+                    | 0.312      | 0.313 | 0.414   | 0.346  | 0.059 | 0.312     | 0.313 | 0.414  | 0.346  | 0.059 |  |  |
| L <sub>1</sub>        | 1.101      | 1.203 | 1.201   | 1.168  | 0.058 | 1.470     | 1.137 | 1.6451 | 1.417  | 0.257 |  |  |
| L <sub>2</sub>        | 1.364      | 0.859 | 0.992   | 1.072  | 0.262 | 1.223     | 0.934 | 0.958  | 1.038  | 0.161 |  |  |
| L <sub>3</sub>        | 1.133      | 0.9   | 0.952   | 0.995  | 0.122 | 1.002     | 0.742 | 1.087  | 0.943  | 0.180 |  |  |
| L4                    | 0.785      | 1.169 | 0.793   | 0.916  | 0.219 | 0.760     | 1.123 | 0.881  | 0.921  | 0.184 |  |  |
| L5                    | 1.049      | 0.912 | 0.66    | 0.874  | 0.197 | 0.640     | 1.035 | 1.064  | 0.913  | 0.236 |  |  |
| CL1                   | 0.196      | 0.145 | 0.133   | 0.158  | 0.033 | 0.186     | 0.191 | 0.201  | 0.193  | 0.008 |  |  |
| CL <sub>2</sub>       | 0.127      | 0.118 | 0.135   | 0.127  | 0.008 | 0.176     | 0.176 | 0.199  | 0.184  | 0.013 |  |  |
| CL <sub>3</sub>       | 0.155      | 0.047 | 0.128   | 0.11   | 0.055 | 0.164     | 0.162 | 0.179  | 0.168  | 0.009 |  |  |
| CL <sub>4</sub>       | 0.083      | 0.116 | 0.078   | 0.092  | 0.020 | 0.143     | 0.176 | 0.155  | 0.158  | 0.017 |  |  |
| CL <sub>5</sub>       | 0.070      | 0.077 | 0.081   | 0.077  | 0.005 | 0.117     | 0.120 | 0.156  | 0.131  | 0.021 |  |  |

Lampiran 3. Perhitungan % Inhibition.

% inaktivasi = 
$$\left| \frac{OD_{kontrol} - OD_{perlakuan}}{OD_{kontrol}} \right| \times 100\%$$

## Untuk LED Biru

a. Fotosensitizer + LED 2 menit

% inaktivasi = 
$$\left|\frac{1.440 - 0.158}{1.440}\right| \times 100\%$$

b. Fotosensitizer + LED 4 menit

% inaktivasi = 
$$\left|\frac{1.440 - 0.127}{1.440}\right| \times 100\%$$

= 91,18%

c. Fotosensitizer + LED 6 menit

% inaktivasi = 
$$\left|\frac{1.440 - 0.110}{1.440}\right| \times 100\%$$
  
= 92,36 %

d. Fotosensitizer + LED 8 menit

% inaktivasi = 
$$\left|\frac{1.440 - 0.092}{1.440}\right| \times 100\%$$
  
= 93,61 %

e. Fotosensitizer + LED 10 menit

% inaktivasi = 
$$\left|\frac{1.440 - 0.077}{1.440}\right| \times 100\%$$
  
= 94,65%

#### Untuk LED Merah

a. Fotosensitizer + LED 2 menit

% inaktivasi =  $\left|\frac{1.440 - 0.193}{1.440}\right| \times 100\%$ 

% inaktivasi = 
$$\left|\frac{1.440 - 0.184}{1.440}\right| \times 100\%$$

% inaktivasi = 
$$\left|\frac{1.440 - 0.168}{1.440}\right| \times 100\%$$

d. Fotosensitizer + LED 8 menit

% inaktivasi = 
$$\left|\frac{1.440 - 0.158}{1.440}\right| \times 100\%$$
  
= 89,03%

e. Fotosensitizer + LED 10 menit

% inaktivasi = 
$$\left|\frac{1.440 - 0.131}{1.440}\right| \times 100\%$$
  
= 90,90 %

Lampiran 4. Perhitungan Kadar MDA



Persamaan yang diperoleh:

$$y = 0.6373x - 0.7972$$
$$x = \frac{y + 0.7972}{0.6373}$$
Kadar MDA ( $\frac{nmol}{mL}$ ) =  $\frac{y + 0.7972}{0.6373}$ 

Untuk Perlakuan Kontrol (C-)

Nilai absorbansi = 0,014

Kadar MDA 
$$\left(\frac{nmol}{mL}\right) = \frac{0.014 + 0.7972}{0.6373}$$

= 1,272 nmol/mL

✤ Untuk Perlakuan Kontrol (C+)

Nilai absorbansi = 0,048

Kadar MDA 
$$(\frac{nmol}{mL}) = \frac{0,048 + 0.7972}{0.6373}$$

= 1,326 nmol/mL

A. LED Merah

Untuk LED saja 2 Menit

Nilai absorbansi = 0,055

Kadar MDA  $\left(\frac{nmol}{mL}\right) = \frac{0,055 + 0.7972}{0.6373}$ 

= 1,337 nmol/mL

Nilai absorbansi = 0,057

Kadar MDA  $(\frac{nmol}{mL}) = \frac{0.057 + 0.7972}{0.6373}$ 

$$=$$
 1,340 nmol/mL

Kadar MDA 
$$(\frac{nmol}{mL}) = \frac{0,060 + 0.7972}{0.6373}$$

= 1,345 nmol/mL

Nilai absorbansi = 0,062

Kadar MDA 
$$\left(\frac{nmol}{mL}\right) = \frac{0.062 + 0.7972}{0.6373}$$

= 1,348 nmol/mL

♦ Untuk LED saja 10 Menit

Nilai absorbansi = 0,064

Kadar MDA 
$$\left(\frac{nmol}{mL}\right) = \frac{0,064 + 0.7972}{0.6373}$$

= 1,351nmol/mL

Untuk LED saja 2 Menit Kombinasi AgNPs
Nilai absorbansi = 0,203

Kadar MDA 
$$\left(\frac{nmol}{mL}\right) = \frac{0,203 + 0.7972}{0.6373}$$

= 1,569 nmol/mL

Untuk LED saja 4 Menit Kombinasi AgNPs

Nilai absorbansi = 0,230

Kadar MDA 
$$\left(\frac{nmol}{mL}\right) = \frac{0,230 + 0.7972}{0.6373}$$

= 1,611 nmol/mL

Untuk LED saja 6 Menit Kombinasi AgNPs

Nilai absorbansi = 0,278

Kadar MDA 
$$\left(\frac{nmol}{mL}\right) = \frac{0,278 + 0.7972}{0.6373}$$

= 1,687 nmol/mL

Untuk LED saja 8 Menit Kombinasi AgNPs
Nilai absorbansi = 0,309

Kadar MDA  $\left(\frac{nmol}{mL}\right) = \frac{0,309 + 0.7972}{0.6373}$ 

Untuk LED saja 10 Menit Kombinasi AgNPs

Nilai absorbansi = 0,353

Kadar MDA 
$$\left(\frac{nmol}{mL}\right) = \frac{0.353 + 0.7972}{0.6373}$$

- B. LED Biru
- Untuk LED saja 2 Menit

Nilai absorbansi = 0,061

Kadar MDA 
$$\left(\frac{nmol}{mL}\right) = \frac{0.061 + 0.7972}{0.6373}$$

= 1,346 nmol/mL

Untuk LED saja 4 Menit

Nilai absorbansi = 0,063

Kadar MDA 
$$\left(\frac{nmol}{mL}\right) = \frac{0,063 + 0.7972}{0.6373}$$

= 1,350 nmol/mL

Nilai absorbansi = 0,064

$$Kadar MDA \left(\frac{nmol}{mL}\right) = \frac{0,064 + 0.7972}{0.6373}$$

$$=$$
 1,351 nmol/mL

✤ Untuk LED saja 8 Menit

Kadar MDA  $(\frac{nmol}{mL}) = \frac{0.067 + 0.7972}{0.6373}$ 

= 1,356 nmol/mL

Nilai absorbansi 
$$= 0,069$$

Kadar MDA 
$$\left(\frac{nmol}{mL}\right) = \frac{0.064 + 0.7972}{0.6373}$$

= 1,359 nmol/mL

Untuk LED saja 2 Menit Kombinasi AgNPs

Nilai absorbansi = 0,281

Kadar MDA 
$$\left(\frac{nmol}{mL}\right) = \frac{0,281 + 0.7972}{0.6373}$$

= 1,692 nmol/mL

Untuk LED saja 4 Menit Kombinasi AgNPs

Nilai absorbansi = 0,333

Kadar MDA 
$$(\frac{nmol}{mL}) = \frac{0,333 + 0.7972}{0.6373}$$
  
= 1,773 nmol/mL

Untuk LED saja 6 Menit Kombinasi AgNPs

Nilai absorbansi = 0,365

Kadar MDA 
$$(\frac{nmol}{mL}) = \frac{0.365 + 0.7972}{0.6373}$$
  
= 1,823 nmol/mL

Untuk LED saja 8 Menit Kombinasi AgNPs

Nilai absorbansi 
$$= 0,377$$

Kadar MDA 
$$\left(\frac{nmol}{mL}\right) = \frac{0.377 + 0.7972}{0.6373}$$

= 1,842 nmol/mL

C. Untuk LED saja 10 Menit Kombinasi AgNPs

Nilai absorbansi = 0,380

Kadar MDA 
$$\left(\frac{nmol}{mL}\right) = \frac{0.380 + 0.7972}{0.6373}$$

= 1,847 nmol/mL

Lampiran 5. Dokumentasi Penelitian







