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Abstract
The double sampling plan (DSP) is a generalized version of the single sampling plan (SSP)
that provides several advantages, such as reduced sample size, increased discriminatory
power, and better communication between producers and consumers. This study proposes a
DSP for truncated life tests (TLT-DSP) using a two-parameter Lindley distribution. The pro-
posed TLT-DSP’s parameters are determined by a mathematical model designed to minimize
the average sample numberwhile fulfilling two constraints related to predefined quality levels
and tolerated risks. Performance measures of the sampling plans are investigated to evaluate
and compare their efficiency and effectiveness. Our results demonstrate that the proposed
DSP is more efficient than the traditional SSP, especially in cases where the lot’s quality
is excellent or poor, and provides necessary protection to both parties involved. Addition-
ally, two examples are presented, discussed and illustrated through a graphical user interface
designed to validate the practicability of the proposed approach.

Keywords Acceptance sampling · Failure rate · Product lifetime · Graphical user interface ·
Truncation time

1 Introduction

Quality plays a critical role in the production process of both products and services. Therefore,
quality management utilizes various supporting tools to conduct comprehensive investiga-
tions on rawmaterials, production processes, and finished products. Statistical quality control
(SQC) is one such tool used in quality improvement activities. Inspection is a crucial aspect
of SQC as it is involved throughout the entire production process. Three modes of inspec-
tion exist, including 100% inspection, zero inspection, and acceptance sampling. Acceptance
sampling strikes a balance between two opposing views and entails a sampling strategy that
defines the sample size and the standards for either approving or declining the product lot.
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Implementing a sampling plan can reduce risks, improve cost and time efficiency, optimize
human resources, and maintain good relationships between business partners.

Sampling plans are extensively utilized in diverse applications to evaluate the quality
of product lots. Researchers have investigated and developed sampling plans from diverse
perspectives and contexts, including the works of Pearn and Wu (2007), Wu (2012), Lee
et al. (2016), Wu et al. (2018), Liu et al. (2021), Prajapati et al. (2021), Shu et al. (2022),
Wang et al., (2022a, 2022b), Wu et al. (2022), Prajapati et al. (2023), and Liu andWu (2023).
In designing a sampling plan, there are several important objectives to consider, such as
efficiency, reliable, and ease of use. However, testing until all inspected samples fail can be
costly and time-consuming, particularly for products with a lifetime operation. To address
this issue, truncated life tests have been developed as an experiment type to estimate the
reliability or lifetime of components, products, or systems. In this test, the experiment is
stopped at a predetermined time, regardless of whether all the items have failed or not, and
the lifetime data is observed and modeled using an appropriate probability distribution to
estimate its reliability. Recently, extensive studies have been conducted on sampling plans
for truncated life tests using various probability distributions. For instance, investigations
have been conducted on the single sampling plan (SSP) for both finite and infinite lot sizes,
under probability distributions such as the half-normal distribution (Lu et al., 2013), power
Lindley distribution (Shahbaz et al., 2018), Sushila Distribution (Al-Omari, 2018), and the
two-parameter Lindley distribution (Wu et al., 2021).

Generally, the SSP serves as a straightforward strategy, yet it does possess certain lim-
itations. Notably, it can occasionally be challenging to maintain a harmonious relationship
between producers and customers, and itmight necessitate larger sample sizes. Consequently,
the double sampling plan (DSP), a more comprehensive model than the SSP, has garnered
significant popularity within the industrial sector owing to its advantages. Extensive studies
have been conducted on the DSP for truncated life tests. For instance, Gui (2014) explored
the Maxwell distribution and considered the zero and one failure schemes by setting c1 = 0
and c2 = 1. Additionally, Al-Omari et al. (2016) investigated the half-normal distribution,
calculating minimum sample sizes for both the first and second samples while maintaining
a fixed consumer’s confidence level to establish the desired mean life. Building upon this,
Al-Omari et al. (2017) introduced a new transmuted Weibull-Pareto distribution within the
framework of the DSP. Their objective was to mitigate producer risk and derive optimal
sample sizes for each stage of the plan.

Although all the previously mentioned distributions are capable of modeling data with
lower-bound truncation, each distribution possesses distinct strengths. They are proficient
in effectively modeling positive continuous data and addressing various aspects of reliabil-
ity and survival analysis. The appropriateness of each distribution depends on its unique
shape, scale, and tail behavior, which collectively influence its applicability in modeling
specific datasets. Particularly noteworthy is the two-parameter Lindley distribution (TPLD),
which distinguishes itself through its exceptional flexibility across diverse data types, intu-
itive parameter interpretations, suitability for small samples, capacity to capture distinct data
patterns, and mathematical simplicity.

Consequently, the objective of this paper is to develop a DSP for truncated life tests (TLT-
DSP) under the framework of the TPLD, as an extension of the model introduced by Wu
et al. (2021). This approach involves performing lifetime tests on samples and recording
the number of failures to determine the lot’s acceptability. Specifically, when the lot size
significantly exceeds the sample size, a random sample of items is tested within a specified
timeframe or until a predefined number of failures is reached, whichever comes first. If the
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outcome remains inconclusive, a secondary evaluation is conducted to determine whether
the lot should be accepted or rejected.

The subsequent sections of this paper are arranged as follows. Section 2 focuses on the
theoretical foundation of TPLD. Section 3 presents the proposed plan’s operational pro-
cedure based on TPLD, including the derivation of operating characteristic (OC) function
and average sample number (ASN), as well as the formulation of the optimization model
for determining plan parameters. Section 4 includes a thorough examination and discussion
on plan parameters, and compares the proposed plan’s performance with the conventional
SSP. Section 5 illustrates how the proposed DSP operates in a truncated life test through
an example that also involves a comparison between the Weibull and two-parameter Lind-
ley distributions. Section 6 demonstrates the practical implementation of the proposed plan
in conjunction with the designed user-friendly graphical user interface (GUI) application.
Finally, Sect. 7 provides a concluding summary of this paper.

2 Two-parameter Lindley distribution (TPLD)

The original one-parameter Lindley distribution (OPLD) was first introduced by Lindley
(1958). The probability density function (pdf) of the OPLD with a parameter θ > 0 is given
by

f (t; θ) = θ2

θ + 1
(1 + t)e−θ t , t > 0. (1)

The cumulative distribution function (cdf) and hazard rate function (hrf) are defined as
follows:

F(t; θ) = 1 − θ + 1 + θ t

θ + 1
e−θ t , (2)

h(t; θ) = θ2(1 + t)

θ + 1 + θ t
, t > 0. (3)

Ghitany et al. (2008) identified several adaptable statistical properties of the OPLD that
make it an attractive option for modeling lifetime data, survival data and waiting time
compared to the exponential distribution. This discovery generated significant interest in
developing the Lindley-like distribution and its practical applications. In the field of life-
time data modeling, Shanker et al. (2016), Shanker and Mishra (2013), and Shanker (2016)
proposed a generalization of the Lindley distribution, known as the two-parameter Lindley
distribution (TPLD), which includes the OPLD as a special case. The TPLD has two param-
eters θ and η, and is characterized by its pdf, cdf, and hrf, as follows. Detailed illustrations
of its figures with various parameter combinations are available in Wu et al. (2021).

f (t; θ, η) = θ(η + θ t)

η + 1
e−θ t , (4)

F(t; θ, η) = 1 − 1 + η + θ t

η + 1
e−θ t , (5)

h(t; θ, η) = θ(η + θ t)

1 + η + θ t
, t > 0, θ > 0, η > −1. (6)

When η = θ , it can be observed that all expressions for TPLD in Eqs. (4)–(6) will reduce
to Eqs. (1)–(3) for the OPLD. The mean of TPLD, denoted by μ, can be calculated using the
following formula:
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μ = η + 2

θ(η + 1)
. (7)

3 The proposed TLT-DSP for TPLD

To enhance clarity and improve the readability of the paper, we have summarized the defini-
tions for notations and symbols used in this section in Table 1. Consider a scenario in which
a supplier delivers a shipment of N products to a buyer, and the lifetime of the products is
assumed to follow a TPLD with a pdf defined by Eq. (4). The mean lifetime of the products
is given by Eq. (7).

The contractual agreement established between the supplier and the buyer outlines the
acceptable quality level (AQL) and rejectable quality level (RQL) of the lot, which are
characterizedby the product’smean life denoted asμAQL andμRQL, respectively. Theprimary

Table 1 The list of symbols and notations

Notation Definition

η The first parameter of two-parameter Lindley distribution

θ The second parameter of two-parameter Lindley distribution

α Producer’s risk

β Consumer’s risk

μ Mean life of the products

tu Truncation time of the life test

μ0 A specified mean life of the products

μAQL Required mean life of the products at acceptable quality level (AQL)

μRQL Required mean life of the products at rejectable quality level (RQL)

q Ratio of the truncation time to the specified mean life, i.e.,tu/μ0

r Ratio of the actual mean life to the specified mean life, i.e.,μ/μ0

rAQL Ratio of the required mean life at AQL to the specified mean life, i.e.,μAQL/μ0

rRQL Ratio of the required mean life at RQL to the specified mean life, i.e.,μRQL/μ0

N Lot size

n1 Required number of sample items in the first-stage sampling

n2 Required number of sample items in the second-stage sampling

k Ratio of the second sample size to the first sample size,n2/n1
c1 Acceptance number for failed items in the first sample

c2 Acceptance number of failed items in both samples

d Cumulative number of failed items in both samples

d1 Number of failed items in the first-stage sampling

d2 Number of failed items in the second-stage sampling

π1(r) Probability of lot acceptance for the first sample

π2(r) Probability of lot acceptance for the second sample

�(r) Total lot acceptance probability the proposed DSP

p(r) Product’s failure probability at r
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aim is to ensure that the product’s lifespan aligns with the predetermined quality standards,
effectively minimizing risks for all parties involved. The choice of risk parameters is based
on the critical balance between the risk of accepting a bad lot (referred to producer’s risk,
α) and the risk of rejecting a satisfactory lot (referred to consumer’s risk, β). Through the
manipulation of these parameters, it becomes feasible to tailor the sampling strategy to fulfill
the desired risk thresholds of both stakeholders.

Hence, the suggested plan must adhere to the two-point condition (quality level and risk
suffered) on the OC curve. This condition requires that: (1) The lot must have a probability
of being approved at the defined μAQL of at least 100(1−α)%. This criterion ensures that
the lot meets the specified μAQL and reflects the producer’s acceptable level of risk. (2) The
acceptance probability of the lot must not exceed 100β%at the specifiedμRQL. This criterion
maintains a balance by preventing an excessive risk of accepting a lot that falls below the
defined quality threshold.

The operational procedure for implementing the proposed TLT-DSP for the TPLD is
depicted in Fig. 1 and also outlined below.

1. Determinemean life and risk requirements (μAQL, 1−α) and (μRQL, β) for the products,
the specified mean life (μ0), and the truncation time (tu) for the life test.

2. Compute the ratio quantities rAQL = μAQL
/

μ0, rRQL = μRQL
/

μ0, and q = tu/μ0

using μ0 as a scaling factor.
3. Determine the plan parameters (n1, n2, c1, c2) of the TLT-DSP.
4. Collect a sample of size n1 randomly from the lot and conduct a truncated life test for

the first-stage sampling. Observe, identify, and count the number of failed items d1.
5. Accept the lot if d1 ≤ c1, or reject the lot if d1 > c2 and immediately stop the test.
6. If decision is not reached on the basis of first stage, i.e., c1 < d1 ≤ c2, conduct a truncated

life test for the second-stage sampling with size n2. Observe, identify, count the failed
items d2 from n2, and calculate the cumulative failed items d = d1 + d2 from n1 + n2
samples in two stages.

7. Reject the lot if d > c2, otherwise, accept the lot.

To derive the lot acceptance probability, OC function, of TLT-DSP based on the TPLD,
some probability functions should be defined first. Based on Eq. (5), the product’s life has
the failure probability before the truncation time tu as

P(T < tu) = F(tu; θ, η) = 1 − 1 + η + θ tu
η + 1

e−θ tu . (8)

As the products’ mean life shown in Eq. (7), it implies θ = (η + 2)/[μ(η + 1)]. Hence,
by substituting θ into Eq. (8), it can be rewritten as follows:

F(tu;μ, η) = 1 −
1 + η +

(
η+2
η+1

)
tu
μ

η + 1
e
−

(
η+2
η+1

)
tu
μ . (9)

The expression for F(tu;μ, η) as shown in Eq. (9) involves time units, including the
truncation time tu and the mean life μ, which can vary in different real-world scenarios. This
makes it difficult to create general tables of plan parameters that can be adapted to various
situations.

To address this issue, we introduce a scaling factor, namely the specified mean life (μ0),
and define two quantities ratios as a function of μ0. The first is the truncation time to the
specified mean life ratio (q = tu/μ0), while the second is the mean life to the specified mean
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Calculate the ratio quantities,  rAQL = μAQL /μ0 ,

rRQL = μRQL /μ0 , and q = tu /μ0

Determine the plan parameters (n1, n2, c1, c2)

Take first sample of size n1 randomly from the lot 

and count failed items d1

d1 > c2

Reject the lot

No

No

Yes

No

Define the required parameters, i.e., mean life and risk 

requirements (μAQL , 1-α) and (μRQL , β), specified mean life 

(μ0), and the truncation time (tu), for the life test

d1 ≤  c1

Take second sample of size n2 randomly from the lot, 

count failed items d2 , and calculate the cumulative 

failed items d = d2 + d1 from n1+n2 sample items

Accept the lot d > c2 Yes

Stop

Start

Yes

Fig. 1 Flow chart for the operating procedure of TLT-DSP for TPLD
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life ratio (r = μ/μ0). This allows us to transform Eq. (9) into the following form:

F

(
tu
μ0

; μ

μ0
, η

)
= F(q; r , η) = 1 −

1 + η +
(

η+2
η+1

)
q
r

η + 1
e
−

(
η+2
η+1

)
q
r . (10)

The OC function plays a crucial role in evaluating the performance of a sampling plan. By
utilizing Eq. (10) with the given values of (tu, μ0, η), q = tu/μ0 can be obtained, and the
product’s failure probability canbe defined as a function of r = μ/μ0, i.e., p(r) = F(q; r , η).
Given that the lot size N is much greater than n, we can employ the binomial distribution
to calculate the lot acceptance probability for the first sample of size n1, π1(r). It can be
represented by the following equation:

π1(r) = P(d1 ≤ c1) =
c1∑

i=0

(
n1
i

)
p(r)i [1 − p(r)]n1−i

=
c1∑

i=0

(
n1
i

)
⎛

⎝1 −
1 + η +

(
η+2
η+1

)
q
r

η + 1
e
−

(
η+2
η+1

)
q
r

⎞

⎠

i⎛

⎝
1 + η +

(
η+2
η+1

)
q
r

η + 1
e
−

(
η+2
η+1

)
q
r

⎞

⎠

n1−i

.

(11)

Similarly, the lot acceptance probability for the second sample of n2, π1(r), can be for-
mulated as

π2(r) = P(d = d1 + d2 < c2| c1 < d1 ≤ c2)

=
⎛

⎝
c2∑

x=c1+1

(
n1
x

)
p(r)x [1 − p(r)]n1−x

⎞

⎠ ×
⎧
⎨

⎩

c2−x∑

j=0

(
n2
j

)
p(r) j [1 − p(r)]n2− j

⎫
⎬

⎭

(12)

=
c2∑

x=c1+1

(
n1
x

)⎛

⎝1 −
1 + η +

(
η+2
η+1

)
q
r

η + 1
e
−

(
η+2
η+1

)
q
r

⎞

⎠

x⎛

⎝
1 + η +

(
η+2
η+1

)
q
r

η + 1
e
−

(
η+2
η+1

)
q
r

⎞

⎠

n1−x

×

⎧
⎪⎨

⎪⎩

c2−x∑

j=0

(
n2
j

)⎛

⎝1 −
1 + η +

(
η+2
η+1

)
q
r

η + 1
e
−

(
η+2
η+1

)
q
r

⎞

⎠

j⎛

⎝
1 + η +

(
η+2
η+1

)
q
r

η + 1
e
−

(
η+2
η+1

)
q
r

⎞

⎠

n2− j⎫⎪⎬

⎪⎭
.

Thus, the OC function, total lot acceptance probability, of the proposed TLT-DSP under
the TPLD can be calculated as

�(r) = π1(r) + π2(r)

=
c1∑

i=0

(
n1
i

)
p(r)i [1 − p(r)]n1−i

+
c2∑

x=c1+1

(
n1
x

)
p(r)x [1 − p(r)]n1−x

⎧
⎨

⎩

c2−x∑

j=0

(
n2
j

)
p(r) j [1 − p(r)]n2− j

⎫
⎬

⎭
. (13)

As previously mentioned, the supplier–buyer contract specifies the AQL and RQL for
the product’s mean life at μAQL and μRQL, respectively. Hence, using the specified mean
life μ0 as a scaling factor, two ratios, rAQL = μAQL

/
μ0 and rRQL = μRQL

/
μ0, can be

further determined. By utilizing Eq. (13), the probability of acceptance from both parties’
perspectives can be expressed. In other words, the lot acceptance probability must meet the
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two-point conditions on the OC curve, represented symbolically as �(rAQL) ≥ 1 − α and
�(rRQL) ≤ β.

The proposed TLT-DSP incorporates a second opportunity for each submitted lot before
a conclusive judgment is reached. This feature highlights the utilization of the Average
Sample Number (ASN) as the preferred metric for evaluating two-stage inspections and
assessing submitted lots. The ASN refers the expected number of sample items required for
inspection to make a final decision regarding the disposition of the lot. This measure takes
into account the entire sampling endeavor, encompassing both the initial examination and
the potential subsequent sampling phase. The ASN function within the proposed TLT-DSP
can be determined using the following formula.

ASN(r) = n1 × [1 − P(c1 < d1 ≤ c2)] + (n1 + n2) × P(c1 < d1 ≤ c2)

= n1 + n2 × P(c1 < d1 ≤ c2)

= n1 + n2 ×
c2∑

x=c1+1

(
n1
x

)
p(r)x [1 − p(r)]n1−x . (14)

Thus, to ascertain the parameters of the proposed plan, n1, n2, c1 and c2, an optimization
model is established. The model aims to minimize the average ASN value evaluated at two
specified quality levels and consists of two non-linear constraints associatedwith the required
quality and risk conditions (i.e., rAQL, rAQL, α, and β).

Min ASN∗ = ASN(rAQL) + ASN(rRQL)

2
(15)

Subject to

�(rAQL) =
c1∑

i=0

(
n1
i

)

p(rAQL)i
[
1 − p(rAQL)

]n1−i

+
c2∑

x=c1+1

(
n1
x

)

p(rAQL)x
[
1 − p(rAQL)

]n1−x

⎧
⎨

⎩

c2−x∑

j=0

(
n2
j

)

p(rAQL) j
[
1 − p(rAQL)

]n2− j

⎫
⎬

⎭
≥ 1 − α,

�(rRQL) =
c1∑

i=0

(
n1
i

)

p(rRQL)i
[
1 − p(rRQL)

]n1−i

+
c2∑

x=c1+1

(
n1
x

)

p(rRQL)x
[
1 − p(rRQL)

]n1−x

⎧
⎨

⎩

c2−x∑

j=0

(
n2
j

)

p(rRQL) j
[
1 − p(rRQL)

]n2− j

⎫
⎬

⎭
≤ β,

n1, n2 ∈ N
+, c1, c2 ∈ N, c2 ≥ c1.

4 Analysis and discussion

The developed optimization model for the proposed TLT-DSP expressed in Eq. (15) involves
four plan parameters (n1, n2, c1 and c2). To enhance practical application and implementation,
a specific configuration of the DSP assumes that the required sample size for the second-
stage sampling (n2) is a multiple times (k) of the required sample size for the first stage
(n1), i.e., n2 = kn1. This approach has been suggested by Duncan (1986), Schilling and
Neubauer (2009), and Luca et al. (2020), who highlight its pragmatic usability. Moreover, to
explore the proposed TLT-DSP’s parameters, we consider various combinations of quality
levels rAQL =(2, 4, 6), rRQL = 1, q = (0.5, 1, 2), risk levels (α,β) = (0.01, 0.05) and
(0.05, 0.05) under k = (0.5, 1) and η = (0, 1, 2). The plan parameters are solved using the
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model expressed in Eq. (15) and tabulated in Tables 2 and 3, their corresponding values of
ASN* are also included. Furthermore, we have examined the relationships between ASN*
and other parameters, as depicted in Figs. 2, 3 and 4.

After examining these tables and figures, the following phenomena can be observed:

1. An increase in either α or β (or both) results in a smaller sample size and a lower
acceptance number of failed items for the first and second samples being required, i.e., n1,
n2,ASN*, c1 and c2. This could be because the producer and/or consumer accommodating
a greater risk of arriving at an incorrect conclusion. Conversely, a decrease in either α or
β (or both) leads to an increase in the required n1, n2, and ASN.

2. With a fixed rRQL = 1, a decrease in rAQL leads to an increase in the required sample
sizes and acceptance numbers of failed items for the sampling in the first and second
stages, i.e., n1, n2, ASN*, c1 and c2. This implies that a closer of two quality levels (rAQL
and rRQL) requires a larger sample size and ASN* for making a judgement. Conversely,
as the value of rAQL increases, a smaller sample size and ASN is sufficient.

3. Either a lower and higher value of q can result in an increase in the sample size needed
and the acceptance number of failed items. This is because a larger or smaller value of

Fig. 2 Plots of ASN* versus various α values when β = 0.01 under q = 1

Fig. 3 Plots of ASN* versus various β values when α = 0.01 under q = 1
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Fig. 4 ASN* plot versus various q under (rAQL, rRQL) = (2, 1)

q indicates that the termination time is significantly greater or smaller than the specified
mean life, and the product failure rate is relatively high or low before the life test is
terminated. As a result, a larger sample size and ASN are necessary in both scenarios to
differentiate between good and poor product lots.

Furthermore, we conducted a comparison between SSP and DSP for truncated life tests
under the TPLD. Our study examined various conditions, such as k = (0.5, 1), q = (0.5, 1,
2), η = (0, 1), and the ASN curves of SSP and DSP with k = (0.5, 1) under (rAQL, rRQL)
= (4, 1) are shown in Figs. 5 and 6 for (α, β) = (0.01, 0.05) and (0.05, 0.05), respectively.
For instance, consider the given conditions of (α, β) = (0.01, 0.05), (rAQL, rRQL) = (4, 1),
k = 1, q = 0.5, and η = 0. Under these circumstances, SSP requires a fixed sample size of
27, regardless of the actual quality of the lot. In contrast, our proposed DSP only mandates
14 sample items, achieving an ASN ranging from 14.00 to 24.64 for various values of r
between 0.01 and 4.00, respectively. Furthermore, in comparison to SSP, DSP requires a
sample size (n) of 14, yielding an ASN that varies from 14.00 to 24.64 for different values of
r between 0.01 and 4.00. Specifically, at r = 3.0, the corresponding ASN is 23.83, indicating
a potential reduction of approximately 23.85% in required inspection samples. However, for
cases involving marginal or ambiguous lot quality (e.g., r = 2.0), a slight increase in ASN
to 23.83 for inspection samples may be needed.

It can be identified from Figs. 5 and 6 that DSP is superior in terms of requiring a smaller
ASN especially when the ratio r is not in the middle range, in comparison to SSP under the
same conditions. That is, DSP is more suitable when the quality of the product batch is either
very good or very poor, as it enables the lot to be either accepted or declined immediately
during the first stage of sampling. On the other hand, SSP is still more appropriate when
the lot’s quality falls within the average range, as a secondary sample might be necessary to
reach a conclusive decision.

Additionally, it’s important to emphasize that the selection of appropriate sampling plans
should take into account various factors, such as the organization’s objectives, operational
constraints, quality profile, and historical data. Therefore, the analysis presented in this study
aims to offer insights into the potential benefits of both SSP and DSP, rather than establish
rigid criteria. For instance, in scenarios where there is limited knowledge about a supplier,
the initial inclination might be towards using SSP. However, as the supplier’s quality and
reputation progressively improve, transitioning to DSP could become more advantageous.
This pragmatic approach ensures alignment with evolving quality assurance strategies.
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Fig. 5 ASN curves of SSP and DSP with k = (0.5, 1) under (rAQL, rRQL) = (4, 1) and (α, β) = (0.01,
0.05)

Furthermore, the OC function is also an essential performancemeasure that can be utilized
to assess the discriminatory power of a sampling plan. A steeper slope in the OC curve
indicates a higher discriminatory power. Typically, two methods illustrate the superiority
of an OC curve: (a) achieving an equivalent discriminatory power (i.e., a similar OC curve
shape)with fewer samples, and (b)maintaining a steeper slope in theOC curvewhile utilizing
the same sample size.

Figures 7 and 8 depict the OC curves of both the SSP and DSP with k = (0.5, 1), q = (0.5,
1), η = (0, 1) under (rAQL, rRQL) = (4, 1), along with different combinations of risks (α,
β) = (0.01, 0.05) and (0.05, 0.05), respectively. From Figs. 7 and 8, it is evident that these
OC curves are quite similar, demonstrating relative equivalence and satisfying the required
quality-and-risk conditions. This indicates that the proposed plan would offer comparable
protection for both the producer and the consumer, even with a smaller sample size.

In contrast, the OC curves of the SSP and DSP with k = (0.5, 1), q = 0.5, η = 0 were
also evaluated under an equal sample size and presented in Fig. 9a and b for n = 20 and n
= 40, respectively. It can be observed from Fig. 9a and b that the proposed DSP’s OC curve
exhibits better discriminatory power than the SSP under a fixed sample size, thus aiding users
in making more reliable lot determinations.

As a result, through the analysis of two performancemeasures, ASNandOCcurves,mean-
ingful insights can be gleaned from the evaluation of the proposed plan’s behavior. It is evident

123



Annals of Operations Research

Fig. 6 ASN curves of SSP and DSP with k = (0.5, 1) under (rAQL, rRQL) = (4, 1) and (α, β) = (0.05,
0.05)

that the proposed plan demonstrates efficient performance with a reduced sample size, ensur-
ing comparable protection for both the producer and customer. Additionally, the proposed
DSP’s two-stage inspection provides a nuanced approach to quality assessment. A successful
initial sample indicates acceptable quality, facilitating efficient lot disposition decisions. In
contrast, a failed initial sample initiates more thorough scrutiny, indicating potential quality
issues and triggering corrective actions, along with a larger second sample for further evalu-
ation. This transparent process encourages open discussions among stakeholders, enhancing
their understanding of quality standards and facilitating collaborative quality control efforts,
ultimately improving communication between producers and consumers.

5 A comparative study

In this section, we present an example taken from Lawless (2003) to illustrate how the pro-
posed DSP plan operates in a truncated life test. The example also involves a comparison
between TPLD andWeibull distribution, which are commonly used probability distributions
for analyzing life data. Initially, it was presumed that the data conforms to a Weibull distri-
bution having a shape parameter of 1.97 (as shown in Table 4 for 23 ball bearing life data).
However, Shanker et al. (2016) presented an argument suggesting that the TPLD is a better
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Fig. 7 OC curves of SSP and DSP with k = (0.5, 1), q = (0.5, 1), η = (0, 1) under (rAQL, rRQL) = (4, 1) and
(α, β) = (0.01, 0.05)

fit for this data under η̂ = −0.358716 and θ̂ = 0.035434, as it has a higher p-value. This
claim is further supported by the distribution fit test performed on the data, which showed
that the data can be adapted to both the TPLD and Weibull distribution (refer to Fig. 10 and
Table 5).

Suppose that the product’s mean lifetime (μ0) is specified at 20, and the truncation time
(tu) of the experiment is also 20, implying that q = tu/μ0 = 1. Based on these parameters,
two ratio quantities, rAQL = 2 and rRQL = 1, can be further determined. Table 6 shows the
plan parameters of the DSP when the two-parameter Lindley and Weibull distributions are
applied to the ball bearing life data under the above given parameters and risk conditions
(α = 0.05 and β = 0.05).

If the data are adapted to the TPLD, this batch will be accepted as there are 0 records below
20 in the first 6 records, which do not exceed the first allowable quantity of 0. Consequently,
this batch will be accepted, and there is no need to draw the next stage sample. Similarly, if
the data is adapted to the Weibull distribution, this lot will also be accepted as there are 0
transactions below 20 in the first 14 data, which does not exceed the first allowable number
of 4. Hence, there is no need to draw the next stage sample for either of the cases.

In addition, the ASN curves of DSP for TPLD andWeibull distribution under the truncated
life test are displayed in Fig. 11. It can be inferred that the ASN required by the two-parameter
Lindley distribution is smaller than that required by the Weibull distribution. Therefore, if
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Fig. 8 OC curves of SSP and DSP with k = (0.5, 1), q = (0.5, 1), η = (0, 1) under (rAQL, rRQL) = (4, 1) and
(α, β) = (0.05, 0.05)

Fig. 9 OC curves of SSP and DSP with k = (0.5, 1), q = 0.5, η = 0 under a fixed sample size

123



Annals of Operations Research

Table 4 The 23 ball bearing life data

68.64 105.12 67.80 54.12 93.12 42.12 105.84 173.40

33.00 84.12 68.44 48.80 68.88 45.60 51.84 17.88

28.92 128.04 127.92 98.64 41.52 55.56 51.96

Fig. 10 Probability plots of ball bearing life data for two-parameter Lindley and Weibull distributions

Table 5 Distribution fit test result of ball bearing life data

Distribution model K-S test statistic p-value

Two-parameter Lindley distribution (TPLD) 0.0985 0.9629

Weibull distribution 0.1512 0.6159

the goal is to require fewer samples, it is better to use the two-parameter Lindley distribution
for analyzing the data in this case.

6 An example demonstration by the developed GUI

This section will demonstrate the use of the proposed TLS-DSP using a practical case as an
example. The data used in this casewas obtained fromFuller et al. (1994),which consists of 31
data points about the pressure strength of the internal layer of an airplane window measured
in MPa (see Table 7). The airplane’s window is constructed using a dual-layered acrylic
glass that can be separated into an internal and external layer. The space between these two
layers is used for controlling the pressure and temperature within the airplane. However, the
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Table 6 DSP’s parameters under the two-parameter Lindley and Weibull distributions

Distribution Model n1 n2 c1 c2

Two-parameter Lindley distribution (TPLD) 6 6 0 4

Weibull distribution 14 14 4 7

Fig. 11 ASN curves of DSP for Two-parameter Lindley and Weibull distributions

Table 7 The 31 data of pressure strength (unit: MPa) from Fuller et al. (1994)

26.690 39.580 33.760 31.110 33.730 24.050 36.980 45.381 34.760

23.230 18.830 27.670 29.900 33.200 25.800 24.321 33.890 21.657

37.080 35.750 37.090 35.910 44.045 25.520 26.780 23.030 26.770

27.050 45.290 25.500 20.800

intensity of pressure can cause damage to the surface and edge of the window. This damage
can be caused by various factors such as poor manufacturing and dust/sand during flight.
The lifespan of an airplane window is primarily influenced by pressure intensity and relative
humidity. High relative humidity limits the window’s ability to handle pressure, resulting in a
shorter lifespan,whereas lower relative humidity enables thewindow to enduremore pressure
and last longer. In Fuller et al. (1994)’s study, they used 31 data points of borosilicate glass
(BK-7 glass) to examine its compressive strength distribution under an inert-gas-atmosphere.
The experiment was conducted at room temperature, and the glass was exposed to varying
pressures of water to determine the anticipated lifespan of the window.

Shanker et al. (2016) also examined this dataset and presented the results of distribution
fit tests, including AIC, AICC and BIC, in Table 8. These information criteria are used to
compare the fit of different distributionmodels to a given set of data. In general, smaller values
ofAIC,AICC, andBIC indicate a bettermodel fit. Thus, it can be inferred that TPLD is a better
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Table 8 Parameter estimate and criteria for distribution fit tests (Shanker et al., 2016)

Data Distribution Model Distribution
parameters
estimated by ML
method

Test information criteria

AIC AICC BIC

The 31 pressure
strength data
from Fuller et al
(1994)

One-parameter Lindley
distribution (OPLD)

θ̂ = 0.062988 255.99 256.13 257.42

Exponential distribution θ̂ = 0.032455 276.53 276.67 277.96

Two-parameter Lindley
distribution (TDLP)

θ̂ = 0.035434η̂ =
−0.546267

235.82 236.25 238.69

fit than the OPLD and exponential distribution. Furthermore, the parameters of the TPLD
can be estimated through the maximum likelihood (ML) method, yielding η̂ = −0.546267
and θ̂ = 0.035434.

Suppose the agreement specifies a mean product strength (μ0) of 30 MPa, and the max-
imum strength test (tu) of the experiment is 30 MPa, That is, the ratio of q = tu/μ0 = 1.
Under the conditions specified in the contract (rAQL = 2, rRQL = 1, α = 0.05 and β = 0.05),
the plan’s parameters can be obtained using the model expressed in Eq. (15), i.e., the first
sample number n1 and the second sample number n2 are both 4, the first acceptable number
c1 is 0, and the second acceptable number c2 is 2 (see also from Fig. 12).

In addition, to assist practitioners in implementing the proposed TLT-DSP in real-world
scenarios, a user-friendly graphical user interface (GUI) application has been created, which
comprises two segments. The first segment (depicted in Fig. 12) includes (1)ReferencedData,
(2) Selected Parameters, and (3) Criteria. The user is required to input necessary conditions,
such as the required quality levels (rAQL, rRQL), tolerated risk levels (α, β), truncation time
(tu), and specified mean (μ0), which are agreed upon and approved by both the supplier and
the customer. Besides, the user must provide the shape parameter for the TPLD and select
the parameters k (or use the default setting of k = 1) before clicking the "Calculate" button to
obtain the plan parameters, including the required sample sizes and the acceptance numbers
for the first and second-stage sampling.

After clicking the "Calculate" button, the GUI will automatically exhibit the second seg-
ment (shown on the right in Fig. 13), which includes (1) Input or Import the Data, (2) Result,
and (3) Decisions for the first-stage sampling and, if needed, the second-stage sampling.

Thus, the pressure strength data of aircraft windows can be imported into the GUI appli-
cation to determine the lot’s acceptability. In this session, the user can simply input the data
information or import the data file by clicking the “Import Data” button, and the data will
be automatically displayed. If the "Result" button is clicked, the sample statistics for the
data (data size, required sample size, defective items, and sample mean) will be displayed
and a decision on the lot disposition will be provided. For example, consider the four data
points (n1 = 4): 39.580, 33.760, 31.110, and 33.730. Since no data point is less than 30
(i .e., d1 = 0), which is no more than first acceptable number (c1 = 0), the lot can be
accepted. The results are shown in Fig. 13.

If the number of failures (d1) during the first-stage sampling inspection exceeds the first
acceptance number (c1) but does not exceed the second acceptance number (c2), a second-
stage sampling will be required. In such a scenario, the GUI will display an additional layer
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Fig. 12 GUI for plan parameters determination (first segment)

in the window session automatically, allowing the user to input or import data for the second-
stage sampling. The sample results and the final decision on the lot will be also given. During
the second-stage sampling, if the cumulative number of failed items (d = d1+d2) is no more
than c2 items failed from the cumulative samples (n1+n2), the lot will be accepted. However,
if it exceeds the limit, the lot will be rejected, and the test will be stopped. Therefore, the
developed GUI application simplifies the process of determining plan parameters, inputting
sample data, computing sample results, and recommending a course of action.

7 Conclusions

An acceptance sampling plan consists of a set of rules and procedures used to determine
whether to accept or reject a lot of products or materials based on inspecting samples from the
lot. However, testing until all examined samples fail can be both costly and time-consuming,
particularly for items with extended lifespans. To address this challenge, truncated life tests
have emerged as an experimental method to estimate the reliability or longevity of compo-
nents, products, or systems.

This study introduces the development of a DSP for truncated life tests, referred to as TLT-
DSP, based on the TPLD. A mathematical model is formulated to determine plan parameters
by minimizing the ASNwhile adhering to quality level and sampling risk criteria. Compared
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Fig. 13 GUI for sample results calculation and lot disposition (second segment)

to the existing SSP, the TLT-DSP requires fewer samples for lot disposition, particularly for
lots with excellent or unsatisfactory quality, thereby leading to reduced inspection costs. The
study presents two cases: the first highlights operational procedures, comparing the TPLD
and Weibull distribution and concluding the suitability of TPLD for product lifetime data.
Additionally, a user-friendlyGUI application has been created to simplify the implementation
of the TLT-DSP in practical scenarios. The second case illustrates the practical application of
TLT-DSP in airplane window pressure strength testing using the designed GUI application.

Lastly, it’s essential to note that this study focused on the TPLD and the proposed DSP
for truncated life tests. Although the paper introduces a general DSP framework that could
extend to other probability distributions, each distribution holds unique characteristics and
assumptions that influence their applicability when analyzing truncated life data. A distribu-
tion’s suitability for modeling specific datasets depends on its distinct shape, scale, and tail
behavior. This suggests that future research directions could explore these aspects indepen-
dently.
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