SKRIPSI

PERBANDINGAN SISTEM KENDALI MOTOR DC MENGGUNAKAN LINEAR QUADRATIC REGULATOR (LQR) DAN PROPORSIONAL-INTEGRATIF-DERIVATIF (PID) DENGAN DAN TANPA PARTICLE SWARM OPTIMIZATION (PSO)

Disusun dan diajukan oleh: Aliyah Muthmainnah D41115305

DEPARTEMEN TEKNIK ELEKTRO
FAKULTAS TEKNIK
UNIVERSITAS HASANUDDIN
MAKASSAR
2022

LEMBAR PENGESAHAN SKRIPSI

PERBANDINGAN SISTEM KENDALI MOTOR DC MENGGUNAKAN LINEAR QUADRATIC REGULATOR (LQR) DAN PROPORSIONAL-INTEGRATIF-DERIVATIF (PID) DENGAN DAN TANPA PARTICLE SWARM OPTIMIZATION (PSO)

Disusun dan diajukan oleh:

ALIYAH MUTHMAINNAH D411 15 315

Telah dipertahankan di hadapan Panitia Ujian yang dibentuk dalam rangka penyelesaian Program Studi Sarjana Teknik Elektro Fakultas Teknik Universitas Hasanuddin

> Pada Tanggal 23 Februari 2022 dan dinyatakan telah memenuhi syarat kelulusan

> > Menyetujui

Pembimbing I

Pembimbing II

<u>Dr. A. Ejah Umraeni Salam, S.T, M.T.</u> NIP. 197209081997022001 Prof.Dr.Ing. Faizal Arya Samman, S.T, M.T. NIP. 197506052002121004

Ketua Departemen Teknik Elektro

Dr. Eng. Ir. Dewiani, MT. NIP, 19691026 199412 2 001

LEMBAR PERBAIKAN SKRIPSI

PERBANDINGAN SISTEM KENDALI MOTOR DC MENGGUNAKAN LINEAR QUADRATIC REGULATOR (LQR) DAN PROPORSIONAL-INTEGRATIF-DERIVATIF (PID) DENGAN DAN TANPA PARTICLE SWARM OPTIMIZATION (PSO)

Oleh

ALIVAH MUTHMAINNAH

D41115305

Skripsi ini telah dipertahankan pada Ujian Akhir Sarjana tanggal 23 Februari 2022. Telah dilakukan perbaikan penulisan dan isi skripsi berdasarkan usulan dari penguji dan pembimbing skripsi

Persetujuan perbaikan oleh tim penguji:

	Nama	Tanda Tangan
Ketua	Dr. A. Ejah Umraeni Salam, S.T, M.T.	Hore
Sekertaris	Prof.Dr.Ing. Faizal Arya Samman, S.T, M.T.	faul
Anggota	Dr. Ir. Rhiza S. Sadjad, MSEE.	Store our
	Ir. Christoforus Yohannes, M.T.	0/1.

Persetujuan perbaikan oleh pembimbing:

Pembimbing	Nama	Tanda Tangan
I	Dr. A. Ejah Umraeni Salam, S.T, M.T.	462
II	Prof.Dr.Ing. Faizal Arya Samman, S.T, M.T.	Janil

PERNYATAAN KEASLIAN

Yang bertanda tangan dibawah ini;

Nama : Aliyah Muthmainnah

NIM : D41115305

Program Studi: Teknik Elektro

Jenjang : S1

Menyatakan dengan ini bahwa karya tulisan saya berjudul

PERBANDINGAN SISTEM KENDALI MOTOR DC MENGGUNAKAN LINEAR QUADRATIC REGULATOR (LQR) DAN PROPORSIONAL-INTEGRATIF-DERIVATIF (PID) DENGAN DAN TANPA PARTICLE SWARM OPTIMIZATION (PSO)

Adalah karya tulisan saya sendiri dan bukan merupakan pengambilan alihan tulisan orang lain dan bahwa skripsi yang saya tulis ini benar-benar merupakan hasil karya saya sendiri.

Apabila dikemudian hari terbukti atau dapat dibuktikan bahwa sebagian atau keseluruhan isi skripsi ini hasil karya orang lain, maka saya bersedia menerima sanksi atas perbuatan tersebut.

Makassar, 23 Agustus 2022

Yang membuat penyataan,

Aliyah Muthmainnah

ABSTRAK

Motor DC umumnya digunakan pada pemakaian yang memerlukan rentang kecepatan yang lebar, sehingga untuk memaksimalkan kinerja dari motor DC digunakan pengendali atau controller. Salah satu yang umum digunakan untuk optimasi pada adalah metode Linear Quadratic Regulator (LQR) dan Proportional-Integrative-Derivative (PID). Pada kendali LQR terdapat parameter matriks Q dan R untuk menentukan nilai feedback gain K, sementara itu pada kendali PID terdapat nilai kp, ki, dan kd yang nilainya ditentukan untuk mendapatkan respon motor yang optimal. Pada penelitian ini, digunakan algoritma Particle Swarm Optimization untuk pembobotan matriks Q dan R pada metode LQR dan untuk mencari nilai kp, ki, dan kd, pada metode kendali PID. Algoritma PSO melakukan iterasi untuk mencari nilai-nilai terbaik (Global Best Position) berdasarkan Objective Function sistem. Terdapat 5 skema simulasi yaitu simulasi motor DC tanpa pengendali (open loop), simulasi motor DC kendali LQR dengan pembobotan matriks Q dan R menggunakan metode trial-and-error, simulasi motor DC kendali PID dengan metode Ziegler-Nichols untuk mencari nilai kp, ki, dan kd, simulasi motor DC dengan kendali LQR menggunakan algoritma PSO untuk pembobotan matriks Q dan R. dan simulasi motor DC dengan kendali PID menggunakan algoritma PSO untuk mencari nilai kp, ki, dan kd. Dari perbandingan hasil simulasi, diperoleh bahwa kontroler LQR-PSO adalah yang terbaik performansinya dengan 4 % overshoot, 0.0547 s rise time, and 0.1420 s settling time.

Kata kunci: Linear Quadratic Regulator (LQR), Particle Swarm Optimization, motor DC.

ABSTRACT

DC motors are generally used in applications that require a wide speed range and in order to maximize the performance of a DC motor, a controller is utilized. In this study, the Particle Swarm Optimization algorithm is implemented to weight the Q and R matrices in the LQR method and to find the values of kp, ki, and kd, in the PID control method. The PSO algorithm iterates to find the best values (Global Best Position) based on the system's Objective Function. There are 5 simulation schemes, namely an open loop DC motor simulation, an LQR controlled DC motor simulation with a weighting matrix Q and R using the trial-and-error method, a PID-controlled DC motor simulation using Ziegler-Nichols method to find the values of kp, ki, and kd, DC motor simulation with LQR control using PSO algorithm for weighting the Q and R matrices, and DC motor simulation with PID control using PSO algorithm to find kp, ki, and kd values. From the comparison of simulation results, the LQR-PSO controller has the best performance with 4% overshoot , 0.0547 s rise time , and 0.1420 s settling time.

Keywords: Linear Quadratic Regulator (LQR), Particle Swarm Optimization, DC motor.

KATA PENGANTAR

Assalamualaikum Warahmatullahi Wabarakatuh Puji syukur kami panjatkan kehadirat Tuhan Yang Maha Esa yang dengan limpahan rahmat, taufik, dan hidayah-Nya, sehingga penulis dapat menyelesaikan tugas akhir ini dengan judul "PERBANDINGAN SISTEM KENDALI MOTOR DC MENGGUNAKAN LINEAR QUADRATIC REGULATOR DAN (LQR) PROPORSIONAL-INTEGRATIF-DERIVATIF (PID) DENGAN DAN TANPA PARTICLE SWARM OPTIMIZATION (PSO)". Tugas Akhir ini disusun sebagai salah satu syarat untuk mendapatkan gelar Sarjana Teknik pada Departemen Teknik Elektro Fakultas Teknik Universitas Hasanuddin Makassar. Pada penulisan tugas akhir ini, penulis banyak dihadapkan dengan berbagai hambatan, akan tetapi berkat adanya bimbingan, dukungan dan bantuan dari pihak, akhirnya penulis bisa menyelesaikan tugas akhir ini dengan baik. Olehnya itu, melalui kesempatan ini penulis juga mengucapkan penghargaan dan banyak terima kasih kepada:

- 1. Tuhan Yang Maha Esa, yang telah memberikan kesempatan, rahmat dan hidayah-Nya untuk dapat menyelesaikan tugas akhir ini.
- 2. Orang tua dan saudara-saudara kami, atas doa restu, bantuan, nasehat dan motivasinya. Semoga Tuhan Yang Maha Esa membalasnya
- 3. Ibu Dr. A. Ejah Umraeni Salam, ST, MT selaku pembimbing I dan Bapak Prof. Dr. Ing. Faizal Arya Samman, ST.MT selaku pembimbing II yang telah banyak

meluangkan waktu, tenaga, dan pikirannya selama membimbing dan mengarahkan

penulis dalam pembuatan tugas akhir ini.

4. Ketua Departemen Teknik Elektro Fakultas Teknik Universitas Hasanuddin Ibu

Dr.Eng.Ir. Dewiani, MT

5. Seluruh Dosen dan Staf Akademik departemen Elektro Fakultas Teknik Universitas

Hasanuddin atas pengabdian dan pelayanannya kepada kami.

6. Teman-teman Sub-program Studi Teknik Kendali angkatan 2015

7. Dan untuk semua pihak yang tak dapat kami sebutkan satu per satu yang telah

memberikan dukungan baik secara langsung maupun tidak langsung sehingga penulis

dapat menyelesaikan Tugas Akhir ini.

Akhir kata dengan segala kerendahan hari, penulis menyadari masih terdapat

kekurangan dalam penulisan tugas akhir ini, baik isi maupun cara penyajian. Oleh

karena itu, penulis mengharapkan adanya saran dan kritik yang bersifat membangun

demi perbaikan tugas akhir ini.

Penulis

Aliyah Muthmainnah

viii

DAFTAR ISI

LEMBAR PENGESAHAN TUGAS AKHIR	ii
LEMBAR PERBAIKAN SKRIPSI	iii
PERNYATAAN KEASLIAN	iv
ABSTRAK	v
ABSTRACT	vi
KATA PENGANTAR	vii
DAFTAR ISI	ix
DAFTAR GAMBAR	xi
DAFTAR TABEL	xii
BAB I PENDAHULUAN	1
1.1 Latar Belakang	1
1.2 Rumusan Masalah	1
1.3 Tujuan Penelitian	2
1.4 Batasan Masalah	2
1.5 Metode Penelitian	3
1.6 Sistematika Penelitian	3
BAB II TINJAUAN PUSTAKA	5
2.1 Motor DC	5
2.2 Parameter Step-response	7
2.3 Linear Quadratic Regulator (LQR)	9
2.4 Proportional-Integral-Derivative (PID)	9
2.5 Particle Swarm Optimization (PSO)	11
BAB III METODE PENELITIAN	16
3.1 Pemodelan Motor DC	16
3.1.1 Pemodelan Motor DC Menggunakan Simulink	17
3 12 Controllability dan Observability Sistem	17

3.2 Perancangan Kendali LQR Motor DC	18
3.2.1 Kendali LQR dengan Metode Trial-and-Error	18
3.2.2 Kendali LQR dengan PSO	18
3.3 Perancangan Kendali PID Motor DC	19
3.3.1 Kendali PID dengan Metode Ziegler-Nichols	19
3.3.2 Kendali PID dengan Particle Swarm Optimization	21
3.4 Rancangan Pengujian	22
3.4.1 Simulasi Motor DC tanpa Pengendali.	22
3.4.2 Simulasi Motor DC LQR trial-and-error	23
3.4.3 Simulasi Motor DC LQR dengan Particle Swarm Optimization	23
3.4.4 Simulasi Motor DC PID dengan metode Ziegler Nichols	24
3.4.5 Simulasi Motor DC PID dengan Particle Swarm Optimization (PSO)	25
3.4.6 Simulasi Perbandingan Set Point Tracking	26
3.4.7 Simulasi Perbandingan Dengan Pengujian Beban	
BAB IV HASIL DAN PEMBAHASAN	27
4.1 Simulasi Motor DC Tanpa Pengendali	27
4.2 Simulasi Motor DC dengan kendali LQR	28
4.3 Simulasi Motor DC dengan PID-Ziegler Nichols	29
4.4 Simulasi Motor DC dengan Kendali LQR-PSO	30
4.5 Simulasi Motor DC dengan PID-PSO	31
4.6 Perbandingan Hasil Simulasi	32
BAB V PENUTUP	35
5.1 Kesimpulan	35
5.2 Saran	35
DAFTAR PUSTAKA	36

DAFTAR GAMBAR

Gambar 3.1 Model Motor DC pada Simulink MATLAB	7
Gambar 3.2 Model Motor DC tanpa pengendali pada Simulink	13
Gambar 3.3 Model Simulasi Motor DC menggunakan pengendali	13
Gambar 3.4 Model Simulink Motor DC dengan kendali PID	15
Gambar 3.5 Sinyal kecepatan referensi untuk perbandingan Set Point Tracking	17
Gambar 4.1 Sinyal kecepatan respon motor DC tanpa pengendali	18
Gambar 4.2 Sinyal respon motor DC dengan pengendali LQR	20
Gambar 4.3 Respon Motor dengan kendali PID-Ziegler Nichols	21
Gambar 4.4 Respon motor DC dengan kendali LQR-PSO	22
Gambar 4.5 Respon Motor dengan kendali PID-PSO	23
Gambar 4.6 Perbandingan respon kendali motor DC dengan set point tracking.	25

DAFTAR TABEL

Tabel 3.1 Nilai Parameter Motor DC	6
Tabel 3.2 Parameter PSO yang digunakan pada pembobotan matriks Q dan R	9
Tabel 3.3 Parameter Kendali PID Berdasarkan Metode Ziegler-Nichols	11
Tabel 3.4 Nilai Kp, Ki, dan Kd pada kendali PID dengan metode Ziegler-Nichols.	11
Tabel 3.5 Parameter PSO yang digunakan pada pencarian Kp, Ki, Kd Kendali PID	12
Tabel 4.1 Parameter Respon Motor DC	18
Tabel 4.2 Parameter Respon Motor DC dengan Kendali LQR	19
Tabel 4.3 Parameter PID-Ziegler Nichols	20
Tabel 4.4 Parameter Respon Motor DC dengan Kendali PID-Ziegler Nichols	21
Tabel 4.5 Parameter Respon Motor DC dengan Kendali LQR-PSO	22
Tabel 4.6 Parameter PID-PSO	23
Tabel 4.7 Parameter Respon Motor DC dengan Kendali PID-PSO	23
Tabel 4.8 Perbandingan Hasil Simulasi	25

BAB I

PENDAHULUAN

1.1 Latar Belakang

Linear Quadratic Regualtor (LQR) merupakan salah satu metode yang dapat diguanakan untuk mengendalikan kecepatan motor DC dimana pada beberapa kondisi metode ini lebih baik dalam hal tanggapan transien dan steady state error dibanding pengendalian dengan menggunakan metode Proportional-Integrative-Derivative (PID) [1]. Pada metode LQR, feedback gain dari suatu system kendali ditentukan dengan mengevaluasi matriks Q dan R terhadap suatu funsgsi harga (cost function) sehingga memungkinkan adanya minimisasi *error* dan optimalisasi sistem kontrol[2]. Sedangkan, PID merupakan metode sistem kendali dimana

Salah satu kelemahan pengendalian menggunakan pengendali LQR adalah penentuan matriks Q dan R dengan metode *trial-and-error* yang dapat dinilai tidak efisien. Untuk mengatasi masalah ini maka digunakan algoritma-algoritma seperti algoritma genetika, evolusi differensial, *Imperialist Competitive Algorithm* (ICA), dan *Particle Swarm Optimization* (PSO) yang memungkinkan pencarian nilai Q dan R yang paling optimal berdasarkan *cost function* yang diberikan [3].

Particle Swarm Optimization merupakan algoritma sederhana yang mengadaptasi perilaku kelompok partikel dalam mencari nilai terbaik suatu objek pencarian [4]. Pada penelitian ini, algoritma *Particle Swarm Optimization* (PSO) akan digunakan untuk mencari nilai-nilai matriks Q dan R terbaik pada metode kendali *Linear Quadratic Regulator* (LQR), sehingga dapat menghasilkan sistem kendali kecepatan motor DC yang optimal.

1.2 Rumusan Masalah

Adapun rumusan masalah pada penelitian ini, yaitu sebagai berikut:

- 1. Bagaimana menentukan matriks Q dan R pada metode kendali *Linear Quadratic Regulator* (LQR) menggunakan *Particle Swarm Optimization* (PSO)?
- 2. Bagaimana menentukan konstanta P, I, dan D pada kendali PID?

3. Bagaimana perbandingan performa system kendali motor DC dengan menggunakan PSO-LQR dan PSO-PID.

1.3 Tujuan Penelitian

Adapun tujuan penelitian adalah untuk membandingkan penggunaan metode kendali *Linear Quadratic Regulator* (LQR) dan *Proportional-Integral-Derivative*(PID) pada motor DC dengan menggunakan *Particle Swarm Optimization* (PSO).

1.4 Batasan Masalah

Guna mengoptimalkan hasil penelitian, penelitian ini memberikan batasan-batasan masalah yaitu sebagai berikut:

- 1. Digunakan Motor DC yang dimodelkan dalam bentuk fungsi alih dan model ruang keadaan.
- 2. Performa sistem kendali motor DC dievaluasi pada tanggapan undak satuan. (*rise time*, *overshoot*, *settling time*, dan *steady state error*).
- 3. Simulasi dilakukan dengan menggunakan software MATLAB R2019b

1.5 Metode Penelitian

Metode yang akan dilakukan untuk menyelesaikan masalah dalam penelitian ini yaitu:

1 Studi Literatur

Studi literatur adalah kajian penulis atas referensi-referensi yang ada baik berupa buku, karya-karya ilmiah, internet, maupun melalui media massa yang berhubungan dengan penulisan laporan penelitian ini.

2 Pengumpulan Data

Berupa pengumpulan data sekunder parameter-parameter motor yang digunakan dalam penlitian ini.

3 Perancangan Sistem

Perancangan Kendali Motor DC menggunakan kendali LQR, PID, PSO-LQR, dan PSO-PID menggunakan software MATLAB 2019b.

1.6 Sistematika Penelitian

Pembahasan tugas akhir ini memiliki susunan sebagai berikut:

BAB I PENDAHULUAN

Bab ini berisi tentang penguraian secara singkat latar belakang, rumusan masalah, tujuan, ruang lingkup, dan batasan masalah, serta sistematika penulisan.

BAB II TINJAUAN PUSTAKA

Pada bab ini akan dijelaskan tentang teori penunjang yang relevan untuk bahan penelitian yang diperoleh dari sumber referensi untuk menyusun kerangka teori dan konseptual.

BAB III METODOLOGI PENELITIAN

Dalam bab ini berisi tentang waktu dan tempat penelitian, metode pengambilan data, analisa data, dan langkah-langkah penelitian.

BAB IV HASIL

Pada bab ini, disajikan data hasil penelitian yaitu hasil simulasi sistem yang dirancang pada bab sebelumnya dalam grafik dan tabel dan penjelasan hasil penelitian.

BAB V PENUTUP

Bab ini berisi kesimpulan dari tugas akhir dan saran untuk penelitian selanjutnya.