DAFTAR PUSTAKA

- Abbasizadeh, S.; Reza, A.; Ali,M. 2013 . Preparation of a Novel Electrospun Polyvinyl alcohol/titanium Oxide Nanofiber Adsorbent Modified with Mercapto Groups for Uranium(VI) and Thorium(IV) Removal from Aqueous Solution. *Chemical Engineering Journal*. **220**, 161-171.
- Adhani, Rosihan,dan Husaini.2017. *Logam Berat Sekitar Manusia. Lambung Mangkurat* University Press, Banjarmasin.
- Azhati, A., Xie, S., Wang, W., Elzatahry, A. A., Yan, Y., Zhou, J., Al-Dhayan, D., Zhang, Y & Zhao, D. 2016. Ordered, highly zeolitized mesoporous aluminosilikates produced by a gradient acidic assembly growth strategy in a mixed template system. *Chemistry of Materials*, **28(13)**, 4859-4866.
- Aghayan, H.; Khanci, A.R.; Youseli, T.; Ghasemi, H. 2017. Tungsten Substitued Molybdophosphoric Acid Loaded on Various Type of Mesoporous Silica SBA-15 for application of Thorium Ion Adsorption. *Journal of Nuclear Materials*.
- Anbia, M., Kargosha, K., Khoshbooei, S. 2015. Heavy metal ions removal from aqueous media bu modified magnetic mesoporous silica MCM-48. *Chemical Engineering Research and Design.*
- Aydin, F.A.; Soylak, M. 2010. Separation, Preconcentration and Inductively Couple Plasma-Mass Spectrometric (ICP-MS) Determination of Thorium(IV), Titanium (IV), Iron(II), Lead(II) and chromium (III) on 2-Nitroso-1-Naphthol Impregnated MCI GEL CHP20P Resin. *Journal of Hazardous Materials.* **173**, 669-674.
- Anirudhan, TS.; Jalajamony, S. 2013. Ethyl Thiosemicarbazide Intercalated Organophilic Calcined Hydrotalcite as a Potential Sorbent for The Removal of Uranium(VI) and Thorium (IV) Ions from Aqueous Solutions. *Journal of Environmental Sciences*. (Beijing, Cina), **25**, 717-725.
- Alqadami, A.A.; Nausad, M.; Abdallah, M.A.;Ahmad, T.; Alothman, Z. A.;Alshehri, S.M. 2016. Synthesis and Characterization of Fe₃O₄@TSC Nanocomposite: Highly Efficient Removal of Toxic Metal lons from Aqueous Medium. *Royal Society Chemistry Advances*. 6, 22679-22689.
- Albadarin, A.B.; Collins, M.N.; Naushad, M.; Shirazian, S.; Mangwandi, C. 2016. Activated Lignin-Chitosan Extruded Blends for Efficient

Adsorption of Methylene Blue. *Chemical Engineering Journal*. **307**,264-272.

- Aljerf, L. 2018. High-efficiency extraction of bromocresol purple dye and heavy metals as chromium from industrial effluent by adsorption onto a modified surface of zeolite: kinetics and equilibrium study. *Journal of environmental management*, **225**, 120-132.
- Azizi, D., Ibsaine, F., Dionne, J., Pasquier, L. C., Coudert, L., & Blais, J. F. 2021. Microporous and macroporous materials state-of-the-art of the technologies in zeolitization of aluminosilicate bearing residues from mining and metallurgical industries: A comprehensive review. *Microporous and Mesoporous Materials*, *318*, 111029.
- Adamson, A.W. Gast, A.P. 1997, Physical Chemistry of Surfaces, Sixth Edition, Wiley-Interscience, New York.
- Ademiluyi, F. T., & Nze, J. C. 2016. Multiple adsorption of heavy metal ions in aqueous solution using activated carbon from Nigerian bamboo. International Journal of Research in Engineering and Technology, 5(1), 164-169.
- Ahn, C. K., Park, D., Woo, S. H., & Park, J. M. 2009. Removal of cationic heavy metal from aqueous solution by activated carbon impregnated with anionic surfactants. *Journal of hazardous materials*, **164(2-3)**, 1130-1136.
- Ajemba, R. O. 2014. Assessing influence of hydrochloric acid leaching on structural changes and bleaching performance of Nigerian clay from Udi Optim. *Isotherm Kinetic Study*, **27**, 839-854.
- Barlokova, D. 2008. Natural zeolit in the water treatment process, *Slovak Journal of Civil engineering*, 8 12.
- Bandyopadhyay, M. 2004. *Synthesis of Mesoporous MCM-48 with Nanodispersed Metal and Metal Oxide Particles Inside the Pore System*. Dissertation. Ruhr-Universitat Bochum, Bochum.
- Bandyopadhyay, M.; Tsunoji, N.; Sano, T. 2017. Mesoporous MCM-48 Immobilized Ion Aminoprophyltriethoxysilane: A Pontial Catalyst for transesterification od Triacetin. *Catalysis Letters*. **147(4)**, 1040-1050.
- Basir, DN. 2015. Kemurnian dan Nilai Faktor Pemisahan Transpor Unsur La Terhadap Unsur Nd, Gd, Lu Dengan Teknik embran Cair Berpendukung. *Jurnal Alam dan Lingkungan*, Vol. 6(11). 49-55.

- Berenguer Murcia, A. 2013. Ordered porous nanomaterials: The merit of small. *ISRN Nanotechnology*.
- Belova, T.P. 2019. Adsorption of heavy metal ions (Cu²⁺, Ni²⁺, Co²⁺, dan Fe²⁺) from aqueous solutions by natural zeolit. *Heliyon*. **5**. e02320.
- Bentahar, Y., Hurel, C., Draoui, K., Khairoun, S., & Marmier, N. 2016. Adsorptive properties of Moroccan clays for the removal of arsenic (V) from aqueous solution. *Applied Clay Science*, **119**, 385-392.
- Butzetzki, E.; Svanova, K.; Cvengros, J. 2009. Zeolit catalysts in cracking of natural triacylglycerols. In: *44th International Petroleum Conference, Bratislava, Slovak Republic.* 21-22.
- Buhani, Narsito, Nuryono, and Kunarti E. S. 2013. Chemical Stability of Cd(II) and Cu(II) Ionic Imprinted Amino-Silica Hybrid Material in Solution Media. *Eksakta***13**(1-2): 1-10.
- Baerlocher, Christian. McCusker, Lynne B. Olson, D.H. (2007), Atlas of Zeolite Framework Types, 6th Revised Edition, Structure Comission of The International Zeolite Association, USA Elsevier.
- Bakakin, V. V., Alekseev, V. I., Seretkin, Y. V., Belitskii, I. A., Fursenko, B. A., & Balko, V. P. 1994. Crystal-structure of dehydrated analcimeplane fourfold coordination of sodium. In *Doklady Akademii Nauk*. **339(4)**, pp. 520-524.
- Bejar, A., Chaabene, S. B., Jaber, M., Lambert, J. F., & Bergaoui, L. 2014. Mn-analcime: Synthesis, characterization and application to cyclohexene oxidation. *Microporous and mesoporous materials*, **196**, 158-164.
- Buhl, J. C., Taake, C., Stief, F., & Fechtelkord, M. 2000. The crystallisation kinetics of nitrate cancrinite Na_{7.6}[AlSiO₄]₆ (NO₃)_{1.6} (H₂O)₂ under low temperature hydrothermal conditions. *Reaction Kinetics and Catalysis Letters*, **69(1)**, 15-21.
- Bian, R., Zhu, J., Chen, Y., Yu, Y., Zhu, S., Zhang, L., & Huo, M. 2019. Resource recovery of wastewater treatment sludge: synthesis of a magnetic cancrinite adsorbent. *Royal Society Chemistry* advances, 9(62), 36248-36255.
- Cao, J., Wu, Y., Jin, Y., Yilihan, P., & Huang, W. 2014. Response surface methodology approach for optimization of the removal of chromium (VI) by NH₂-MCM-41. *Journal of the Taiwan Institute of Chemical Engineers*, *45*(3), 860-868.

- Chaikittisilp, W., and Okubo, T. 2017. Zeolite and zeolite-like materials. *Handbook of Solid State Chemistry*, 97-119.
- Chen, M., Nong, S., Zhao, Y., Riaz, M. S., Xiao, Y., Molokeev, M. S., & Huang, F. 2020. Renewable P-type zeolite for superior absorption of heavy metals: Isotherms, kinetics, and mechanism. *Science of The Total Environment*, 138535.
- Chen, L. H., Sun, M. H., Wang, Z., Yang, W., Xie, Z., & Su, B. L. 2020. Hierarchically structured zeolites: from design to application. *Chemical reviews*, **120(20)**, 11194-11294.
- Christensen, C. H., Johannsen, K., Schmidt, I., & Christensen, C. H. 2003. Catalytic benzene alkylation over mesoporous zeolit single crystals: improving activity and selectivity with a new family of porous materials. *Journal of the american chemical society*, **125(44)**, 13370-13371.
- Cholico-González, D., Ortiz Lara, N., Fernández Macedo, A. M., & Chavez Salas, J. 2020. Adsorption Behavior of Pb(II), Cd(II), and Zn(II) onto Agave Bagasse, Characterization, and Mechanism. *American Chemical Society omega*, **5**(7), 3302-3314.
- Chen, J., Fang, K., Wu, L., Qian, Z., & Chen, J. 2011. Removal of Cd(II) from aqueous by adsorption onto mesoporous Ti-MCM-48. *Procedia Environmental Sciences*, *10*, 2491-2497.
- Couty, R., & Velde, B. 1986. Pressure-induced band splitting in infrared spectra of sanidine and albite. *American Mineralogist*, **71(1-2)**, 99-104.
- Crundwell, F. K. 2015. The mechanism of dissolution of the feldspars: Part II dissolution at conditions close to equilibrium. *Hydrometallurgy*, **151**, 163-171.
- Darmono. 2001. *Logam dalam Sistem Biologi Makhluk Hidup*, UI Press, Jakarta.
- Dai, C., Zhang, A., Liu, M., Gu, L., Guo, X., & Song, C. 2016. Hollow alveolus-like nanovesicle assembly with metal-encapsulated hollow zeolit nanocrystals. *American Chemical Society nano*, **10(8)**, 7401-7408
- Darmayanti, L., Kadja, G. T., Notodarmojo, S., Damanhuri, E., & Mukti, R. R. 2019. Structural alteration within fly ash-based geopolymers

governing the adsorption of Cu2+ from aqueous environment: Effect of alkali activation. *Journal of hazardous materials*, **377**, 305-314.

- Deliere, L., Villemot, F., Farrusseng, D., Galarneau, A., Topin, S., & Coasne, B. 2016. Adsorption in heterogeneous porous media: hierarchical and composite solids. *Microporous and Mesoporous Materials*, **229**, 145-154.
- Didi Dwi Anggoro. 2017. Teori dan Aplikasi Rekayasa Zeolite. Cetakan Pertama, Januari 2017, UNDIP Press. Semarang.
- Doyle, A., and Hodnett, B. K. 2003. Stability of MCM-48 in Aqueous Solution as A Function of pH. *Microporous Mesoporous Mater*.**63**: 53-57.
- Dutta, D., Roy,K. S., Talukdar, A.K. 2017. Effective Removal of Cr(VI) From Aqueous Solution By Diamino-Functionalised mesoporous MCM-48 And Selective Oxidation of Cyclohexene And Ethylbenzene Over The Cr Containing Spent Adsorbent. *Journal of Environmental Chemical Engineering*. DOI:10.1016/j.jece.2017.08.039
- Dong, S., Li, C., Li, Z., Zhang, L., & Yin, L. 2018. Mesoporous Hollow Sb/ZnS@ C Core–Shell Heterostructures as Anodes for High-Performance Sodium-Ion Batteries. *Small*, **14(16)**, 1704517.
- De Luca, P., Bernaudo, I., Elliani, R., Tagarelli, A., Nagy, J. B., & Macario, A. 2018. Industrial waste treatment by ETS-10 ion exchanger material. *Materials*, **11(11)**, 2316.
- Dong, C., Zhang, F., Pang, Z., & Yang, G. 2016. Efficient and selective adsorption of multi-metal ions using sulfonated cellulose as adsorbent. *Carbohydrate polymers*, **151**, 230-236.
- Emelda, L., Putri., S. M., Ginting, S., 2013. Pemanfaatan Zeolit Alam Teraktivasi untuk Adsorpsi Logam Krom (Cr³⁺). Jurnal Rekayasa Kimia dan Lingkungan. **9 (4)**. 166 – 172.
- Enterria, M., Fabian, SG., Amelia, MA, Juan, MD.T. 2014. Preparation of hierarchical micro-mesoporous alluminosilicate composite by simple Y zeolite/MCM-48 silica assembly. *Journal of Alloys and Compounds*, 583, 60-69.
- Engates, K. E., & Shipley, H. J. 2011. Adsorption of Pb, Cd, Cu, Zn, and Ni to titanium dioxide nanoparticles: effect of particle size, solid concentration, and exhaustion. *Environmental Science and Pollution Research*, **18**, 386-395.

- Elysabeth, T. 2015. Adsorbsi Logam Berat Besi dan Timbal Menggunakan Zeolit Alam Bayah Teraktivasi. *Jurnal Chemtech*, **1(01)**.
- Elías, V. R., Oliva, M. I., Vaschetto, E. G., Urreta, S. E., Eimer, G. A., & Silvetti, S. P. 2010. Magnetic properties of iron loaded MCM-48 molecular sieves. *Journal of magnetism and magnetic materials*, **322(21)**, 3438-3442.
- Eddaoudi, M., Sava, D. F., Eubank, J. F., Adil, K., & Guillerm, V. 2015. Zeolite-like metal–organic frameworks (ZMOFs): design, synthesis, and properties. *Chemical Society Reviews*, **44(1)**, 228-249.
- Enterría, M., Suárez-García, F., Martínez-Alonso, A., & Tascón, J. M. 2014. Preparation of hierarchical micro-mesoporous aluminosilicate composites by simple Y zeolite/MCM-48 silica assembly. *Journal of alloys and compounds*, **583**, 60-69.
- Ebadi, A., Soltan Mohammadzadeh, J.S., Khudiev, A., 2009. What is the correct form of BET isotherm for modeling liquid phase adsorption Adsorption **15**, 65–73.
- Feng, G., Cheng, P., Yan, W., Boronat, M., Li, X., Su, J. H., Yu, J. 2016. Accelerated crystallization of zeolite via hydroxyl free radicals. *Science*, **351(6278)**, 1188-1191.
- Feng, G., Wang, J., Boronat, M., Li, Y., Su, J. H., Huang, J., Yu, J. 2018. Radical-facilitated green synthesis of highly ordered mesoporous silica materials. *Journal of the American Chemical Society*, **140(14)**, 4770-4773.
- Ferhat, M.; Kadouche, S.; Drouiche, N.; Messaoudi, K.; Messaoudi, B.; Lounici, H. 2016. Competitive Adsorption of Toxic Metals an Bentonite and Use of Chitosan as Flocculent Coagulant to speed up the Settling of Generated Clay Suspensions. *Chemosphere*. **165**, 87-93.
- Fu, W., Zhang, L., Tang, T., Ke, Q., Wang, S., Hu, J., Fang, J., & Xiao, F. S. 2011. Extraordinarily high activity in the hydrodesulfurization of 4, 6dimethyldibenzothiophene over Pd supported on mesoporous zeolit Y. Journal of the American Chemical Society, **133(39)**, 15346-15349.
- Fu, F., Xie, L., Tang, B., Wang, Q., & Jiang, S. 2012. Application of a novel strategy-Advanced Fenton-chemical precipitation to the treatment of strong stability chelated heavy metal containing wastewater. *Chemical Engineering Journal*, **189**, 283-287.

- Fu, F., & Wang, Q. 2011. Removal of heavy metal ions from wastewaters: a review. *Journal of environmental management*, **92(3)**, 407-418.
- Fathy, M., Selim, H., dan Shahawy, A.E. 2020. Chitosan/MCM-48 nanocomposite as a potential adsorbent for removing phenol from aqueous solution. *Royal Society Chemistry advances*, **10(39)**, 23417-23430.
- Foo, K.Y. dan Hameed, B.H. 2011, "The Environmental Application of Activated Carbon/Zeolite Composite Materials", *Advances in Colloid and Interface Science*, **162**, 22-28.
- Freundlich, H.M.F., 1906. Über die adsorption in lösungen. Z. *Physic Chemical*. **57**,385–470.
- Gau, A.w.; Taba, P.; Budi, P. 2015. Modofikasi Silika Mesopori MCM-48 dengan 3 Aminopropiltrimetoksisilan (3-APTMS) dan Uji Adsorpsiny aterhadap Ion Pb(II). *Jurnal Techno.* **4(2)**. 23-30
- Gao, S., Wang, Z., Ma, L., Liu, Y., Gao, J., & Jiang, Y. 2019. Mesoporous Core–Shell Nanostructures Bridging Metal and Biocatalyst for Highly Efficient Cascade Reactions. *American Chemical Society Catalysis*, 10(2), 1375-1380.
- Gao, H., Xiu, M. Q., Wang, M. Y., Zhan, B. Y., Deng, X., Xu, & Liu, G. 2019. Systematic investigation on the adsorption performance and mechanism of MnO2/TA nanoflowers for Cu (II) removal from aqueous solution. *Chemistry Select*, 4(11), 3247-3258.
- García-Villén, F., Flores-Ruíz, E., Verdugo-Escamilla, C., & Huertas, F. J. 2018. Hydrothermal synthesis of zeolites using sanitary ware waste as a raw material. *Applied Clay Science*, **160**, 238-248.
- Groen, J. C., Peffer, L. A. A., Moulijn, J. A., & Pérez-Ramırez, J. 2004. Mesoporosity development in ZSM-5 zeolit upon optimized desilikation conditions in alkaline medium. *Colloids and Surfaces A: Physicochemical and Engineering Aspects*, **241(1-3)**, 53-58.
- Groen, J. C., Abelló, S., Villaescusa, L. A., & Pérez-Ramírez, J. 2008. Mesoporous beta zeolit obtained by desilikation. *Microporous and mesoporous materials*, **114(1-3)**, 93-102.
- Gawin, M., Konefał, J., Trzewik, B., Walas, S., Tobiasz, A., Mrowiec, H., Witek, E. 2010. Preparation of a new Cd (II)-imprinted polymer and its application to determination of cadmium (II) via flow-injection-flame atomic absorption spectrometry. *Talanta*, *80*(3), 1305-1310.

- Guidelines for Drinking-water Quality, fourth ed.; World Health Organization: Geneva, 2017.
- Harben, P., Kuzvart, M. 1996. A Global Geology; Industrial Minerals. New York: Industrial Minerals Information,Ltd.
- Hirscher, Michael, 2009, Handbook of Hydrogen Storage: New Materials for Future Energy Storage. WILEY-VCH Verlag GmbH and Co. KGaA,Germany.
- Hardjatmo., Husaini, 1996. *Study the properties of some Indonesian Natural Zeolits*, on One Day Seminar on Mineral Property and Utilization of Natural Zeolit, JSPS-BPPT, Jakarta.
- Huo, Q., Gong, Y., Dou, T., Zhao, Z., Pan, H., Deng, F. 2010. Novel microand mesoporous composite molecular sieve assembled by zeolit L nanocrystal and its performance for the hydrodesulfurization (HDS) of fluid catalytic cracking (FCC) gasoline. *Energy & fuels*, *24*(7), 3764-3771.
- Hao, S., Zhong, Y., Pepe, F., Zhu, W. 2012. Adsorption of Pb²⁺ and Cu²⁺ on Anionic Surfactant-Templated Amino-Functionalized Mesoporous Silicas. *Chemical Engineering Journal*.**189-190**: 160-167.
- Hincapie, B. O., Garces, L. J., Zhang, Q., Sacco, A., & Suib, S. L. 2004. Synthesis of mordenite nanocrystals. *Microporous and mesoporous materials*, 67(1), 19-26.
- Ivanova, I. I., & Knyazeva, E. E. 2013. Micro-mesoporous materials obtained by zeolit recrystallization: synthesis, characterization and catalytic applications. *Chemical Society Reviews*, **42(9)**, 3671-3688.
- Jais, N., Ikhtiar, M., Gafur, A., & Abbas, H. H. 2020. Bioakumulasi Logam Berat Kadmium (Cd) dan Kromium (Cr) yang Terdapat dalam Air dan Ikan di Sungai Tallo Makassar. *Window of Public Health Journal*, 261-273.
- Ji, C., Zhang, L., Li, L., Li, F., Xiao, F., Zhao, N., Wei, W., Chen, Y., Wu, F. 2016. Synthesis of Micro-mesoporous Composites MCM-41/13X and their Application on CO₂ Adsorption: Experiment and Modeling. *I&EC Research.*
- Jiang, Y., Abukhadra, M. R., Refay, N. M., Sharaf, M. F., El-Meligy, M. A., & Awwad, E. M. 2020. Synthesis of chitosan/MCM-48 and βcyclodextrin/MCM-48 composites as bio-adsorbents for

environmental removal of Cd²⁺ ions; kinetic and equilibrium studies. *Reactive and Functional Polymers*, **154**, 104675.

- Jiang, H., Alezi, D., & Eddaoudi, M. (2021). A reticular chemistry guide for the design of periodic solids. *Nature Reviews Materials*, 6(6), 466-487.
- Jin, Y., Liu, Z., Han, L., Zhang, Y., Li, L., Zhu, S., Wang, D. 2022. Synthesis of coal-analcime composite from coal gangue and its adsorption performance on heavy metal ions. *Journal of Hazardous Materials*, **423**, 127027.
- Kadja, G., & Ilmi, M. M. (2019). Indonesia Natural Mineral for Heavy Metal Adsorption: A Review. *Journal of Environmental Science and Sustainable Development*, **2(2)**, 3.
- Kartawa, W., & Kusumah, K. D. 2006. Potensi Zeolit di Daerah Sangkaropi-Mendila, Tana Toraja, Sulawesi Selatan. *Jurnal Geologi dan Sumberdaya Mineral*, **16(6**), 371-386.
- Kartawa, Wawa & Kusuma, Kusdji D. 2009. *Potensi Zeolit di Daerah Sangkaropi Tana Toraja Sulawesi Selatan*. Badan Geologi Pusat Survei Geologi Departemen Energi & Sumber Daya Mineral. Bandung.
- Keputusan Menteri Negara Lingkungan Hidup Nomor 22 Tahun 2021 tentang baku mutu air sungai dan sejenisnya.
- Kresge, C. T., Leonowics, M. E., Roth, W. J., and Vartuli, J. C. 1992. Synthesis of Novel Ag Modified MCM-41 Mesoporous Molecular Sieve and Beta Catalyst for Ozone at Ambient Temperature. U.S.Patent 5098: 684
- Kresge, C. T., & Roth, W. J. 2013. The discovery of mesoporous molecular sieves from the twenty-year perspective. *Chemical Society Reviews*, **42(9)**, 3663-3670.
- Kim, H. J., Jang, K. S., Galebach, P., Gilbert, C., Tompsett, G., Conner, W. C., Nair, S. 2013. Seeded growth, silylation, and organic/water separation properties of MCM-48 membranes. *Journal of membrane science*, **427**, 293-302.
- Kumar, S., Prasad, K., Gil, J.M., Sobral, A.J.F.N., Koh, J. 2018. Mesoporous zeolit-chitosan composite for enhanced capture and catalytic activity in chemical fixation of CO₂ *Carbohydrate Polymers*.

- Kaewprachum, W., Wongsakulphasatch, S., Kiatkittipong, W., Striolo, A., Cheng, C. K., & Assabumrungrat, S. 2020. SDS modified mesoporous silica MCM-41 for the adsorption of Cu²⁺, Cd²⁺, Zn²⁺ from aqueous systems. *Journal of Environmental Chemical Engineering*, 8(1), 102920.
- Klug, Harold P. dan Alexander, L. E. 1974, X-Ray Diffraction Procedures: for Polycrystalline and Amorphous Materials, John Wiley & Sons, New York.
- Khaleque, A., Alam, M. M., Hoque, M., Mondal, S., Haider, J. B., Xu, B., & Moni, M. A. 2020. Zeolite synthesis from low-cost materials and environmental applications: A review. *Environmental Advances*, 2, 100019.
- Khopkar, S.M. 2001. Konsep Dasar Kimia Analitik. UI Press. Jakarta.
- Lombard, A., Simon-Masseron, A., Rouleau, L., Cabiac, A., & Patarin, J. 2010. Synthesis and characterization of core/shell AI-ZSM-5/silikalite-1 zeolit composites prepared in one step. *Microporous and mesoporous materials*, **129(1-2)**, 220-227.
- Liao, X., Zhou, Z., Wang, Z., Zou, X., Liu, G., Jia, M., & Zhang, W. 2007. Preformed precursor of microporous aluminophosphate coating on mesoporous SBA-15: Synthesis, characterization, and catalytic property for selective O-methylation of catechol. *Journal of colloid and interface science*, **308(1)**, 176-181.
- Liu, H., Wang, J., Feng, W., & Xu, C. 2013. Synthesis of La-substituted aluminosilikates with hierarchical pores by pH-adjusting method. *Journal of alloys and compounds*, **557**, 223-227.
- Liu, Y., and Pinnavaia, T. J. 2002. Aluminosilikate mesostructures with improved acidity and hydrothermal stability. *Journal of Materials Chemistry*, **12(11)**, 3179-3190.
- Liu, C., Wang, S., Rong, Z., Wang, X., Gu, G., & Sun, W. 2010. Synthesis of structurally stable MCM-48 using mixed surfactants as co-template and adsorption of vitamin B12 on the mesoporous MCM-48. *Journal* of non-crystalline solids, **356(25-27)**, 1246-1251.
- Liu, X., Yang, T., Bai, P., Han, L. 2013. Y/MCM-41 composite assemble from nanocrystals. Microporous and Mesoporous Materials, **181**, 116-122.
- Liu, Y.; Cao, X.' Hua, R.; Liu, Y.; Pang, C.; Wang, Y. 2010. Hydrometallurgy Selective Adsorption of Uranyl Ion on Ion-Imprinted Chitosan/PVA Cross-Linked Hydrogel. *Hydrometallurgy*. 104,150-155.

- Lee, P. S., Hong, D. Y., Cha, G. Y., An, H., Moon, S. Y., Seong, M., Chang, B.J., Lee, J.S., & Kim, J. H. 2019. Mixed matrix membranes incorporated with three-dimensionally ordered mesopore imprinted (3DOm-i) zeolit. Separation and Purification Technology, 210, 29-37.
- Li, W., & Zhao, D. 2013. Extension of the Stöber method to construct mesoporous SiO₂ and TiO₂ shells for uniform multifunctional core-shell structures. *Advanced Materials*, **25(1)**, 142-149.
- Luo, X. L., Pei, F., Wang, W., Qian, H. M., Miao, K. K., Pan, Z., Chen, Y.S., & Feng, G. D. 2018. Microwave synthesis of hierarchical porous materials with various structures by controllable desilikation and recrystallization. *Microporous and Mesoporous Materials*, **262**, 148-153.
- Luo, X., Guo, J., Chang, P., Qian, H., Pei, F., Wang, W. 2020. ZSM-5@MCM-41 composite porous materials with a core-shell structure: Adjustment of mesoporous orientation basing on interfacial electrostatic interactions and their application in selective aromatics transport. *Separation and Porification Technology*, **239**, 116516.
- Langmuir, I. 1918. The adsorption of gases on plane surfaces of glass, mica and platinum. *Journal of the American Chemical society*, **40(9)**, 1361-1403.
- Hanke, L. D. 2001. Energy Dispersive X-Ray Spectroscopy in Handbook of Analytical Methods for Materials. *Materials Evaluation and Engineering Inc., Plymouth* 13-14; 35-38.
- Li, M., Zhang, Z., Li, R., Wang, J. J., & Ali, A. 2016. Removal of Pb (II) and Cd (II) ions from aqueous solution by thiosemicarbazide modified chitosan. *International journal of biological macromolecules*, **86**, 876-884.
- Luo, X., Guo, J., Chang, P., Qian, H., Pei, F., Wang, W., Feng, G. 2020. ZSM-5@ MCM-41 composite porous materials with a core-shell structure: Adjustment of mesoporous orientation basing on interfacial electrostatic interactions and their application in selective aromatics transport. Separation and Purification Technology, 239, 116516.
- Mahmodi, G., Zarrintaj, P., Ali T., Mohen, T., Saeed, M., Dangwal, S., Anil, R., Saeb, M.R. 2020. From microporous to mesoporous mineral framework: An alliance between zeolit and chitosan. *Carbohydrate Research*, **489**, 107930.

- Marisi, DP.; Suprihatin; Ismayana, A. 2018. Reduction of Thorium and Radioactivity Contents in Liquid Waste of PLUTHO Monazite Treatment Process using FeSO₄ Coagulant. *Eksplorium*, **39.** (1), 39-50.
- Manuhutu, J., Nuryono, N., & Santosa, S. J. (2018). Desorpsi Ion Emas (III) Dalam Sistem Multilogam Au/Ni/Ag Dengan Menggunakan Variasi Tiourea-HCI. *Molluca Journal of Chemistry Education (MJoCE)*, 8(1), 56-63.
- Mulyani, IM.; Prayitno; Mahatmanti, FW.; Kusumastuti, E. 2017. Pengaruh jenis Plat Elektroda pada Proses Elektrokoagulasi untuk Menurunkan Kadar Thorium Dalam Limbah Hasil Pengolahan Logam Tanah Jarang. Pusat Sains dan Teknologi Akselerator. ISSN 0216-3128, 401-412
- Millar, G. J., Winnet, A., Thompson, T., Couperthwaite, S.J., 2016. Equilibrium Studies of Ammonium Exchange with Australian Natural Zeolits. *Journal of Water Process Engineering*. **9.** 47-57.
- Miao, Y. E., Wang, R., Chen, D., Liu, Z., & Liu, T. 2012. Electrospun selfstanding membrane of hierarchical SiO₂@γ-AlOOH (Boehmite) core/sheath fibers for water remediation. *American Chemical Society* applied materials & interfaces, 4(10), 5353-5359.
- Miao, K. K., Luo, X. L., Wang, W., Guo, S. F., Cao, F. J., Hu, Y. Q., Feng, G. D. 2019. One-step synthesis of Cu–SBA-15 under neutral condition and its oxidation catalytic performance. *Microporous and Mesoporous Materials*, **289**, 109640.
- Musselwhite, N., Na, K., Sabyrov, K., Alayoglu, S., & Somorjai, G. A. 2015. Mesoporous aluminosilikate catalysts for the selective isomerization of n-Hexane: the roles of surface acidity and platinum metal. *Journal of the American Chemical Society*, **137(32)**, 10231-10237.
- Mukti, R. R., Jentys, A., & Lercher, J. A. 2007. Orientation of alkyl-substituted aromatic molecules during sorption in the pores of H/ZSM-5 zeolites. *The Journal of Physical Chemistry C*, **111(10)**, 3973-3980.
- Mukti, R.R., H. Hirahara, A. Sugawara, A. Shimojima, T. Okubo, 2010, Direct Hydrothermal Synthesis of Hierarchically Porous Siliceous Zeolit by Using Alkoxysilylated Nonionic Surfactant, *Langmuir*, **26:4**, 2731-2735.
- Mukti, R.R., Y. Kamimura, W. Chaikittisilp, H. Hirahara, A. Shimojima, M. Ogura, K.K. Cheralathan, S.P. Elangovan, K. Itabashi, T. Okubo,

2011, Hierarchically Porous ZSM-5 Synthesized by Nonionic- and Cationic-Templating Routes and Their Catalytic Activity in Liquid-Phase Esterification, *ITB Journal of Science.*, **43A**, 59-72.

- Mukaromah, A. H., Amin, M., Mukti, R. R., & Zulfikar, M. A. 2014. Pengaruh Variasi Mol H₂O Terhadap Kristalinitas Zeolit ZSM-5. In *Prosiding Seminar Nasional & Internasional.*
- Mohiuddin, K. M., Ogawa, Y. Z. H. M., Zakir, H. M., Otomo, K., & Shikazono, N. (2011). Heavy metals contamination in water and sediments of an urban river in a developing country. *International journal of environmental science & technology*, **8(4)**, 723-736.
- Mooller, K., Yilmaz, B., Jacubinas, R. M., Müller, U., & Bein, T. 2011. Onestep synthesis of hierarchical zeolit beta via network formation of uniform nanocrystals. *Journal of the American Chemical Society*, 133(14), 5284-5295.
- Mufrodi, Z., Widiastuti, N., dan Kardika, R. C. 2008. Adsorpsi Zat Warna Tekstil dengan Menggunakan Abu Terbang (Fly Ash) untuk Variasi Massa Adsorben dan Suhu Operasi. Universitas Ahmad Dahlan, Yogyakarta.
- Mirzabe, G. H., & Keshtkar, A. R. (2015). Application of response surface methodology for thorium adsorption on PVA/Fe3O4/SiO2/APTES nanohybrid adsorbent. *Journal of Industrial and Engineering Chemistry*, **26**, 277-285.
- Mustafa, R.D.P.; Taba, P.; Ramang, M. 2016. Modifikasi Silika MCM-48 dengan Gugus Tiol untuk adsorpsi Logam Pb(II). Hasanuddin University Repository.
- Mark C Barnes, J.A.-M., Andrea R. Gerson, *The Mechanism of the sodaliteto-cancrinite phase transformation in synthetic spent bayer liquor.* Microporous and Mesoporous Materials, 1999. **31**:287-302.
- Ma, H. W., Su, S. Q., Yang, J., Cai, B. Y., Liu, M. T., Yao, W. G., & Peng, H. 2014. Preparation of potassium sulfate from K-feldspar by hydrothermal alkaline method: reaction principle and process evaluation. *CIESC Journal*, **65(6)**, 2363-2371.
- Ma, X., Yang, J., Ma, H., & Liu, C. 2016. Hydrothermal extraction of potassium from potassic quartz syenite and preparation of aluminum hydroxide. *International Journal of Mineral Processing*, **147**, 10-17.

- Markovic, S., V. Dondur, and R. Dimitrijevic, *FTIR spectroscopy of framework aluminosilicate structures: carnegieite and pure sodium nepheline.* Journal of Molecular Structure, 2003. **654**(1-3): p. 223-234.
- Melendez-Ortiz H.I., Puente-Urbina B., Mercodo-Silva, J.A. and Garcia-Uriostegui L., 2019. Adsorption performance of mesoporous silicas towards a cationic dye. Influence of mesostructured on adsorption capacity. International Journal of Applied Ceramic technology. 16, 1533-1543.
- Mulder, M. (1996), Basic Principles of Membran Technology, Klewner Academic Publisher, Netherlands.
- Na, K., Alayoglu, S., Ye, R., & Somorjai, G. A. 2014. Effect of acidic properties of mesoporous zeolits supporting pt nanoparticles on hydrogenative conversion of methylcyclopentane. *Journal of the American Chemical Society*, **136(49)**, 17207-17212.
- Namasivayam, C. dan Radhika, R. 2000. Uptake of Dyes by a Promosing Locally Available Agricultural Solid Waste. *Cior Pith Waste Manage*. **21(2)**: 381-387.
- Naushad, M.; Alothman, Z. A.; Rabiul Awual, T.; Alfadul, S.M.; Ahmad, T. 2016. Adsorption of Rose Bengal Dye from Aqueous Solution by Amberlite Ira-983 Resin: Kenetics, Isoterms, and Thermodynamic Studies. *Desalin. Water Teat.* 57, 13527-13533.
- Naria, E., 2015, Mewaspadai Dampak Bahan Pencemar Timbal (Pb) di Lingkungan Terhadap Kesehatan , *Jurnal Komunikasi*, **17**(4): 66-72.
- Ngapa, Y. D. 2017. Kajian Pengaruh Asam-Basa Pada Aktivasi Zeolit dan Karakterisasinya sebagai Adsorben Pewarna Biru Metilena. *Jurnal Kimia dan Pendidikan Kimia*, **2(2**), 90-96.
- Notohadiprawiro, T. 2006. *Logam Berat dalam Pertanian*. Universitas Gadjah Mada, Yogyakarta.
- Nur'aeni, D., Hadisantoso, E. P., & Suhendar, D. 2017. Adsorpsi lon Logam Mn²⁺ dan Cu²⁺ Oleh Silika Gel dari Abu Ampas Tebu. *al Kimiya: Jurnal Ilmu Kimia dan Terapan*, **4(2)**, 70-80.
- Najafi, M., Yousefi, Y., & Rafati, A. A. (2012). Synthesis, characterization and adsorption studies of several heavy metal ions on amino-

functionalized silica nano hollow sphere and silica gel. *Separation* and purification technology, **85**, 193-205.

- Obaid, S.S., Gaikwad, D.K., Sayyed, M.I., Al-Rasyid, K., Pawar, P.P. 2018. Heavy metal ions removal from waste water by the natural zeolits. *Materials Today: Proceedings* . **5**. 17930-17934.
- Oscik, J. 1991. Adsorbtion, Edition Cooper. John Wiley and Sons, New York.
- Olkhovyk, O., Antochshuk, V., and Jaroniec, M. 2004. Benzoylthiourea-Modified MCM-48 Mesoporous Silica for Mercury(II) Adsorption from Aqueous Solutions. *Colloids Surf., A: Physicochem. Eng. Aspects,* 236: 69-72
- Pan, N.; Li, L.; Ding, J.; Li, S.; Wang, R.; Jin, Y.; Wang, X.; Xia, C. 2016. Preparation of graphane oxide-manganese dioxside for highly efficient adsorption and eparation of Th(IV)/U(VI). *Journal of Hazardous Materials*, **309**, 107-115
- Palar, H. 2004. *Pencemaran dan Toksikologi Logam Berat*. Jakarta : Rineka Cipta
- Parulian, A. 2009. Monitoring dan Analisis Kadar Aluminium (Al) dan Besi (Fe) Pada Pengolahan Air Minum PDAM Tirtanadi Sunggal. Thesis.
- Pan, N.; Li, L.; Ding, J.; Li, S.; Wang, R.; Jin, Y.; Wang, X.; Xia, C. 2016. Preparation of graphane oxide-manganese dioxside for highly efficient adsorption and eparation of Th(IV)/U(VI). *Journal of Hazardous Materials*, **309**, 107-115.
- Prawingwong, M.P. 2011. Mesoporous Silica Synthesized from RHA and Its Grafting with pH-Responsive Poly(acrylic acid). Thesis pada Dept Kimia Fak. Sains dan Teknologi. Thammasat University, Thailand.
- Pratiwi, M.D.; Taba, P.; Hala.Y. 2016. Pemanfaatan silica Mesopori MCM-48 termodifikasi 3-aminopropiltrimetoksisilan sebagai adsorbrn Logam Berat Ni(II). Hasanuddin University Repository
- Pirngruber, G. D., Laroche, C., Maricar-Pichon, M., Rouleau, L., Bouizi, Y., & Valtchev, V. 2013. Core–shell zeolit composite with enhanced selectivity for the separation of branched paraffin isomers. *Microporous and mesoporous materials*, **169**, 212-217.
- Pongsendana, M.; Taba, P.; Hala, Y. 2014. Modifikasi Silika mesopori MCM-48 dengan Gugus Thiol untuk Adsorpsi Ion Logam Ag(I).Hasanuddin University Repository.

- Paembonan, M. 2016. Modifikasi Silika Mesopori MCM-48 dengan ligan 1,5-Difeniltiokarbazon dan pemanfaatannya Sebagai Adsorben Ion Ni(II). Hasanuudin University Repository.
- Pathania, D.; Sharma, G.; Nausad, M.; Priya, V. 2016. A Biopolymer Based Hybrid Cation Exchanger Pectin Cerium (IV) Iodate : Synthesis, Characterization, and Analytical Applications. *Desalin. Water Treat.* 57, 468-475.
- Pusdiklat Batan. 2015. Prinsip Dasar Pengukuran Radiasi. *Modul Pusdiklat* Badan Tenaga Nuklir Nasional , Jakarta.
- Puspitasari, T., Kadja, G. T. M., Radiman, C. L., Darwis, D., & Mukti, R. R. 2018. Two-step preparation of amidoxime-functionalized natural zeolites hybrids for the removal of Pb²⁺ ions in aqueous environment. *Materials Chemistry and Physics*, **216**, 197-205
- Puspitasari, Tita; Ilmi, Moh. Mualliful; Nurdini, Nadya; Mukti, Rino R.; Radiman, Cynthia L.; Darwis, Darmawan; Kadja, Grandprix T. M. 2019. The physicochemical characteristics of natural zeolites governing the adsorption of Pb²⁺ from aqueous environment. *Key Engineering Materials*, **811**, 92-98.
- Pavlović, S.M., et al., *The chicken eggshell calcium oxide ultrasonically dispersed over lignite coal fly ash-based cancrinite zeolite support as a catalyst for biodiesel production.* Fuel, 2021. **289**.
- Prasetyoko, D., Fansuri, H., Ni'mah, Y. L., Fadlan, A. (2016). Karakterisasi Struktur Padatan. Yogyakarta: deepublish.
- Rukaesih, A., 2004. Kimia Lingkungan, Andi, Yogyakarta.
- Ridhawati; Wahab, A.W.; La Nafie, N.; Raya, I. 2018. Pengaruh Metode Sintesis Silika Mesopori SBa-15 terhadap Analisis Differential Scanning Calorimetry dan Pengukuran Low Angel X-Ray Diffraction. Journal INTEK. 5(1), 39-43.
- Rumoey, D. S., Umar, N. A., & Hadijah, H. (2022). Perbandingan Kandungan Logam Berat (Cd, Cr, Pb) dalam Air dan Kerang Antar Ekosistem Sungai, Muara dan Pantai di Perairan Sungai Tallo Makassar. *Journal of Aquaculture and Environment*, *4*(2), 27-32.
- Ryoo, R., Joo, S. H., and Kim, J. M. 1999. Energetically Favored Formation of MCM-48 from Cationic-Neutral Surfactant Mixtures. *J. Phys. Chem. B*,**103**: 7435-7440.

- Ruru, E.; Taba, P.; Hala, Y. 2014. Modifikasi Silika Mesopori MCM-48 dengan Gugus Tiol Untuk adsorpsi Logam Berat Cd(II). Hasanuddin University Repository.
- Renni, C. P., Mahatmanti, F. W., & Widiarti, N. (2018). Pemanfaatan Zeolit Alam Teraktivasi HNO3 sebagai lon Logam Fe (III) dan Cr (VI). Indonesian Journal of Chemical Science, 7(1), 64-70.
- Rao, M. M., Ramana, D. K., Seshaiah, K., Wang, M. C., & Chien, S. C. (2009). Removal of some metal ions by activated carbon prepared from Phaseolus aureus hulls. *Journal of hazardous materials*, **166(2-3)**,1006-1013.
- Reyes, C.A.R., C. Williams, and O.M.C. Alarcón, Nucleation and growth process of sodalite and cancrinite from kaolinite-rich clay under lowtemperature hydrothermal conditions. Materials Research, 2013. 16(2):424-438.
- Ramadhan, M.D., Iriany, Misran, E., Turmuzi, M., 2021. Study of Adsorption Isotherm Model for Crystal Violet on Cassava Peel (Manihot esculenta). Jurnal Teknik Kimia USU., **10(2)**:38-44.
- Saputra, R. 2006. Pemanfaatan zeolit sintetis sebagai alternatif pengolahan limbah industri. *Buletin IPT*, **1**, 8-20.
- Samiey, B.; Cheng, C.H.; Wu, J. 2014. Organic-Inorganic Hybrid Polymers as adsorbent for Removal of Heavy metals lons from Solution : A Review. *Matter.* **7**, 673-726.
- Sharma, G.; Kumar, A.; Naushad, M.; Pathania, D.; Sillanpaa, M. 2016. Polyacrylamide @Zr(IV) vanadophosphate Nanocomposite: Ion Exchange Properties, Antibacterial Activity, and Photocatalytic Behavior. J. Ind. Eng. Chem. 33, 201-208.
- Sharma, G.;Thakur, B.; Naushad, M.; Al-Muhtaseb, A.H.; Kumar, A.; Suillanpa, M.; Mola, G.T. 2017. Fabrication and Characterization of Sodium Dodecyl Sulphate@ironsilicophosphate Nanocomposite: Ion exchange Properties and Selectivity for Binary Metal Ions. *Mater. Chem. Phys.* **193**, 129-139
- Saviano, M. & Lourenco, F. R. 2013. Uncertainty evaluation for determining linezolid in injectable solution by UV spectrophotometry. *Measurement.* **46 (10)**, 3924–3928.
- Singh, S.; Patel, A. 2014. 12-Tungstophosphoric acid supported on mesoporous molecular material: Synthesis, Characterization, and

performance in biodiesel production. *Journal of Cleaner Production.* **72**, 46-56.

- Stein, A., Rudisill, S. G., & Petkovich, N. D. 2014. Perspective on the influence of interactions between hard and soft templates and precursors on morphology of hierarchically structured porous materials. *Chemistry of Materials*, 26(1), 259-276.
- Schmidt, I., Boisen, A., Gustavsson, E., Ståhl, K., Pehrson, S., Dahl, S., Jacobsen, C. J. 2001. Carbon nanotube templated growth of mesoporous zeolit single crystals. *Chemistry of Materials*, **13(12)**, 4416-4418.
- Sohrabnezhad, Sh., Karkoudi, N., Asadollahi, A. 2017. Core-shell composite of mordenit zeolit@MCM-41 mesoporous: Synthesis, characterization and application in photocatalytic activity. *Colloids and Surface A; Physicochem.Eng. Aspects*, **520**, 17-25.
- Song, J.; Oh, H.; Kong, H.; Jang, J. 2011. Polyhrhodanine Modified Anodic Aluminium Oxide Membrane for Heavy Metal Ions Removal. *Journal Hazardous Matterials*. **187**, 311-317.
- Supritantini, E dan Endrawati, H. 2015. Kandungan Logam Berat Besi (Fe) pada Air, Sedimen, dan Kerang Hijau (Perna viridis) di Perairan Tanjung Emas Semarang. *Jurnal Kelautan Tropis*, **18 (1)**, 38-45.
- Suminta, S., 2005, Penghalusan Struktur Sangkar Kristal Mordenite dan Clinoptilolite Alam dengan Metode Rietveld, *Jurnal Zeolit Indonesia*, **4**, 78-85.
- Syamsuddin, R., 2014, *Pengelolaan Kualitas Air Teori dan Aplikasi Di Sektor Perikanan, Pijar* Press, Makassar.
- Santos, S. C. G., Pedrosa, A. G., Souza, M. J. B., Cecilia, J. A., & Rodríguez-Castellón, E. (2015). Carbon dioxide adsorption on micromesoporous composite materials of ZSM-12/MCM-48 type: The role of the contents of zeolite and functionalized amine. *Materials Research Bulletin*, **70**, 663-672.
- Saadi, R., Saadi, Z., Fazaeli, R., & Fard, N. E. 2015. Monolayer and multilayer adsorption isotherm models for sorption from aqueous media. *Korean Journal of Chemical Engineering*, **32**, 787-799.
- Sehaqui, H., de Larraya, U. P., Liu, P., Pfenninger, N., Mathew, A. P., Zimmermann, T., & Tingaut, P. 2014. Enhancing adsorption of heavy

metal ions onto biobased nanofibers from waste pulp residues for application in wastewater treatment. *Cellulose*, **21**, 2831-2844.

- Salimkhani, H., Joodi, T., Bordbar-Khiabani, A., Dizaji, A. M., Abdolalipour, B., & Azizi, A. 2020. Surface and structure characteristics of commercial K-Feldspar powders: Effects of temperature and leaching media. *Chinese Journal of Chemical Engineering*, **28(1)**, 307-317.
- Seliem, M. K., & Komarneni, S. 2016. Equilibrium and kinetic studies for adsorption of iron from aqueous solution by synthetic Na-A zeolites: Statistical modeling and optimization. *Microporous and Mesoporous Materials*, **228**, 266-274.
- Selim, A. Q., Sellaoui, L., Ahmed, S. A., Mobarak, M., Mohamed, E. A., Lamine, A. B., Seliem, M. K. 2019. Statistical physics-based analysis of the adsorption of Cu2+ and Zn2+ onto synthetic cancrinite in singlecompound and binary systems. *Journal of Environmental Chemical Engineering*, **7(4)**, 103217.
- Selim, A. Q., Mohamed, E. A., Mobarak, M., Zayed, A. M., Seliem, M. K., & Komarneni, S. 2018. Cr (VI) uptake by a composite of processed diatomite with MCM-41: Isotherm, kinetic and thermodynamic studies. *Microporous and Mesoporous Materials*, **260**, 84-92.
- Smart, Lesley A. dan Moore, Elaine A. 2005, Solid State Chemistry: AnIntroduction, Third Edition, CRC Press-Taylor & Francis Group, Boca Raton.
- Singh, D., Verma, S., Gautam, R. K., & Krishna, V. 2015. Copper adsorption onto synthesized nitrilotriacetic acid functionalized Fe3O4 nanoparticles: kinetic, equilibrium and thermodynamic studies. *Journal of Environmental Chemical Engineering*, **3(3)**, 2161-2171.
- Singh, V. K., Soni, A. B., Singh, R. K. 2016. Auramine "O" dye adsorption onto de-oiled cotton seed cake biochar: process optimization using Response Surface Methodology for maximizing adsorbate removal.International Journal of ChemTech Research, 9(7), 340353.
- Sips, R., 1948. On the structure of a catalyst surface, J. Chem. Phys. 16, 490–495.
- Sing, S.K.W. and Gregg, S. J., 1982, "Adsorption, Surface Area and Porosity", Second Edition, Academic Press, New York, 321.

- Supratman, U. 2010. Equilibrium Penentuan Senyawa Organik. Padjajaran.Bandung.
- Schumacher, Ravikovitch, PI., Chesne, A. D., Neimark, A. V. dan Unger, K. K. 2000. Characterization of MCM-48 Materials. *Journal Langmuir*,**16**: 4648-4654.
- Soltani, R. D. C., Khorramabadi, G. S., Khataee, A. R., & Jorfi, S. 2014. Silica nanopowders/alginate composite for adsorption of lead (II) ions in aqueous solutions. *Journal of the Taiwan Institute of Chemical Engineers*, **45(3)**, 973-980.
- Song, Y., Yang, L. Y., Wang, Y. G., Yu, D., Shen, J., & Ouyang, X. K. 2019. Highly efficient adsorption of Pb (II) from aqueous solution using amino-functionalized SBA-15/calcium alginate microspheres as adsorbent. *International journal of biological macromolecules*, **125**, 808-819.
- Taba, P.; Budi, P.; Puspitasari, A.Y. 2017. Adsorption of Heavy Metal on Amine-Functionalized MCM-48. *IOP Conf. Series. Materials Science.* and Engineering. **188**. 012015. DOI: 10.1088/1757-899X/188/1/012015.
- Taba, P.; Natsir, H.; Fauziaf, S.; Ismail, M. 2010. Adsorpsi Ion Cd(II) oleh Kitosan- Silika Mesopori MCM-48. *Marina Chimica Acta*. **11(1)**, 13-22.
- Taba, P. 2008. Adsorption of water and benzene vapour in mesoporous materials. *MAKARA*, **12(2)**, 120-125.
- Taba, P., Budi, P., Gau, A. A., Fauziah, S., Sutapa, I. W., & Manga, J., 2021. Mesoporous silica modified with amino group (NH2-MCM-48) as adsorbent of Ag)I) and Cr(III) in water. *Journal of Chemistry*, **14**, 204-211.
- Tahervand, S., & Jalali, M. (2017). Sorption and desorption of potentially toxic metals (Cd, Cu, Ni and Zn) by soil amended with bentonite, calcite and zeolite as a function of pH. *Journal of Geochemical Exploration*, **181**, 148-159.
- Tran, N. T., Kim, J., & Othman, M. R. 2020. Microporous ZIF-8 and ZIF-67 membranes grown on mesoporous alumina substrate for selective propylene transport. *Separation and Purification Technology*, **233**, 116026.
- Tran, Q.H.; Le, V.T.; Nguyen, V.C. 2016. Solvent Extraction of Thorium Using 5,11,17,23-Tetra[(2-

ethylacetoethoxyphenyl)(azo)phenyl]calix[4]arene. Journal of Chemistry Hindawi. DOI: 10.1155/2016/5078462.

- Truong, H.T.; Nguyen, T.H.' Lee, M.S. 2017. Separation of molybdenum(VI), rhenium(VII), tungsten(VI), and vanadium(V) by Solvent Extraction. Hydrometallurgy.**171**,298-305.
- Taheri, R.; Bahramifar, N.; Zarghami, M.R.; Javadian, H.; Mehraban, Z. 2017. Nanospace Engineering and Functionalization of MCM-48 mesoporous silica wirh dendrimer amine based on [1,3,5]-triazines for selective and pH-independent sorption of silver ions from aqueous solution and electroplating industry wastewater. *Journal of Powder Technology*. **321**, 44-54.
- Tangio, J. S. 2012. Adsorpsi Logam Timbal (Pb) dengan Menggunakan Biomassa Enceng Gondok (Eichhornia crasssipes). Universitas Negeri Gorontalo.
- Tatamailau, P.P.; Taba, P.; Maming. 2016. Modifikasi silica MCM-48 dengan LIgan 1,5 Difeniltiokarbazon dan Pemanfaatannya Sebagai Adsorben ion Logam Zn2+. Hasanuddin University Repository.
- Utama, T.Taruna.2015. *Biosorpsi Krom Heksavalen Menggunakan Mikroalga Amobil dalam Sistem Kontinyu*.Tesis.Institut Teknologi Bandung.
- Van Vu, D., Miyamoto, M., Nishiyama, N., Egashira, Y., & Ueyama, K. 2009. Morphology control of silikalite/HZSM-5 composite catalysts for the formation of para-xylene. *Catalysis letters*, **127(3-4)**, 233.
- Vasiliev, P., Akhtar, F., Grins, J., Mouzon, J., Andersson, C., Hedlund, J., & Bergström, L. 2010. Strong hierarchically porous monoliths by pulsed current processing of zeolit powder assemblies. *American Chemical Society applied materials & interfaces*, 2(3), 732-737.
- Venkatachalam, K., Visuvamithiran, P., Sundaravel, B., Palanichamy, M., & Murugesan, V. 2012. Catalytic performance of AI-MCM-48 molecular sieves for isopropylation of phenol with isopropyl acetate. *Chinese Journal of Catalysis*, **33(2-3)**, 478-486.
- Vogel. 1990. *Buku Teks Analisis Anorganik Kualitatif Makro dan Semimikro* Edisi Kelima. PT Kalman Media Pustaka. Jakarta.
- Vernimmen, J., Meynen, V., Herregods, S. J., Mertens, M., Lebedev, O. I., Van Tendeloo, G., & Cool, P. 2011. New Insights in the Formation of Combined Zeolitic/Mesoporous Materials by using a One-Pot

Templating Synthesis. *European Journal of Inorganic Chemistry*, **(27)**, 4234-4240.

- Veerakumar, P.; Veeramani, V.; Chen, S. M.; Madhu, R.; Liu, S.B. 2016. Palladium Nanoparticle Incorporated Porous Activated Carbon: Electrochemical Detection of Toxic Metal Ions. *American Chemical Society Applied Materials & Interfaces.* 8, 1319-1326.
- Venkateswarlu, S., & Yoon, M. 2015. Core–shell ferromagnetic nanorod based on amine polymer composite (Fe₃O₄@ DAPF) for fast removal of Pb (II) from aqueous solutions. *American Chemical Society Applied Materials & Interfaces*, **7(45)**, 25362-25372.
- Valdés, M.G. Pérez-Cordoves, A.I. dan Díaz-García, M.E. 2006, "Zeolites and Zeolite-Based Materials in Analytical Chemistry", Trends in Analytical Chemistry, **25**, 24-30.
- Villa de la Mencia, R. V., Goiti, E., Ocejo, M., & Giménez, R. G. 2020. Synthesis of zeolite type analcime from industrial wastes. *Microporous and Mesoporous Materials*, **293**, 109817.
- Wang, S., Dou, T., Li, Y., Zhang, Y., Li, X., & Yan, Z. 2004. Synthesis, characterization, and catalytic properties of stable mesoporous molecular sieve MCM-41 prepared from zeolit mordenite. *Journal of Solid State Chemistry*, **177(12)**, 4800-4805.
- Wakihara, T., Ihara, A., Inagaki, S., Tatami, J., Sato, K., Komeya, K., Nakahira, A. 2011. Top-down tuning of nanosized ZSM-5 zeolit catalyst by bead milling and recrystallization. *Crystal growth & design*, *11*(11), 5153-5158.
- Wakihara, T., Sato, K., Inagaki, S., Tatami, J., Komeya, K., Meguro, T., & Kubota, Y. 2010. Fabrication of fine zeolit with improved catalytic properties by bead milling and alkali treatment. *American Chemical Society Applied Materials & Interfaces*, 2(10), 2715-2718.
- Wustoni, S. Mukti, R.R. Wahyudi, A. dan Ismunandari., 2011, Sintesis Zeolit Mordenit dengan Bantuan Benih Mineral Alam Indonesia, *Jurnal Matematika dan Sains.*, **16(3)**, 34-41
- Wu, Y., Jin, Y., Cao, J., Yilihan, P., Wen, Y., & Zhou, J. 2014. Optimizing adsorption of arsenic (III) by NH2-MCM-41 using response surface methodology. *Journal of Industrial and Engineering Chemistry*, **20(5)**, 2792-2800.

- Wu, S.;Li, F.; wang, H.; Fu, L.; Zhang, B.; Li,G. 2010. Effects of PolyVinyl alcohol (PVA) Content on Preparation of Novel Thiol-Functionalized Mosoporous PVA/SiO2 Com,posite Nano Fiber Ions from Aqueous Solution. *Polymer.* **51**, 6203-6211
- Wang, L., Xing, L., Liu, J., Qi, T., zhang, S., Ma, Y., & Ning, P. 2021. Construction of lattice-confined Co-MCM-48 for boosting sulfite oxidation in wet desulfuration. *Journal Chemical Engineering*, **407**, 127210.
- Wang, J., & Guo, X. (2020). Adsorption isotherm models: Classification, physical meaning, application and solving method. *Chemosphere*, **258**, 127279.
- Wagiyo dan A. Handayani. 1997. Petunjuk Praktikum Scanning Electron Microscope, SEM dan Energy Dispersive Spectrometer, EDS.Badan Tenaga Atom Nasonal. Tangerang.
- Xu, L., Tian, J., Wu, H., Deng, W., Yang, Y., Sun, W., Hu, Y. 2017. New insights into the oleate flotation response of feldspar particles of different sizes: Anisotropic adsorption model. *Journal of colloid and interface science*, **505**, 500-508.
- Yang, S., Qian, J., Kuang, L., & Hua, D. 2017. Ion-imprinted mesoporous silica for selective removal of uranium from highly acidic and radioactive effluent. *American Chemical Society applied materials & interfaces*, 9(34), 29337-29344.
- Yang, X. Y., Chen, L. H., Li, Y., Rooke, J. C., Sanchez, C., & Su, B. L. 2017. Hierarchically porous materials: synthesis strategies and structure design. *Chemical Society Reviews*, **46(2)**, 481-558.
- Yulianis, Mahidin, & Muhammad, S. (2017). Adsorption of copper ions using activated nano natural zeolite. *Jurnal Litbang Industri*, **7(1**), 61-69
- Yu, J. S., Yoon, S. B., Lee, Y. J., & Yoon, K. B. 2005. Fabrication of bimodal porous silikate with silikalite-1 core/mesoporous shell structures and synthesis of nonspherical carbon and silika nanocases with hollow core/mesoporous shell structures. *The Journal of Physical Chemistry B*, **109(15)**, 7040-7045.
- Zhang, N., & Hu, B. 2012. Cadmium (II) imprinted 3mercaptopropyltrimethoxysilane coated stir bar for selective extraction of trace cadmium from environmental water samples followed by inductively coupled plasma mass spectrometry detection. *Analytica chimica acta*, **723**, 54-60.

- Zhang, Y., Liu, Y., Li, Y., 2008. Synthesis and characteristics of Yzeolit/MCM-48 biporous molecular sieve. *Applied Catalysis A: General*, **345**, 73-79.
- Zhou, F., Li, X., Wang, A., Wang, L., Yang, X., Hu, Y. 2010. Hydrodesulfurization of benzothiophene catalyzed by Pd supported on overgrowth-type MCM-41/HY composite. *Catalysis Today*. **150**, 218-223.
- Zhou, J., Zhang, M., Ji, M., Wang, Z., Hou, H., Zhang, J., & Qian, G. 2020. Evaluation of heavy metals stability and phosphate mobility in the remediation of sediment by calcium nitrate. *Water environment research*, **92(7)**, 1017-1026.

Lampiran 1. Preparasi Mineral alam

Lampiran. Skema Rekristalisasi

Catatan : * variasi selanjutnya untuk 2,1509 gram (F2) dan 3,2402 gram (F3) NaOH

Lampiran 3. Sintesis komposit core-shell zeolit/MCM-48

Lampiran 6. Skema Penentuan Waktu Optimum Adsorpsi Ion Cu2+

Lampiran 8. Skema Penentuan Waktu Optimum Adsorpsi Ion Mn²⁺

Lampiran 9. Skema Penentuan pH Optimum Adsorpsi

Lampiran 10. Skema Penentuan Kapasitas Adsorpsi

Catatan: Variasi konsentrasi ion logam Cd²⁺, Mn²⁺, Fe²⁺, Pb²⁺, dan Cu²⁺. Berturut turut adalah 50, 100, 200, 300, dan 400 ppm

Lampiran 12 a. Skema Desorpsi

Lampiran 12b. Skema prosedur Regenerasi

Lampiran 13. Aplikasi pada Limbah Perairan

Lampiran 14. Perhitungan Pembuatan Larutan Ion Cd²⁺, Cu²⁺, Mn²⁺, Pb²⁺dan Fe²⁺ 1000 ppm

a. Pembuatan Larutan Cd²⁺ 1000 ppm

$$X = \frac{Mr Cd(NO_3)_2 \cdot 4H_2O}{Ar Cd} \times 1000 mg/L \times 1 L$$
$$X = \frac{308,4}{112,40} \times 1000 mg/L \times 1 L$$
$$X = 2743,77 mg$$
$$X = 2,74 g$$

dimana X = berat $Cd(NO_3)_2.4H_2O$ yang ditimbang

b. Pembuatan Larutan Cu²⁺ 1000 ppm

$$X = \frac{Mr Cu(NO_3)_2.3H_2O}{Ar Cu} \times 1000 \text{ mg/L} \times 1 \text{ L}$$
$$X = \frac{241,55}{63,55} \times 1000 \text{ mg/L} \times 1 \text{ L}$$
$$X = 3800,94 \text{ mg}$$
$$X = 3,80 \text{ g}$$

dimana X = berat $Cu(NO_3)_2.3H_2O$ yang ditimbang

c. Pembuatan Larutan Mn²⁺ 1000 ppm

$$X = \frac{Mr Mn(NO_3)_2 \cdot 4H_2O}{Ar Mn} x \ 1000 \ mg/L \ x \ 1 \ L$$
$$X = \frac{250,938}{54,938} \ x \ 1000 \ mg/L \ x \ 1 \ L$$
$$X = 4567,66 \ mg$$
$$X = 4,57 \ g$$

dimana X = berat $Mn(NO_3)_2.4H_2O$ yang ditimbang

d. Pembuatan Larutan Pb²⁺ 1000 ppm

$$X = \frac{Mr Pb(NO_3)_2}{Ar Pb} x \ 1000 mg/L x \ 1 L$$
$$X = \frac{331}{207} x \ 1000 mg/L x \ 1 L$$
$$X = 1599 mg$$
$$X = 1,59 g$$

dimana X = berat Pb(NO₃)₂ yang ditimbang

e. Pembuatan Larutan Fe²⁺ 1000 ppm

$$X = \frac{Mr \operatorname{Fe}(SO_4) \cdot .7H_2O}{Ar \operatorname{Fe}} x \ 1000 \ \text{mg/L} \ x \ 1 \ \text{L}$$
$$X = \frac{278}{56} \ x \ 1000 \ \text{mg/L} \ x \ 1 \ \text{L}$$
$$X = 4964 \ \text{mg}$$
$$X = 4,964 \ \text{g}$$
dimana X = berat Mn(NO₃)₂.4H₂O yang ditimbang

Lampiran 15. Data Penentuan Waktu Optimum Adsorpsi ion logam Cd²⁺, Mn²⁺, Fe²⁺, Pb²⁺, dan Cu²⁺oleh ANA/MCM-48.

	Waktu	Со	Ce	Vol.	Adsorben	qt
	(menit)	(mg/L)	(mg/L)	(L)	(g)	(mg/g)
	30	53.5	23	0.05	0.1001	15.23
	60	53.5	15	0.05	0.1001	19.23
	90	53.5	10.5	0.05	0.1	21.50
	120	53.5	7.5	0.05	0.1001	22.98
	150	53.5	8.5	0.05	0.1006	22.37
	180	53.5	9	0.05	0.1002	22.21
	lon Loga	m Mn²⁺				
	Waktu	Со	Ce	Vol.	Adsorben	qt
	(menit)	(mg/L)	(mg/L)	(L)	(g)	(mg/g)
	30	50.65	23.50	0.05	0.1	13.58
	60	50.65	14.83	0.05	0.1003	17.85
	90	50.65	9.50	0.05	0.1002	20.53
	120	50.65	8.00	0.05	0.1	21.33
	140	50.65	6.67	0.05	0.1002	21.95
	160	50.65	7.00	0.05	0.1007	21.67
-	180	50.65	7.00	0.05	0.1009	21.63
	lon Loga	m Fe ²⁺				
_	Waktu	Со	Ce	Vol.	Adsorben	qt
_	(menit)	(mg/L)	(mg/L)	(L)	(g)	(mg/g)
	30	49	14.56	0.05	0.1005	17.13
	60	49	10.36	0.05	0.1	19.31
	90	49	6.06	0.05	0.1006	21.34
	120	49	3.19	0.05	0.1002	22.86
	160	49	3.31	0.05	0.1002	22.80
	180	49	3.56	0.05	0.1003	22.65
	lon Loga	m Pb ²⁺				
	Waktu	Со	Ce	Vol.	Adsorben	qt
	(menit)	(mg/L)	(mg/L)	(L)	(g)	(mg/L)
	30	51	12.4	0.05	0.1004	19.22
	60	51	6.2	0.05	0.1	22.40
	90	51	4.6	0.05	0.1001	23.18
	120	51	2.4	0.05	0.1001	24.28

150

180

51

51

2.6

3

0.05

0.05

0.1005

0.1002

24.08

23.95

Ion Logam Cd²⁺, Mn²⁺, Fe²⁺, Pb²⁺, dan Cu²⁺

Ion Lo	Ion Logam Cu ²⁺											
Waktu	Со	Ce	Vol.	Adsorban	qt							
(menit)	(mg/L)	(mg/L)	(L)	(g)	(mg/L)							
30	46.91	22.85	0.05	0.1007	11.95							
60	46.91	13.66	0.05	0.1004	16.56							
90	46.91	8.11	0.05	0.1	19.40							
120	46.91	3.04	0.05	0.1002	21.89							
140	46.91	0.91	0.05	0.1004	22.91							
160	46.91	1.62	0.05	0.1002	22.60							
180	46.91	1.40	0.05	0.1007	22.60							

Nilai qt dihitung berdasarkan persamaan (5).

Contoh perhitungan jumlah **ion Cd²⁺** yang teradsorpsi (waktu = 30 menit):

 $q_t = \frac{(53,5 - 23)mg/L}{0,1001 g} \ge 0,05 L$

q_t = 15,23 mg/g

Lampiran 16. Data Studi Kinetika Adsorpsi Ion Iogam Cd²⁺, Mn²⁺, Fe²⁺, Pb²⁺, dan Cu²⁺ oleh ANA/MCM-48. ➤ ion Iogam Cd²⁺, Mn²⁺, Fe²⁺, Pb²⁺, dan Cu²⁺

Waktu	qt	qe	qe-qt		t/qt	Efektivitas
(menit)	(mg/g)	(mg/g)	(mg/g)	In qe-qt	g mg ⁻¹ menit- ¹	adsorpsi (%)
30	15.23	22.98	7.74	2.05	1.97	57.01
60	19.23	22.98	3.75	1.32	3.12	71.96
90	21.50	22.98	1.48	0.39	4.19	80.37
120	22.98	22.98	0.00	0.00	5.22	85.98
150	22.37	22.98	0.61	-0.49	6.71	84.11
180	22.21	22.98	0.77	-0.26	8.11	83.18

➢ ion logam Mn²⁺

Waktu (menit)	qt (mg/g)	qe (mg/g)	qe-qt (mg/g)	In qe-qt	t/qt g mg ⁻¹ menit- ¹	Efektivitas adsoprsi (%)
30	13.58	21.95	8.37	2.12	2.21	53.60
60	17.85	21.95	4.09	1.41	3.36	70.71
90	20.53	21.95	1.41	0.35	4.38	81.24
120	21.33	21.95	0.62	-0.47	5.63	84.21
140	21.95	21.95	0.00	0.00	6.38	86.84
160	21.67	21.95	0.27	-1.29	7.38	86.18
180	21.63	21.95	0.32	-1.15	8.32	86.18

➢ ion logam Fe²⁺

Waktu	qt	qe	qe-qt		t/qt	Efektivitas
(menit)	(mg/g)	(mg/g)	(mg/g)	In qe-qt	g mg ⁻¹ menit- ¹	adsorpsi (%)
30	17.13	22.86	5.73	1.75	1.75	70.28
60	19.31	22.86	3.55	1.27	3.11	78.83
90	21.34	22.86	1.52	0.42	4.22	87.63
120	22.86	22.86	0.00	0.00	5.25	93.49
160	22.80	22.86	0.06	-2.77	7.02	93.24
180	22.65	22.86	0.21	-1.56	7.95	92.73

➢ ion logam Pb²⁺

Waktu	qt	qe	qe-qt		t/qt	Efektivitas
(menit)	(mg/g)	(mg/g)	(mg/g)	In qe-qt	g mg ⁻¹ menit- ¹	adsorpsi (%)
30	19.22	24.28	5.05	1.62	1.56	75.69
60	22.40	24.28	1.88	0.63	2.68	87.84
90	23.18	24.28	1.10	0.09	3.88	90.98
120	24.28	24.28	0.00	0.00	4.94	95.29
150	24.08	24.28	0.20	-1.63	6.23	94.90
180	23.95	24.28	0.32	-1.13	7.52	94.12

> ior	n logam (Cu ²⁺				
Waktu	qt	qe	qe -qt		t/qt	Efektivitas
(menit)	(mg/g)	(mg/g)	(mg/g)	In qe-qt	g mg ⁻¹ menit- ¹	adsorpsi (%)
30	11.95	22.91	10.96	2.39	2.51	51.29
60	16.56	22.60	6.04	1.80	3.62	70.88
90	19.40	22.91	3.50	1.25	4.64	82.72
120	21.89	22.91	1.02	0.02	5.48	93.51
140	22.91	22.91	0.00	0.00	6.11	98.05
160	22.60	22.91	0.30	-1.19	7.08	96.55
180	22.60	22.91	0.31	-1.17	7.97	97.01

Catatan :

qt adalah qe pada waktu t **qe** adalah qe pada waktu optimum

Bentuk persamaan kinetika orde satu semu

 $Log (qe-qt) = log qe-K_1.t/2,303$

Data grafik kinetika orde satu semu ion logam $\mathbf{Cd}^{\mathbf{2+}}$ diperoleh persamaan garis :

y = -0.0165x + 2.237

dari persamaan garis diperoleh nilai slope (a) = -0,0165 dan nilai intersep (b) = 2,237

Nilai k1 dapat dihitung sebagai berikut :

slope =
$$-\frac{k_1}{2,303}$$

 $k_1 = -$ (slope x 2,303)
 $= -$ (-0,0165 x 2,303)
 $= 0,038$ menit⁻¹

Nilai adsorpsi dapat dihitung sebagai berikut :

intersep = log q_e

- q_e = invers log intersep
 - = invers log 2,237
 - = 9,3652 mg/g

Lanjutan Lampiran 16

Bentuk persamaan kinetika orde dua semu $t/q_t = 1/k_2 q_e^2 + t/q_e$

Data grafik kinetika orde dua semu diperoleh persamaan garis :

y = 0.0405x + 0.637

dari persamaan garis diperoleh nilai slope (a) = 0,0405 dan nilai intersep (b) = 0,637

Nilai adsorpsi dapat dihitung sebagai berikut :

slope =
$$\frac{1}{q_e}$$

 $q_e = \frac{1}{slope} = \frac{1}{0,0404} = 24,6913 \text{ mg/g}$

Nilai K2 dapat dihitung sebagai berikut :

intersep =
$$\frac{1}{K_2 \cdot q_{e^2}}$$

 $K_2 = \frac{1}{q_e^2 \cdot \text{intersep}}$
 $= \frac{1}{(24,6913)^2 \times (0,637)}$
= 0,00104 g·mg⁻¹menit⁻¹

Lampiran 17. Data Penentuan pH Optimum Adsorpsi Ion Iogam Cd²⁺, Mn²⁺, Fe²⁺, Pb²⁺, dan Cu²⁺ oleh ANA/MCM-48.

	\succ Ion logam Cd ²⁺ , Mn ²⁺ , Fe ²⁺ , Pb ²⁺ , dan Cu ²⁺											
	Со	Ce	Vol.	Adsorben	qe	Kd	Efektifitas					
рΗ	(mg/L)	(mg/L)	(L)	(g)	(mg/g)	(L/g)	adsorpsi (%)					
2	50.5	32	0.05	0.1004	9.21	0.29	36.63					
3	50.5	22	0.05	0.1005	14.18	0.64	56.44					
4	50.5	12	0.05	0.1	19.25	1.60	76.24					
5	50.5	7	0.05	0.1008	21.58	3.08	86.14					
6	50.5	4	0.05	0.1002	23.20	5.80	92.08					
7	50.5	4.5	0.05	0.1007	22.84	5.08	91.09					

Ion logam Mn²⁺

	Со	Ce	Vol.	Adsorben	qe	Kd	Efektifitas
рΗ	(mg/L)	(mg/L)	(L)	(g)	(mg/g)	(L/g)	adsorpsi (%)
2	51.38	36.88	0.05	0.1	7.25	0.20	28.22
3	51.38	28.50	0.05	0.1024	11.17	0.39	44.53
4	51.38	18.13	0.05	0.1001	16.61	0.92	64.72
5	51.38	11.63	0.05	0.1	19.88	1.71	77.37
6	51.38	8.88	0.05	0.1	21.25	2.39	82.73
7	51.38	9.13	0.05	0.1	21.13	2.32	82.24

> Ion logam Fe²⁺

-							
	Со	Ce	Vol.	Adsorben	qe	Kd	Efektifitas
рΗ	(mg/L)	(mg/L)	(L)	(g)	(mg/g)	(L/g)	adsorpsi (%)
2	49.71	28.24	0.05	0.1	10.74	0.38	43.20
3	49.71	16.10	0.05	0.1001	16.79	1.04	67.62
4	49.71	7.81	0.05	0.1	20.95	2.68	84.29
5	49.71	6.67	0.05	0.1	21.52	3.23	86.59
6	49.71	7.90	0.05	0.1	20.90	2.64	84.10
7	49.71	7.81	0.05	0.1001	20.93	2.68	84.29

Ion logam Pb²⁺

	-	-					
	Co	Ce	Vol.	Adsorben	qe	Kd	Efektifitas
рΗ	(mg/L)	(mg/L)	(L)	(g)	(mg/g)	(L/g)	adsorpsi (%)
2	52.42	38.08	0.05	0.1	7.17	0.19	27.34
3	52.42	31.42	0.05	0.1024	10.25	0.33	40.06
4	52.42	23.08	0.05	0.1001	14.65	0.63	55.96
5	52.42	9.42	0.05	0.1	21.50	2.28	82.03
6	52.42	1.75	0.05	0.1005	25.32	14.47	96.66
7	52.42	2.08	0.05	0.1001	25.14	12.07	96.03

	➢ Ion logam Cu ²⁺											
	Со	Ce	Vol.	Adsorben	qe	Kd	Efektifitas					
pН	(mg/L)	(mg/L)	(L)	(g)	(mg/g)	(L/g)	adsorpsi (%)					
2	50.84	33.14	0.05	0.1	8.85	0.27	34.82					
3	50.84	14.25	0.05	0.1003	18.24	1.28	71.97					
4	50.84	9.42	0.05	0.1001	20.69	2.20	81.47					
5	50.84	7.69	0.05	0.1002	21.54	2.80	84.88					
6	50.84	5.38	0.05	0.1	22.73	4.23	89.43					
7	50.84	5.45	0.05	0.1003	22.63	4.15	89.27					

Nilai qe dihitung berdasarkan persamaan (5).

Contoh perhitungan jumlah ion logam Cu^{2+} yang teradsorpsi (pH = 2) :

$$\mathbf{q}_{\mathbf{e}} = \frac{(50,84 - 33,14)\text{mg/L}}{0,1 \text{ g}} \text{ X } 0,05 \text{ L}$$

 $q_e = 8,85 \text{ mg/g}$

$$Kd = \frac{(C_o - C_e)}{C_e} x \frac{v}{w}$$
$$= \frac{q_e}{C_e} = \frac{(50,84 - 33,14)}{33,14} x \frac{0,05}{0,1}$$
$$= 0,27 \text{ L/g}$$

% Efektifitas adsorpsi = $\frac{(C_o - C_e)}{C_o} \times 100$

$$=\frac{50,84-33,14}{50,84} \times 100$$
$$= 34,82 \%$$

Lampiran 18. Data Penentuan Kapasitas Adsorpsi Ion Iogam Cd²⁺, Mn²⁺, Fe²⁺, Pb²⁺, dan Cu²⁺ oleh ANA/MCM-48. ➤ Ion Iogam Cd²⁺

_							
							Efektivitas
Konsentrasi	Co	Ce	Vol.	W	qe	qe	adsorpsi
(mg/L)	(mg/L)	(mg/L)	(L)	(g)	(mg/g)	(mmol/g)	(%)
50	50.33	9.67	0.05	0.1008	20.17	0.18	80.79
100	103.00	23.00	0.05	0.1001	39.96	0.36	77.67
200	200.33	53.00	0.05	0.1001	73.59	0.65	73.54
300	299.33	96.67	0.05	0.1001	101.23	0.90	67.71
400	401.33	158.33	0.05	0.1006	120.78	1.07	60.55
Ion log	am Mn ²⁺	•					
							Efektivitas
Konsentrasi	Co	Ce	Vol.	W	qe	qe	adsorpsi
(mg/L)	(mg/L)	(mg/L)	(L)	(g)	(mg/g)	(mmol/g)	(%)
50	51.00	10.07	0.05	0.1004	20.39	0.37	80.26
100	102.67	24.33	0.05	0.1001	39.13	0.71	76.30
200	207.33	66.10	0.05	0.1002	70.48	1.28	68.12

Ion logam Fe²⁺

299.67

398.00

123.33 0.05

0.05

202.67

300

400

V							
							Efektivitas
Konsentrasi	Со	Ce	Vol.	W	qe	qe	adsorpsi
(mg/L)	(mg/L)	(mg/L)	(L)	(g)	(mg/g)	(mmol/g)	(%)
50	51.5	10	0.05	0.1	20.75	0.37	80.58
100	103.5	22	0.05	0.1001	40.71	0.73	78.74
200	219	58.5	0.05	0.1028	78.06	1.40	73.29
300	309	105	0.05	0.1001	101.90	1.82	66.02
400	395.75	158.5	0.05	0.1004	118.15	2.12	59.95

0.1001

0.1

88.08

97.67

1.60

1.78

58.84

49.08

➢ Ion logam Pb²⁺

-							Efektivitas
Konsentrasi	Co	Ce	Vol.	W	qe	qe	adsorpsi
(mg/L)	(mg/L)	(mg/L)	(L)	(g)	(mg/g)	(mmol/g)	(%)
50	50	6.5	0.05	0.1	21.75	0.10	87.00
100	106.5	17.5	0.05	0.1005	44.29	0.21	83.57
200	205	38.5	0.05	0.1003	83.00	0.40	81.22
300	306	77.5	0.05	0.1001	114.14	0.55	74.67
400	409	156.5	0.05	0.1	126.25	0.61	61.74

➢ Ion logam Cu²⁺

							Efektivitas
Konsentrasi	Со	Ce	Vol.	W	qe	qe	adsorpsi
(mg/L)	(mg/L)	(mg/L)	(L)	(g)	(mg/g)	(mmol/g)	(%)
50	49.2	11.9	0.05	0.1005	18.56	0.29	75.81
100	103.6	27.1	0.05	0.1012	37.80	0.60	73.84
200	194.3	59.9	0.05	0.1006	66.80	1.05	69.17
300	292.5	106.9	0.05	0.1	92.80	1.46	63.45
400	411.6	172.5	0.05	0.1004	119.07	1.88	58.09

Nilai q_e dihitung berdasarkan persamaan (5).

Contoh perhitungan jumlah ion logam Cd^{2+} yang teradsorpsi (C_o = 50,33 mg/L) :

 $q_e = \frac{(50,33 - 9,67)mg/L}{0,1008 g} \times 0,05 L$

 $q_e = 20,17 \text{ mg/g} = 0,18 \text{ mmol/g}$

Lampiran 19. Data Penentuan Kapasitas Adsorpsi Ion Iogam Cd²⁺, Mn²⁺, Fe²⁺, Pb²⁺, dan Cu²⁺ oleh ANA/MCM-48 untuk pemodelan persamaan isoterm adsorpsi bentuk linear.

Ce	Qe					
(mg/L)	(mg/g)	ce/qe	Log Ce	Log qe	In Ce	ln(q/qm-q)
9.67	20.17	0.48	0.99	1.30	2.27	-2.03
23.00	39.96	0.58	1.36	1.60	3.14	-1.21
53.00	73.59	0.72	1.72	1.87	3.97	-0.31
96.67	101.23	0.95	1.99	2.01	4.57	0.33
158.33	120.78	1.31	2.20	2.08	5.06	0.82

➢ Ion logam Cd²⁺

Sips		Langr	nuir	Freundlich	
Parameter	Nilai	Parameter	Nilai	Parameter	Nilai
ln K₅	-4.3958	1/qmax K	0.4329	log K	0.6968
Ks	0.0117	1/qmax	0.0055	К	2.0073
n	1.0422	qmax	181.8182	n	1.5356
q _{max}	173.8914	К	0.0127	R ²	0.9849
R ²	0.9994	R ²	0.9989		

Ion logam Mn²⁺

Ce	Qe					
(mg/L)	(mg/g)	ce/qe	Log Ce	Log qe	In Ce	ln(q/qm-q)
10.07	20.39	0.49	1.00	1.31	2.31	-1.57
24.33	39.13	0.62	1.39	1.59	3.19	-0.71
66.10	70.48	0.94	1.82	1.85	4.19	0.38
123.33	88.08	1.40	2.09	1.94	4.81	1.06
202.67	97.67	2.08	2.31	1.99	5.31	1.53

Sips							
Parameter	Nilai						
$\ln K_s$	-4.0131						
Ks	0.017						
n	1.056						
q _{max}	118.7166						
R ²	0.9995						

Langmuir							
Parameter	Nilai						
1/qmax K	0.4097						
1/qmax	0.0082						
qmax	121.9512						
K	0.020015						
R ²	0.9996						

Freundlich							
Parameter	Nilai						
log K	0.8259						
К	2.2839						
n	1.8896						
R ²	0.9685						

> Ion logam Fe²⁺

-	Ce	Qe					
_	(mg/L)	(mg/g)	ce/qe	Log Ce	Log qe	In Ce	ln(q/qm-q)
	10	20.75	0.48	1.00	1.32	2.30	-1.95
	22	40.71	0.54	1.34	1.61	3.09	-1.12
	58.5	78.06	0.75	1.77	1.89	4.07	-0.12
	105	101.90	1.03	2.02	2.01	4.65	0.46
_	158.5	118.15	1.34	2.20	2.07	5.07	0.90

Sips		Langmuir		Freundlich	
Parameter	Nilai	Parameter	Nilai	Parameter	Nilai
In K _s	-4.3079	1/qmax K	0.4159	log K	0.7285
Ks	0.0136	1/qmax	0.0058	К	2.0720
n	1.0255	qmax	172.4138	n	1.5845
q _{max}	165.9678	K	0.01396	R ²	0.9814
R ²	0.9999	R ²	0.9997		

Ion logam Pb²⁺

	Ce	Qe					
	(mg/L)	(mg/g)	ce/qe	Log Ce	Log qe	In Ce	ln(q/qm-q)
	6.5	21.75	0.30	0.81	1.34	1.872	-1.725
	17.5	44.28	0.40	1.24	1.65	2.862	-0.810
	38.5	83.00	0.46	1.59	1.92	3.651	0.311
	77.5	114.14	0.68	1.89	2.06	4.350	1.347
	156.5	126.25	1.24	2.19	2.10	5.053	1.972
-							

Sips						
Parameter	Nilai					
ln K₅	-4.0952					
Ks	0.0127					
n	1.2801					
q _{max}	143.8168					
R ²	0.9917					

Langmuir							
Parameter	Nilai						
1/qmax K	0.2498						
1/qmax	0.0062						
qmax	161.2903						
К	0.02482						
R ²	0.9911						

Freund	Freundlich					
Parameter	Nilai					
log K	0.9214					
K	2.5128					
n	1.7343					
R ²	0.9527					

🔰 > lo	n logam	Cu ²⁺				
Ce	qe					
(mg/L)	(mg/g)	ce/qe	Log Ce	Log qe	In Ce	ln(q/qm-q)
11.9	18.56	0.64	1.08	1.27	2.42	-2.27
27.1	37.80	0.72	1.43	1.58	3.31	-1.48
59.9	66.80	0.90	1.78	1.82	4.09	-0.71
106.9	92.80	1.15	2.03	1.97	4.62	-0.12
172.5	119.07	1.45	2.24	2.08	5.15	0.35

Sips					
Parameter	Nilai				
In K₅	-4.6599				
Ks	0.0086				
n	0.9927				
q _{max}	202.7154				
R ²	0.9987				

Langmuir						
Parameter	Nilai					
1/qmax K	0.587					
1/qmax	0.0051					
qmax	196.0784					
K	0.0086					
R ²	0.9981					

Freundlich					
Parameter	Nilai				
log K	0.5551				
К	1.7421				
n	1.4399				
R ²	0.9900				

- Model persamaan isoterm Langmuir dapat dilihat pada persamaan :

$$\frac{C_e}{q_e} = \frac{1}{q_m \times K_L} + \frac{1}{q_m} \times C_e$$

Berdasarkan model **isoterm Langmuir ion logam Cd²⁺** diperoleh persamaan garis :

$$y = 0.0055x + 0.4329$$

dari persamaan garis diperoleh nilai slope (a) = 0,0055 dan nilai intersep (b) = 0,4329

Nilai kapasitas adsorpsi dapat dihitung sebagai berikut :

$$\frac{1}{Q_0}$$
 = kemiringan (slope)
 $Q_0 = \frac{1}{0,0055} = 181,8182 \text{ mg/g}$
= 1,62 mmol/g

Intensitas adsorpsi dapat dihitung sebagai berikut :

$$\frac{1}{Q_{0.b}}$$
 = intersep

b =
$$\frac{1}{181,8182 \text{ mg/g} \times 0.4329} = 0.013 \text{ L mg}^{-1}$$

- Model persamaan **isoterm Freundlich** dapat dilihat pada persamaan $Log q_e = log K_F + \frac{1}{n} log C_e$

Berdasarkan model isoterm Freundlich diperoleh persamaan garis :

y = 0.6512x + 0.6968

dari persamaan garis diperoleh nilai slope (a) = 0,6512 dan nilai intersep (b)

= 0,6968

Nilai kapasitas adsorpsi dapat dihitung sebagai berikut :

 $log k_f = intersep$

 $\log k_f = 0,6968$

 $k_f = 2,0073 \text{ mg/g}$

 $k_f = 0,018 \text{ mmol/g}$

Intensitas adsorpsi dapat dihitung sebagai berikut :

$$\frac{1}{n}$$
 = kemiringan (slope)
n = $\frac{1}{\text{slope}}$ = $\frac{1}{0,6512}$ = 1,5356 g L⁻¹

- Model persamaan isoterm Sips dapat dilihat pada persamaan

$$\ln \frac{q_e}{q_m - q_e} = \ln K_s + \frac{1}{n} \ln C_e$$

Lampiran 20. Data Penentuan Kapasitas Adsorpsi Ion Iogam Cd²⁺, Mn²⁺, Fe²⁺, Pb²⁺, dan Cu²⁺ oleh ANA/MCM-48 untuk pemodelan persamaan isoterm adsorpsi bentuk nonlinear.

Konsentrasi (mg/L)	Ce (mg/L)	qe (mg/g)	qe S (mg/g)	res^2	qe L (mg/g)	res^2	qe F (mg/g)	res^2
50	9.67	20.17	19.26	0.83	19.91	0.07	26.28	37.32
100	23.00	39.96	40.88	0.85	41.16	1.43	42.71	7.57
200	53.00	73.59	73.59	0.00	73.21	0.15	68.18	29.31
300	96.67	101.23	100.60	0.40	100.25	0.97	95.47	33.20
400	158.33	120.78	121.13	0.12	121.45	0.46	125.87	25.95

➢ Ion logam Cd²⁺

Sips								
qmax	К	n	RSS					
173.891	0.0117	1.0422	2.2092					
qmax	К	RSS						
181.697	0.0127	3.0731						
К	n	RSS						
7.373	0.560	133.358						

> Ion logam Mn²⁺

Konsentrasi (mg/L)	Ce (mg/L)	qe (mg/g)	qe S (mg/g)	res^2	qe L (mg/g)	res^2	qe F (mg/g)	res^2
50	10.07	20.39	19.73	0.43	20.46	0.01	27.53	50.98
100	24.33	39.13	39.89	0.59	40.02	0.80	40.64	2.28
200	66.10	70.48	70.34	0.02	69.76	0.52	63.16	53.51
300	123.33	88.08	87.55	0.28	87.30	0.61	83.18	23.98
400	202.67	97.67	98.06	0.15	98.49	0.68	103.57	34.85

Sips							
qmax	К	n	RSS				
118.7166	0.0173	1.0568	1.4704				
qmax	К	RSS					
123.0147	0.01987	2.613					
К	n	RSS					
9.9333	0.4414	165.596					

> Ion logam Fe²⁺

Konsentrasi (mg/L)	Ce (mg/L)	qe (mg/g)	qe S (mg/g)	res^2	qe L (mg/g)	res^2	qe F (mg/g)	res^2
50	10	20.75	20.93	0.03	21.29	0.29	27.39	44.10
100	22	40.71	40.60	0.01	40.73	0.00	42.04	1.77
200	58.5	78.06	77.83	0.06	77.54	0.28	71.52	42.83
300	105	101.90	102.35	0.20	102.19	0.09	98.28	13.11
400	158.5	118.15	117.92	0.05	118.14	0.00	122.92	22.73

Sips							
qmax	К	K n					
165.9678	0.0136	1.025578	0.3554				
	Langmuir						
qmax	К	RSS					
170.3100	0.0143	0.6546					
	Freundlich						
К	n	RSS					
7.8392	0.543334	124.5374					

➢ Ion logam Pb²⁺

Konsentrasi (mg/L)	Ce (mg/L)	qe (mg/g)	qe S (mg/g)	res^2	qe L (mg/g)	res^2	qe F (mg/g)	res^2
50	6.5	21.75	17.72	16.27	22.90	1.32	33.14	129.74
100	17.5	44.28	47.89	13.04	49.86	31.17	51.49	52.06
200	38.5	83.00	83.13	0.02	80.36	6.95	73.13	97.34
300	77.5	114.14	110.79	11.20	108.09	36.49	99.84	204.23
400	156.5	126.25	128.27	4.06	130.54	18.42	136.50	105.10

-									
	Sips								
	qmax		K	RSS					
	143.81	17	0.0128	0.0128 1.280185					
	qmax		K		RSS				
	163.9	938	0.0250 94.351						
ſ		F	Freundlic	h					
ſ	К	n							
Γ	14.409	0.4	44497544	46	588.473				

Konsentrasi (mg/L)	Ce (mg/L)	qe (mg/g)	qe S (mg/g)	res^2	qe L (mg/g)	res^2	qe F (mg/g)	res^2
50	11.2	18.91	17.68	1.49	17.58	1.75	23.11	17.69
100	27.5	37.60	38.33	0.53	38.28	0.47	40.04	5.95
200	59.9	66.80	68.02	1.48	68.08	1.63	64.46	5.46
300	101.9	95.30	93.48	3.32	93.55	3.08	89.22	36.94
400	172.5	119.07	119.74	0.45	119.68	0.37	123.12	16.37

Sips						
qmax	К	n	RSS			
202.715	0.008683	0.992789	7.271			
	Langmuir					
qmax	К	RSS				
200.556	0.008579	7.302				
	Freundlich					
К	n	RSS				
5.272	0.61175	82.414				

➢ Ion logam Cu²⁺

Isoterm Langmuir non-linear di hitung dengan persamaan :

$$q_e = \frac{q_m K_L \cdot C_e}{1 + K_L \times C_e}$$

Isoterm Freundlich non-linear di hitung dengan persamaan :

$$q_e = K_F \cdot C_e^n$$

Isoterm Sips non-linear di hitung dengan persamaan :

$$q_e = \frac{q_m \cdot K_S \cdot C_e^n}{1 + K_S \cdot C_e^n}$$

Lampiran	21. Data perhitungan % perolehan kembali kemampuan
	adsorpsi desorpsi komposit ANA/MCM-48 terhadap ion
	logam Cd ²⁺ , Mn ²⁺ , Fe ²⁺ , Pb ²⁺ , dan Cu ²⁺

Logam	Agen pendesorpsi	Siklus ke-	qe Adsorpsi mg/g	qe desorpsi (mg/g)	% perolehan kembali
		1	4.488	4.442	98.99
	EDTA	2	4.498	4.214	93.69
Cd ²⁺		3	3.077	2.560	83.18
		1	4.700	3.116	66.31
	HNO₃	2	2.716	1.593	58.66
		3	2.890	1.206	41.73
		1	4.798	4.311	89.85
	EDTA	2	5.067	3.870	76.38
		3	3.531	2.535	71.80
Mn ²⁺		1	4.692	3.453	73.59
	HNO₃	2	4.641	2.729	58.79
		3	3.508	1.511	43.09
		1	4.981	4.464	89.61
	EDTA	2	5.764	4.803	83.33
		3	3.665	2.555	69.71
Fe ²⁺	HNO ₃	1	4.725	3.587	75.91
		2	5.764	3.136	54.40
		3	3.665	1.838	50.15
		1	4.915	4.372	88.94
	EDTA	2	4.064	3.303	81.26
		3	3.490	2.211	63.34
Pb ²⁺		1	4.985	3.444	69.09
	HNO₃	2	5.527	3.672	66.44
		3	3.141	1.689	53.77
		1	5.491	5.034	91.67
	EDTA	2	4.278	3.513	82.11
Cu ²⁺		3	2.807	2.033	72.41
		1	5.099	4.072	79.87
	HNO₃	2	4.793	3.338	69.64
		3	2.853	1.412	49.50

% Perolehan kembali = $\frac{jumlah ion logam terdesorpsi}{jumlah ion logam teradsorpsi} X 100$

 $=\frac{4,442}{4,488} \ x \ 100 = 98,99 \ \%$

Lampiran.22

Tabel parameter adsorpsi ion Cd^{2+} , Mn^{2+} , Fe^{2+} , Pb^{2+} , dan Cu^{2+} oleh ANA/MCM-48 yang diperoleh dari kurva isotherm Langmuir dan Freundlich (Qo, b, R², k, n, R²)

Logam	Isoterm Langmuir				Isoterm Freundlich			
	qo	b						
	(mmol/g)	(L/mg)	R ²	R∟	K_{F}	n _F (g/L)	R ²	1/n
Cd	1.62	0.013	0.9989	0.164	0.018	1.536	0.9849	0.651
Mn	2.22	0.020	0.9996	0.113	0.042	1.890	0.9685	0.529
Fe	3.09	0.779	0.9997	0.003	0.037	1.585	0.9814	0.631
Pb	0.78	0.025	0.9911	0.090	0.012	1.734	0.9527	0.577
Cu	3.09	0.009	0.9981	0.219	0.027	1.440	0.9868	0.695

$$RL = \frac{1}{1+b.Co}$$
$$= \frac{1}{1+1,62x}$$

Lampiran 23.

Tabel Persentase efektivitas adsorpsi terhadap konsentrasi ion logam Cd²⁺, Mn²⁺, Fe²⁺, Pb²⁺, dan Cu²⁺

Konsentrasi (mg/g)	Cd	Mn	Fe	Pb	Cu
50	80.79	80.26	80.58	87	75.81
100	77.67	76.30	78.74	83.57	73.84
200	73.54	68.12	73.29	81.22	69.17
300	67.71	58.84	66.02	74.67	63.45
400	60.55	49.08	59.95	61.74	58.09

Loga m	Agen pendesorps i	Siklus ke-	q _e Adsorpsi (mg/g)	q _e desorpsi (mg/g)	% peroleha n kembali
		1	4.488	4.442	98.99
	EDTA	2	4.498	4.214	93.69
Cd		3	3.077	2.560	83.18
		1	4.700	3.116	66.31
	HNO ₃	2	2.716	1.593	58.66
		3	2.890	1.206	41.73
		1	4.798	4.311	89.85
	EDTA	2	5.067	3.870	76.38
		3	3.531	2.535	71.80
Mn		1	4.692	3.453	73.59
	HNO ₃	2	4.641	2.729	58.79
		3	3.508	1.511	43.09
	EDTA	1	4.981	4.464	89.61
		2	5.764	4.803	83.33
		3	3.665	2.555	69.71
Fe		1	4.725	3.587	75.91
	HNO ₃	2	5.764	3.136	54.40
		3	3.665	1.838	50.15
		1	4.915	4.372	88.94
	EDTA	2	4.064	3.303	81.26
		3	3.490	2.211	63.34
Pb		1	4.985	3.444	69.09
	HNO ₃	2	5.527	3.672	66.44
		3	3.141	1.689	53.77
		1	5.491	5.034	91.67
	EDTA	2	4.278	3.513	82.11
		3	2.807	2.033	72.41
Cu		1	5.099	4.072	79.87
	HNO ₃	2	4.793	3.338	69.64
		3	2.853	1.412	49.50

Lampiran 24. Data proses adsorpsi-desorpsi 3 kali siklus

Lampiran 25. XRF Mineral alam Mesawa

Lampiran 26. FTIR Mineral alam Mesawa

🕀 SHIMADZU

No.	Peak	Intensity	Corr. Intensity	Base (H)	Base (L)	Area	Corr. Area
1	241.1	6.543	0.899	256.53	229.53	31.256	0.816
2	275.82	5.586	2.04	293.18	258.46	41.097	2.314
3	300.9	6.781	2.223	335.61	295.11	41.665	4.026
4	453.27	4.406	14.612	545.85	337.54	219.962	70.335
5	559.36	17.635	0.875	586.36	547.78	28.316	0.379
6	619.15	17.583	1.817	640.37	588.29	38.153	1.184
7	680.87	12.787	4.277	711.73	642.3	56.991	3.938
8	734.88	15.258	3.081	808.17	713.66	69.055	4.624
9	975.98	1.439	21.947	1373.32	810.1	661.797	250.39
10	1419.61	11.624	1.092	1593.2	1375.25	194.677	3.502
11	1647.21	11.05	3.25	1840.09	1595.13	214.531	7.958
12	1870.95	14.494	0.023	1888.31	1865.17	19.4	0.007
13	2308.79	13.945	0.198	2331.94	1977.04	300.234	0.821
14	2378.23	13.723	0.275	2395.59	2357.01	33.081	0.166
15	3506.59	6.277	0.077	3516.23	2397.52	1089.457	0.867

No.	Peak	Intensity	Corr. Intensity	Base (H)	Base (L)	Area	Corr. Area
1	243.03	46.812	2.343	254.6	231.46	7.439	0.28
2	275.82	40.732	6.623	293.18	256.53	13.005	1.18
3	300.9	43.51	4.743	333.69	295.11	11.835	1.766
4	393.48	27.745	1.315	395.41	335.61	22.061	0.859
5	432.05	13.264	3.743	441.7	397.34	32.243	1.582
6	459.06	10.936	6.316	536.21	443.63	65.534	3.988
7	565.14	25.526	7.996	590.22	538.14	27.53	2.806
8	623.01	21.155	10.73	648.08	592.15	31.776	4.14
9	682.8	18.965	13.142	738.74	650.01	51.025	7.791
10	756.1	34.255	1.259	788.89	740.67	21.777	0.282
11	1001.06	0.651	31.368	1307.74	790.81	497.302	230.007
12	1313.52	25.107	0.01	1325.1	1309.67	9.258	0.001
13	1421.54	21.503	0.942	1446.61	1325.1	77.332	0.839
14	1477.47	21.185	0.957	1571.99	1448.54	80.41	0.695
15	1637.56	18.924	4.253	1737.86	1573.91	109.152	4.818
16	1751.36	22.693	0.063	1764.87	1739.79	16.137	0.016
17	1807.3	22.532	0.033	1813.09	1766.8	29.866	0.017
18	2320.37	18.841	0.064	2326.15	1815.02	349.085	0.039
19	2376.3	18.283	0.306	2391.73	2353.16	28.297	0.138
20	3504.66	7.859	4.247	3670.54	2393.66	1146.698	71.18

No.	Peak	Intensity	Corr. Intensity	Base (H)	Base (L)	Area	Corr. Area
1	243.03	20.308	4.535	258.46	225.67	20.836	1.045
2	268.11	22.312	1.328	275.82	262.32	8.657	0.198
3	289.32	21.029	0.576	293.18	277.75	10.21	0.102
4	389.62	22.238	6.501	397.34	337.54	25.795	2.017
5	430.13	9.687	4.581	441.7	399.26	35.852	2.433
6	459.06	8.248	4.874	491.85	443.63	44.976	3.63
7	497.63	17.814	0.994	534.28	493.78	27.049	0.595
8	563.21	20.188	7.939	588.29	536.21	32.021	3.296
9	623.01	16.187	10.937	648.08	590.22	37.717	5.109
10	680.87	16.106	11.697	738.74	650.01	56.188	7.751
11	754.17	30.412	1.562	790.81	740.67	24.918	0.39
12	1002.98	0.578	28.675	1321.24	792.74	544.197	249.323
13	1411.89	19.616	0.392	1421.54	1323.17	66.062	0.167
14	1469.76	19.601	0.067	1471.69	1458.18	9.472	0.003
15	1554.63	20.909	0.171	1560.41	1550.77	6.541	0.02
16	1635.64	14.036	6.226	1716.65	1577.77	105.473	9.008
17	1730.15	19.897	0.124	1741.72	1726.29	10.782	0.021
18	1762.94	20.024	0.155	1774.51	1753.29	14.776	0.028
19	1859.38	19.363	0.116	1865.17	1847.81	12.333	0.017
20	2358.94	13.852	0.761	2385.95	2341.58	37.443	0.43
21	3477.66	2.954	0.024	3493.09	3466.08	41.26	0.052

Quantachrome NovaWin - Data Acquisition and Reduction for NOVA instruments ©1994-2013, Quantachrome Instruments version 11.03

Analysis Operator: quantachrome 49735 Date:2022/08/04 Report Operator: quantachrome operator: Date:2022/08/04 Sample ID: 49735 Filename: sttn_A_03082022_7461_BET_EK_49735.qps Sample Desc: ANA(5%) Comment: Sample weight: 0.1039 g Sample Volume: 0.03047 cc Sample Density: 3.41 g/cc Outgas Time: 3.0 hrs Outgas Temp: 250.0 C Analysis gas: Nitrogen Bath Temp: 273.0 K Press. Tolerance: 0.100/0.100 (ads/des) Equil time: 60/60 sec (ads/des) Equil timeout: 240/240 sec (ads/des) Analysis Time: 709.8 min End of run: 2022/08/04 1:15:52 Instrument: Nova Station A Cell ID: 9 Date Reduction Parameters Date Reduction Parameters

Relative Pressure, P/Po

Quantachrome NovaWin - Data Acquisition and Reduction for NOVA instruments ©1994-2013, Quantachrome Instruments version 11.03

Analysis Operator: Sample ID: Sample Desc: Sample weight: Outgas Time: Analysis gas: Press. Tolerance: Analysis Time: Cell ID: quantachrome 49735 CAN(15%) 0.1032 g 3.0 hrs Nitrogen 0.100/0.100 (ads/des) 715.3 min 16 Report Operator: quantachrome sttn_B_03072022_7462_BET_EK_49735.qps Date:2022/08/04 Filename: Comment: Sample Volume: OutgasTemp: Bath Temp: Equil time: End of run: Date:2022/08/04 0.03026 cc 250.0 C 273.0 K Sample Density: 3.41 g/cc 60/60 sec (ads/des) 2022/08/04 1:21:23 240/240 sec (ads/des) Nova Station B Equil timeout: Instrument: Isotherm : Linear Data Reduction Parameters Nitrogen Molec. Wt.: Temperature Cross Section: Adsorbate 77.350K 16.200 Å² 0.808 g/cc 28.013 Liquid Density:

Relative Pressure, P/Po

Counts

Title	: IMG1
Instrument Volt Mag. Date	: JCM-6000PLUS : 15.00 kV : x 1,000 : 2021/11/24
Pixel	: 512 x 384

	-	

Acquisition Pa	rameter
Instrument :	JCM-6000PLUS
Acc. Voltage :	15.0 kV
Probe Current:	1.00000 nA
PHA mode :	Т3
Real Time :	50.42 sec
Live Time :	50.00 sec
Dead Time :	0 %
Counting Rate:	781 cps
Energy Range :	0 - 20 keV

Thin Film Standardless Standardless Quantitative Analysis Fitting Coefficient : 0.1466

Element	(keV)	Mass%	Counts	Sigma	Atom%	Compound	Mass%	Cation	K
ВК	0.183	1.25	22.17	0.07	3.77				18.6733
N K	0.392	0.64	120.22	0.07	1.49				1.7651
О К*	0.525	17.55	4704.10	0.29	35.59				1.2308
Na K	1.041	6.44	2241.67	0.20	9.09				0.9481
Al K*	1.486	7.72	2611.70	0.64	9.28				0.9748
Si K* (Ref.)	1.739	17.45	5758.05	0.37	20.16				1.0000
K K	3.312	0.95	197.64	0.12	0.79				1.5846
Ca K*	3.690	2.86	556.08	0.19	2.31				1.6953
Ti K*	4.508	0.98	143.38	0.14	0.66				2.2439
Mn K	5.894	0.21	20.98	0.12	0.13				3.3574
Fe K*	6.398	7.54	647.28	0.42	4.38				3.8436
Ga L*	1.098	2.78	225.25	0.38	1.29				4.0678
As L*	1.282	1.36	114.69	0.28	0.59				3.9059
Br L	1.480	10.36	893.47	2.35	4.21				3.8263
Rb L	1.694	9.10	763.18	0.94	3.45				3.9313
Y L	1.922	2.26	172.98	0.35	0.82				4.3095
Te L*	3.769	1.61	92.96	0.31	0.41				5.7208

keV

View000

W M	1.774	8.93	933.46	0.68	1.58
Total		100.00			100.00

3.1562

Г

Title	: IMG1
Instrument	: JCM-6000PLUS
Volt	: 15.00 kV
Mag.	: x 1,500
Date	: 2022/02/03
Pixel	: 512 x 384

<u>7000</u>	<u> </u>	$\underline{0}$	ന്ത്ര
-------------	----------	-----------------	-------

Acquisition Par	rameter
Instrument :	JCM-6000PLUS
Acc. Voltage :	15.0 kV
Probe Current:	1.00000 nA
PHA mode :	тЗ
Real Time :	50.94 sec
Live Time :	50.00 sec
Dead Time :	1 %
Counting Rate:	5814 cps
Energy Range :	0 - 20 keV

Thin Film Standardless Standardless Quantitative Analysis Fitting Coefficient : 0.0896

Element	(keV)	Mass%	Counts	Sigma	Atom%	Compound	Mass%	Cation	K
OK (Ref.)	0.525	31.93	39704.16	0.18	45.19				1.0000
Na K	1.041	13.76	22208.77	0.13	13.55				0.7703
Mg K	1.253	1.02	1692.91	0.04	0.95				0.7512
Al K	1.486	18.93	29724.28	0.17	15.89				0.7920
Si K	1.739	24.71	37813.51	0.20	19.92				0.8125
K K	3.312	0.73	709.18	0.05	0.43				1.2875
Ca K	3.690	2.86	2577.19	0.09	1.61				1.3774
Fe K	6.398	6.05	2408.01	0.18	2.45				3.1229
Total		100.00			100.00				

Title	: IMG1
Instrument	• .TCM=6000PLUS
	. 000 00001103
Volt	: 15.00 kV
Mag.	: x 1,500
Date	: 2022/02/03
Pixel	: 512 x 384

SYD	00000
(AU)	
	1

Acquisition Pa	rameter
Instrument :	JCM-6000PLUS
Acc. Voltage :	15.0 kV
Probe Current:	1.00000 nA
PHA mode :	ΤЗ
Real Time :	50.92 sec
Live Time :	50.00 sec
Dead Time :	1 %
Counting Rate:	2189 cps
Energy Range :	0 - 20 keV

Thin Film Standardless Standardless Quantitative Analysis Fitting Coefficient : 0.1845

Element	(keV)	Mass%	Counts	Sigma	Atom%	Compound	Mass%	Cation	K
O K	0.525	24.43	9485.17	0.28	36.84				1.2308
Na K	1.041	13.06	6582.50	0.23	13.71				0.9481
Mg K	1.253	1.04	537.49	0.08	1.03				0.9246
Al K	1.486	20.55	10072.33	0.32	18.37				0.9748
Si K (Ref.)	1.739	27.09	12943.92	0.38	23.27				1.0000
K K	3.312	0.83	250.33	0.11	0.51				1.5846
Ca K	3.690	3.88	1092.78	0.19	2.33				1.6953
Fe K	6.398	9.11	1132.72	0.40	3.94				3.8436
Total		100.00			100.00				

No.	Peak	Intensity	Corr. Intensity	Base (H)	Base (L)	Area	Corr. Area
1	239.17	20.81	3.306	254.6	223.74	20.163	1.033
2	275.82	20.313	4.149	297.04	256.53	26.617	1.834
3	314.4	19.964	14.651	339.47	298.97	22.652	3.958
4	460.99	10.646	28.879	542	341.4	127.632	48.318
5	559.36	30.065	0.677	646.15	543.93	51.669	0.709
6	678.94	32.097	1.299	723.31	648.08	36.333	0.52
7	740.67	33.433	0.105	758.02	725.23	15.582	0.025
8	802.39	29.112	5.211	850.61	759.95	45.392	3.319
9	970.19	14.022	4.441	991.41	852.54	92.26	5.266
10	1087.85	1.713	15.9	1404.18	993.34	435.448	145.063
11	1408.04	24.932	0.031	1521.84	1406.11	68.234	0.079
12	1529.55	26.559	0.085	1543.05	1523.76	11.09	0.014
13	1556.55	26.536	0.036	1558.48	1544.98	7.765	0.006
14	1635.64	18.705	7.472	1749.44	1560.41	120.633	10.295
15	1757.15	25.582	0.05	1774.51	1751.36	13.691	0.018
16	1915.31	24.971	0.012	1917.24	1897.95	11.612	0.005
17	2314.58	22.649	0.401	2337.72	1919.17	261.637	1.768
18	2353.16	22.656	0.331	2368.59	2339.65	18.564	0.09
19	3448.72	4.827	10.086	3757.33	2370.51	1262.224	197.763

	Peak	Intensity	Corr. Intensity	Base (H)	Base (L)	Area	Corr. Area
1	248.82	3.203	0	258.46	248.82	13.965	0.01
2	250.75	3.203	0.156	258.46	248.82	14.057	0.033
3	273.89	3.43	0.425	289.32	270.03	27.317	0.493
4	300.9	3.433	2.12	312.47	291.25	29.464	2.626
5	318.25	6.185	8.584	345.26	314.4	19.078	-1.069
6	366.48	29.329	11.333	372.26	345.26	10.324	1.445
7	462.92	10.41	15.07	526.57	372.26	116.19	25.21
8	800.46	16.519	3.995	860.25	684.73	127.111	5.653
9	968.27	13.341	3.618	995.27	860.25	104.936	5.267
10	1087.85	1.699	9.825	1213.23	997.2	291.269	68.759
11	1232.51	5.171	1.282	1371.39	1215.15	152.079	-11.714
12	1386.82	14.639	0.163	1398.39	1371.39	22.482	0.077
13	1450.47	14.698	0.027	1458.18	1448.54	8.018	0.006
14	1635.64	9.763	4.423	1718.58	1560.41	145.395	11.051
15	1730.15	13.675	0.034	1745.58	1728.22	14.945	0.005
16	1924.96	13.335	0.006	1926.89	1913.39	11.805	-0.001
17	2310.72	11.901	0.218	2337.72	1926.89	371.807	3.16
18	3450.65	2.229	0.159	3466.08	2364.73	1266.301	0.788

Title	: IMG1
Instrument Volt Mag. Date	: JCM-6000PLUS : 15.00 kV : x 1,500 : 2022/07/21
Pixel	: 512 x 384

Counts	15000	eLl FeLa OKa NaKa	dgKa - AlKa SiKa		Ka Kb	Caka aKb		
	4500	- Fell FeL	- MgKa AlKa		- KKa - KKb	- Calk	- FeKesc	
	0	0.80	1.60	2.40	3.20	4.00	4.80	5.60

Acquisition Parameter
Instrument : JCM-6000PLUS
Acc. Voltage : 15.0 kV
Probe Current: 1.00000 nA
PHA mode : T3
Real Time : 51.04 sec
Live Time : 50.00 sec
Dead Time : 2 %
Counting Rate: 5594 cps
Energy Range : 0 - 20 keV

Thin Film Standardless Standardless Quantitative Analysis Fitting Coefficient : 0.0958

Element	(keV)	Mass%	Counts	Sigma	Atom%	Compound	Mass%	Cation	R
O K	0.525	30.42	37888.06	0.17	43.63				1.2308
Na K	1.041	2.39	3858.80	0.06	2.38				0.9481
Mg K	1.253	0.41	679.27	0.03	0.39				0.9246
Al K	1.486	5.06	7954.41	0.09	4.30				0.9748
Si K (Ref.)	1.739	58.41	89550.08	0.31	47.72				1.0000
K K	3.312	0.21	198.69	0.04	0.12				1.5846
Ca K	3.690	1.15	1044.30	0.06	0.66				1.6953
Fe K	6.398	1.95	778.61	0.11	0.80				3.8436
Total		100.00			100.00				

keV

<u>View010</u>

Quantachrome NovaWin - Data Acquisition and Reduction for NOVA instruments ©1994-2013, Quantachrome Instruments version 11.03

Analysis Operator: Sample ID: Sample Desc: Sample weight: Outgas Time: Analysis gas: Press. Tolerance: Analysis Time: Cell ID: Report quantachrome Sttn_D_25092021_7005_BET_EK_20753.qps Date:2021/09/26 Filename: Comment: Sample Volume: OutgasTemp: Bath Temp: Equil time: End of run: quantachrome 20753 CM/MCM-48 (5%) Date:2021/09/28 CW/MCM-48 (5%) 0.085 g 3.0 hrs Nitrogen 0.100/0.100 (ads/des) 1103.9 min 14 0.02493 cc 250.0 C 273.0 K 60/60 sec (ads/des) 2021/09/26 10:35:29 Sample Density: 3.41 g/cc 240/240 sec (ads/des) Nova Station D Equil timeout: Instrument: Isotherm : Linear Data Reduction Parameters Nitrogen Molec. Wt.: Temperature Cross Section: Adsorbate 77.350K 16.200 Å² 0.808 g/cc 28.013 Liquid Density: Ads Des 859.00 840.00 800.00 6 760.00

No.	Peak	Intensity	Corr. Intensity	Base (H)	Base (L)	Area	Corr. Area
1	364.55	27.5	31.59	372.26	349.12	5.52	1.35
2	462.92	11.98	47.03	650.01	372.26	114.04	57.07
3	729.09	97.53	2.25	763.81	682.8	0.52	0.42
4	800.46	83.8	16.35	850.61	765.74	3.28	3.34
5	1087.85	3.06	96.79	1332.81	852.54	278.61	278.29
6	1384.89	74.06	19.32	1398.39	1334.74	2.94	1.72
7	1442.75	97.44	0.78	1454.33	1438.9	0.11	0.02
8	1527.62	98.16	1.62	1541.12	1521.84	0.07	0.06
9	1635.64	57.11	42.76	1747.51	1558.48	17.75	17.69
10	1782.23	98.1	1.24	1797.66	1766.8	0.15	0.06
11	1855.52	98.32	0.9	1867.09	1843.95	0.12	0.04
12	2364.73	95.6	2.3	2393.66	2347.37	0.57	0.21
13	2524.82	98.85	0.8	2690.7	2453.45	0.49	0.3
14	2775.57	97.06	2.78	2829.57	2690.7	0.49	0.44
15	2852.72	97.5	2.15	2883.58	2829.57	0.3	0.22
16	2924.09	95.02	3.62	2947.23	2883.58	0.71	0.4
17	3452.58	22.97	77.08	3747.69	2983.88	239.01	239.04

Date/Time; 6/2/2022 3:04:22 PM No. of Scans; Resolution; Apodization;

	Peak	Intensity	Corr. Intensity	Base (H)	Base (L)	Area	Corr. Area
1	364.55	68.93	22.73	379.98	354.9	2.38	1.52
2	466.77	37.61	61.78	655.8	381.91	36.91	36.34
3	673.16	99.23	0.68	698.23	657.73	0.07	0.06
4	734.88	99.05	0.8	758.02	698.23	0.15	0.11
5	800.46	88.21	11.3	848.68	759.95	2.52	2.33
6	1089.78	10.24	89.19	1309.67	850.61	180.35	179.19
7	1384.89	83.83	13.44	1400.32	1365.6	1.48	1.06
8	1444.68	98.8	1.13	1456.26	1425.4	0.08	0.07
9	1489.05	97.5	1.93	1517.98	1456.26	0.43	0.28
10	1527.62	98.41	1	1539.2	1517.98	0.1	0.05
11	1635.64	67.47	32.39	1745.58	1541.12	13.51	13.39
12	1761.01	99.14	1.03	1772.58	1745.58	0.04	0.06
13	1857.45	98.6	0.78	1869.02	1840.09	0.12	0.04
14	1880.6	98.76	0.58	1894.1	1869.02	0.1	0.03
15	2358.94	95.78	2.14	2393.66	2341.58	0.58	0.21
16	2461.17	98.88	0.21	2511.32	2438.02	0.32	0.03
17	2802.57	98.45	0.74	2835.36	2679.13	0.64	0.16
18	2852.72	98.68	0.64	2885.51	2835.36	0.19	0.06
19	2924.09	98.3	1.28	2949.16	2885.51	0.25	0.14
20	3450.65	35.38	64.61	3747.69	2978.09	165.38	165.17

	Peak	Intensity	Corr. Intensity	Base (H)	Base (L)	Area	Corr. Area
1	368.4	53.57	16.04	374.19	354.9	3.44	1.21
2	460.99	30.68	40.28	644.22	376.12	62.09	29.63
3	673.16	98.67	1.1	705.95	650.01	0.18	0.12
4	725.23	99.36	0.48	754.17	705.95	0.08	0.05
5	802.39	89.19	10.75	846.75	756.1	2.36	2.34
6	856.39	99.03	0.84	871.82	848.68	0.04	0.03
7	956.69	91.13	8.46	985.62	879.54	2.31	2.16
8	1085.92	15.18	62.23	1215.15	987.55	100.16	64.41
9	1232.51	46.49	11.98	1296.16	1217.08	13.71	2.1
10	1317.38	98.2	1.58	1342.46	1298.09	0.18	0.14
11	1384.89	98.73	1.21	1396.46	1371.39	0.08	0.07
12	1483.26	98.7	0.21	1487.12	1456.26	0.11	0.02
13	1635.64	66.14	33.7	1745.58	1539.2	14.93	14.77
14	1761.01	99.11	0.66	1772.58	1747.51	0.06	0.03
15	1857.45	99.37	0.61	1869.02	1842.02	0.03	0.03
16	2358.94	95.56	2.33	2391.73	2341.58	0.57	0.21
17	2779.42	98.09	1.41	2831.5	2669.48	0.75	0.4
18	2852.72	98.81	0.66	2877.79	2831.5	0.17	0.06
19	2924.09	98.36	1.25	2951.09	2887.44	0.25	0.14
20	3446.79	36.74	63.17	3749.62	2980.02	157.62	157.36

Date/Time; 6/2/2022 2:56:40 PM No. of Scans; Resolution; Apodization;

	Peak	Intensity	Corr. Intensity	Base (H)	Base (L)	Area	Corr. Area
1	368.4	53.57	16.04	374.19	354.9	3.44	1.21
2	460.99	30.68	40.28	644.22	376.12	62.09	29.63
3	673.16	98.67	1.1	705.95	650.01	0.18	0.12
4	725.23	99.36	0.48	754.17	705.95	0.08	0.05
5	802.39	89.19	10.75	846.75	756.1	2.36	2.34
6	856.39	99.03	0.84	871.82	848.68	0.04	0.03
7	956.69	91.13	8.46	985.62	879.54	2.31	2.16
8	1085.92	15.18	62.23	1215.15	987.55	100.16	64.41
9	1232.51	46.49	11.98	1296.16	1217.08	13.71	2.1
10	1317.38	98.2	1.58	1342.46	1298.09	0.18	0.14
11	1384.89	98.73	1.21	1396.46	1371.39	0.08	0.07
12	1483.26	98.7	0.21	1487.12	1456.26	0.11	0.02
13	1635.64	66.14	33.7	1745.58	1539.2	14.93	14.77
14	1761.01	99.11	0.66	1772.58	1747.51	0.06	0.03
15	1857.45	99.37	0.61	1869.02	1842.02	0.03	0.03
16	2358.94	95.56	2.33	2391.73	2341.58	0.57	0.21
17	2779.42	98.09	1.41	2831.5	2669.48	0.75	0.4
18	2852.72	98.81	0.66	2877.79	2831.5	0.17	0.06
19	2924.09	98.36	1.25	2951.09	2887.44	0.25	0.14
20	3446.79	36.74	63.17	3749.62	2980.02	157.62	157.36

Date/Time; 6/2/2022 2:16:40 PM No. of Scans; Resolution; Apodization;

No.	Peak	Intensity	Corr. Intensity	Base (H)	Base (L)	Area	Corr. Area
1	372.26	49.58	8.66	376.12	347.19	4.5	0.9
2	464.84	23.59	43.9	650.01	378.05	75.35	36.77
3	678.94	97.92	2.28	742.59	651.94	0.3	0.39
4	802.39	84.79	15.45	871.82	744.52	3.85	3.98
5	960.55	87.45	12.42	987.55	873.75	3.13	3.13
6	1089.78	16.29	83.33	1327.03	989.48	124.21	123.55
7	1382.96	97.89	1.51	1400.32	1365.6	0.2	0.1
8	1442.75	98.97	0.8	1458.18	1431.18	0.07	0.05
9	1529.55	98.65	0.86	1543.05	1516.05	0.11	0.05
10	1635.64	71.77	27.22	1747.51	1560.41	11.07	10.33
11	1762.94	99.09	0.65	1774.51	1747.51	0.07	0.04
12	1859.38	98.98	0.61	1870.95	1843.95	0.09	0.04
13	2353.16	97.08	1.83	2372.44	2339.65	0.28	0.14
14	2573.04	98.4	1.83	2721.56	2403.3	0.64	0.97
15	2856.58	99.12	0.91	2895.15	2829.57	0.09	0.1
16	2926.01	99.06	1.05	2951.09	2895.15	0.08	0.11
17	3450.65	39.77	60.66	3751.55	2983.88	146.14	147.51

Date/Time; 6/2/2022 2:45:56 PM No. of Scans; Resolution; Apodization;

KEMENTERIAN KESEHATAN REPUBLIK INDONESIA DIREKTORAT JENDERAL PENCEGAHAN DAN PENGENDALIAN PENYAKIT

BALAI TEKNIK KESEHATAN LINGKUNGAN DAN PENGENDALIAN PENYAKIT KELAS I MAKASSAR

Jalan Wijaya Kusuma Raya No. 29 -31 Makassar, Telp/Fax : 0411-871620,

Email : btklmakassar@gmail.com

LAPORAN HASIL UJI

Nomor LHU Nama *Customer* Alamat Tlp/Fax Pengambil Sampel Jenis Sampel/Metode Sampling Lokasi/Titik Sampling Tanggal Sampling Tanggal Penerimaan Tanggal Penerimaan Tanggal Pengujian Hasil Pengujian 2724/AL-K/LHU/BTKLPP-MKS/VIII/2022
Ida Ifdaliah
II. Pendidikan 1 Komp UNM Blok B5 No. 4 M

- : Jl. Pendidikan 1 Komp UNM Blok B5 No. 4, Makassar
- : 081343607963
- : Customer
- : Air Limbah/Sesaat
- : LS1
- : 28 Juli 2022

:

- : 25 Agustus 2022
- : 25 Agustus 2022 s/d 26 September 2022

No.	Parameter	Satuan	Hasil Pengujian	Batas Maksimum * Yang Diperbolehkan	Spesifikasi Metode
А.	Kimia				
1	Besi Terlarut	mg/L	0,3724	-	IKM/BTKLPP-MKS/7.2/01/04 (ICP)
2	Krom Total	mg/L	<0,0061	-	IKM/BTKLPP-MKS/7.2/01/09 (ICP)
3	Mangan Terlarut	mg/L	0,5280	-	IKM/BTKLPP-MKS/7.2/01/05 (ICP)
4	Nikel Terlarut	mg/L	<0,0101	-14 - 14 - 14 - 14 - 14 - 14 - 14 - 14	IKM/BTKLPP-MKS/7.2/01/10 (ICP)
5	Kobalt Total	mg/L	<0,0077	-	APHA 2012.3111C
6	Seng	mg/L	0,0912	-	IKM/BTKLPP-MKS/7.2/01/06 (ICP)
7	Tembaga	mg/L	0,0787	-	IKM/BTKLPP-MKS/7.2/01/07 (ICP)

Keterangan :

 Tidak diatur Berdasarkan Peraturan Menteri Lingkungan Hidup dan Kehutanan RI Nomor P.68/Menlh.Setjen/Kum.1/8/2016 Tentang Baku Mutu Air Limbah Domestik Lampiran I

Catatan:

- 1. Hasil uji di atas hanya berlaku untuk sampel yang diuji.
- 2. Laporan Hasil Uji ini terdiri dari 1 (satu) halaman.
- 3. Laporan Hasil Uji ini tidak boleh digandakan, kecuali secara lengkap dan seijin tertulis dari BTKLPP Kelas I Makassar.
- 4. Laboratorium melayani pengaduan tentang hasil pengujian paling lama 1 (Satu) bulan setelah sampel diterima
- 5. Laboratorium Penguji BTKLPP Kelas I Makassar tidak bertanggungjawab terhadap pengambilan sampel yang dilakukan oleh customer

Makassar, 28 September 2022 Koordinator Instalasi,

Isnadiyah, S.Si., M.Biomed NIP. 19810428201012003

KEMENTERIAN KESEHATAN REPUBLIK INDONESIA DIREKTORAT JENDERAL

PENCEGAHAN DAN PENGENDALIAN PENYAKIT

BALAI TEKNIK KESEHATAN LINGKUNGAN DAN PENGENDALIAN PENYAKIT KELAS I MAKASSAR Jalan Wijaya Kusuma Raya No. 29 -31 Makassar, Telp/Fax : 0411-871620,

Email : btklmakassar@gmail.com

LAPORAN HASIL UJI

Nomor LHU	: 2724/AL-K/LHU/BTKLPP-MKS/VIII/2022
Nama Customer	: Ida Ifdaliah
A lamat Tlp/Fax	 Jl. Pendidikan 1 Komp UNM Blok B5 No. 4, Makassar 081343607963
Pengambil Sampel	: Customer
Jenis Sampel/Metode Sampling	: Air Limbah/Sesaat
Lokasi/Titik Sampling	: LS1
Tanggal Sampling	: 28 Juli 2022
Tanggal Penerimaan	: 25 Agustus 2022
Tanggal Pengujian Hasil Pengujian	: 25 Agustus 2022 s/d 26 September 2022
and setting the set of	

No.	Parameter	Satuan	Hasil Pengujian	Yang Diperbolehkan	Spesifikasi Metode
A.	Kimia				
1	Kadmium Terlarut	mg/L	12,3589	-	SNI 06-6989.38-2005
2	Timbal Terlarut	mg/L	2,0983	-	SNI 6989-46:2009

Keterangan :

: Tidak diatur Berdasarkan Peraturan Menteri Lingkungan Hidup dan Kehutanan RI Nomor P.68/Menlh.Setjen/Kum.1/8/2016 Tentang Baku Mutu Air Limbah Domestik Lampiran I

Catatan:

1. Hasil uji di atas hanya berlaku untuk sampel yang diuji.

2. Laporan Hasil Uji ini terdiri dari 1 (satu) halaman.

3. Laporan Hasil Uji ini tidak boleh digandakan, kecuali secara lengkap dan seijin tertulis dari BTKLPP Kelas I Makassar.

4. Laboratorium melayani pengaduan tentang hasil pengujian paling lama 1 (Satu) bulan setelah sampel diterima

5. Laboratorium Penguji BTKLPP Kelas I Makassar tidak bertanggungjawab terhadap pengambilan sampel yang dilakukan oleh customer

Makassar, 27 September 2022 Koordinator Instalasi,

Isnadiyah, S.Si., M.Biomed NIP. 19810428201012003

KEMENTERIAN KESEHATAN REPUBLIK INDONESIA DIREKTORAT JENDERAL

PENCEGAHAN DAN PENGENDALIAN PENYAKIT

BALAI TEKNIK KESEHATAN LINGKUNGAN DAN PENGENDALIAN PENYAKIT KELAS I MAKASSAR

Jalan Wijaya Kusuma Raya No. 29 -31 Makassar, Telp/Fax : 0411-871620,

Email : btklmakassar@gmail.com

LAPORAN HASIL UJI

Nomor LHU	: 2725/AL-K/LHU/BTKLPP-MKS/VIII/2022
Nama Customer	: Ida Ifdaliah
Alamat Tlp/Fax	 Jl. Pendidikan 1 Komp UNM Blok B5 No. 4, Makassar 081343607963
Pengambil Sampel	: Customer
Jenis Sampel/Metode Sampling	: Air Limbah/Sesaat
Lokasi/Titik Sampling	: LL2
Tanggal Sampling	: 28 Juli 2022
Tanggal Penerimaan	: 25 Agustus 2022
Tanggal Pengujian Hasil Pengujian	: 25 Agustus 2022 s/d 26 September 2022
The second s	Patas Makamum *

No.	Parameter	Satuan	Hasil Pengujian	Yang Diperbolehkan	Spesifikasi Metode
А.	Kimia				
1	Kadmium Terlarut	mg/L	0,2992	-	SNI 06-6989.38-2005
2	Timbal Terlarut	mg/L	0,0068	-	SNI 6989-46:2009

Keterangan :

: Tidak diatur Berdasarkan Peraturan Menteri Lingkungan Hidup dan Kehutanan RI Nomor P.68/Menlh.Setjen/Kum.1/8/2016 Tentang Baku Mutu Air Limbah Domestik Lampiran I

Catatan:

- 1. Hasil uji di atas hanya berlaku untuk sampel yang diuji.
- 2. Laporan Hasil Uji ini terdiri dari 1 (satu) halaman.
- 3. Laporan Hasil Uji ini tidak boleh digandakan, kecuali secara lengkap dan seijin tertulis dari BTKLPP Kelas I Makassar.
- 4. Laboratorium melayani pengaduan tentang hasil pengujian paling lama 1 (Satu) bulan setelah sampel diterima
- 5. Laboratorium Penguji BTKLPP Kelas I Makassar tidak bertanggungjawab terhadap pengambilan sampel yang dilakukan oleh customer

Makassar, 27 September 2022

Koordinator Instalasi,

Isnadiyah, S.Si., M.Biomed NIP. 19810428201012003

KEMENTERIAN KESEHATAN REPUBLIK INDONESIA DIREKTORAT JENDERAL PENCEGAHAN DAN PENGENDALIAN PENYAKIT

PENCEGARAN DAN PENGENDALIAN PENTAKIT

BALAI TEKNIK KESEHATAN LINGKUNGAN DAN PENGENDALIAN PENYAKIT KELAS I MAKASSAR

Jalan Wijaya Kusuma Raya No. 29 -31 Makassar, Telp/Fax : 0411-871620,

Email : btklmakassar@gmail.com

LAPORAN HASIL UJI

Nomor LHU Nama *Customer* Alamat Tlp/Fax Pengambil Sampel Jenis Sampel/Metode Sampling Lokasi/Titik Sampling Tanggal Sampling Tanggal Penerimaan Tanggal Pengujian Hasil Pengujian

: 2726/AL-K/LHU/BTKLPP-MKS/VIII/2022

- : Ida Ifdaliah
 - : Jl. Pendidikan 1 Komp UNM Blok B5 No. 4, Makassar
 - : 081343607963
 - : Customer
 - : Air Limbah/Sesaat
 - : LS2
 - : 28 Juli 2022

.

- : 25 Agustus 2022
- : 25 Agustus 2022 s/d 26 September 2022

No.	Parameter	Satuan	Hasil Pengujian	Batas Maksimum * Yang Diperbolehkan	Spesifikasi Metode
А.	Kimia				
1	Besi Terlarut	mg/L	<0,0098	-	IKM/BTKLPP-MKS/7.2/01/04 (ICP)
2	Krom Total	mg/L	<0,0061		IKM/BTKLPP-MKS/7.2/01/09 (ICP)
3	Mangan Terlarut	mg/L	0,0250	-	IKM/BTKLPP-MKS/7.2/01/05 (ICP)
4	Nikel Terlarut	mg/L	<0,0101		IKM/BTKLPP-MKS/7.2/01/10 (ICP)
5	Kobalt Total	mg/L	<0,0077		APHA 2012.3111C
6	Seng	mg/L	<0,0074	-	IKM/BTKLPP-MKS/7.2/01/06 (ICP)
7	Tembaga	mg/L	<0,0056		IKM/BTKLPP-MKS/7.2/01/07 (ICP)

Keterangan :

- : Tidak diatur Berdasarkan Peraturan Menteri Lingkungan Hidup dan Kehutanan RI Nomor P.68/Menlh.Setjen/Kum.1/8/2016 Tentang Baku Mutu Air Limbah Domestik Lampiran I

Catatan:

1. Hasil uji di atas hanya berlaku untuk sampel yang diuji.

2. Laporan Hasil Uji ini terdiri dari 1 (satu) halaman.

3. Laporan Hasil Uji ini tidak boleh digandakan, kecuali secara lengkap dan seijin tertulis dari BTKLPP Kelas I Makassar.

4. Laboratorium melayani pengaduan tentang hasil pengujian paling lama 1 (Satu) bulan setelah sampel diterima

5. Laboratorium Penguji BTKLPP Kelas I Makassar tidak bertanggungjawab terhadap pengambilan sampel yang dilakukan oleh customer

Makassar, 28 September 2022 Koordinator Instalasi,

Isnadiyah, S.Si., M.Biomed NIP. 19810428201012003

Konite Akreditasi Nasional Laboratorium Penguji Le-Sab-IDN

Lampiran 40. Foto Lokasi Pengambilan Sampel Mineral Alam Mesawa

Lampiran 41. Foto Preparasi Sampel Mineral Alam Mesawa

Lampiran 42. Foto Sintesis ANA, CAN, MCM-48, ANA/MCM-48

215

Lampiran 44. Foto Lokasi Pengambilan Sampel Air Sungai Tallo

Lampiran 45. Foto karakterisasi

PRESIDEN REPUBLIK INDONESIA

LAMPIRAN VI PERATURAN PEMERINTAH REPUBLIK INDONESIA NOMOR 22 TAHUN 2021 TENTANG PENYELENGGARAAN PERLINDUNGAN DAN PENGELOLAAN LINGKUNGAN HIDUP

BAKU MUTU AIR NASIONAL

I. BAKU MUTU AIR SUNGAI DAN SEJENISNYA

No	Parameter	Unit	Kelas 1	Kelas 2	Kelas 3	Kelas 4	Keterangan
1.	Temperatur	°C	Dev 3	Dev 3	Dev 3	Dev 3	Perbedaan dengan suhu udara di atas permukaan air
2.	Padatan terlarut total (TDS)	mg/L	1.000	1.000	1.000	2.000	Tidak berlaku untuk muara
3.	Padatan tersuspensi total (TSS)	mg/L	40	50	100	400	
4.	Warna	Pt-Co Unit	15	50	100	-	Tidak berlaku untuk air gambut (berdasarkan kondisi alaminya)
5.	Derajat keasaman (pH)		6-9	6-9	6-9	6-9	Tidak berlaku untuk air gambut (berdasarkan kondisi alaminya)
6.	Kebutuhan oksigen biokimiawi (BOD)	mg/L	2	3	6	12	

7. Kebutuhan . . .

ï

.

PRESIDEN REPUBLIK INDONESIA

- 2 -

		·	T]		
No	Parameter	Unit	Kelas 1	Kelas 2	Kelas 3	Kelas 4	Keterangan
7.	Kebutuhan oksigen kimiawi (COD)	mg/L	10	25	40	80	
8.	Oksigen terlarut (DO)	mg/L	6	4	3	1	Batas minimal
9.	Sulfat (SO ₄ ²⁻)	mg/L	300	300	300	400	
10.	Klorida (Cl [.])	mg/L	300	300	300	600	
11.	Nitrat (sebagai N)	mg/L	10	10	20	20	
12.	Nitrit (sebagai N)	mg/L	0,06	0,06	0,06	-	
13.	Amoniak (sebagai N)	mg/L	0,1	0,2	0,5	-	
14.	Total Nitrogen	mg/L	15	15	25	-	
15.	Total Fosfat (sebagai P)	mg/L	0,2	0,2	1,0	-	
16.	Fluorida (F [.])	mg/L	1	1,5	1,5	_	
17.	Belerang sebagai H ₂ S	mg/L	0,002	0,002	0,002	-	
18.	Sianida (CN-)	mg/L	0,02	0,02	0,02	-	
19.	Klorin bebas	mg/L	0,03	0,03	0,03	-	Bagi air baku air minum tidak dipersyaratkan
20.	Barium (Ba) terlarut	mg/L	1,0	-	-	-	
21.	Boron (B) terlarut	mg/L	1,0	1,0	1,0	1,0	
22.	Merkuri (Hg) terlarut	mg/L	0,001	0,002	0,002	0,005	
23.	Arsen (As) terlarut	mg/L	0,05	0,05	0,05	0,10	
24.	Selenium (Se) terlarut	mg/L	0,01	0,05	0,05	0,05	
25.	Besi (Fe) terlarut	mg/L	0,3	-	-	-	
26.	Kadmium (Cd) terlarut	mg/L	0,01	0,01	0,01	0,01	

27. Kobalt . . .

PRESIDEN REPUBLIK INDONESIA

- 3 -

No	Parameter	Unit	Kelas 1	Kelas 2	Kelas 3	Kelas 4	Keterangan
27.	Kobalt (Co) terlarut	mg/L	0,2	0,2	0,2	0,2	
28.	Mangan (Mn) terlarut	mg/L	0,1	-	-	-	
29.	Nikel (Ni) terlarut	mg/L	0,05	0,05	0,05	0,1	
30.	Seng (Zn) terlarut	mg/L	0,05	0,05	0,05	2	
31.	Tembaga (Cu) terlarut	mg/L	0,02	0,02	0,02	0,2	
32.	Timbal (Pb) terlarut	mg/L	0,03	0,03	0,03	0,5	
33.	Kromium heksavalen (Cr- (VI))	mg/L	0,05	0,05	0,05	1	
34.	Minyak dan lemak	mg/L	1	1	1	10	
35.	Deterjen total	mg/L	0,2	0,2	0,2	-	
36.	Fenol	mg/L	0,002	0,005	0,01	0,02	· · · ·
37.	Aldrin/ Dieldrin	µg/L	17	-	-	-	
38.	внс	µg/L	210	210	210	-	
39.	Chlordane	µg/L	3	-	-		
40.	DDT	µg/L	2	2	2	2	
41.	Endrin	µg/L	1	4	4	-	
42.	Heptachlor	µg/L	18	-	-	-	
43.	Lindane	µg/L	56	-	-	-	
44.	Methoxychlor	µg/L	35	-	-	-	
45.	Toxapan	µg/L	5	-	-	-	
46.	Fecal Coliform	MPN/100 mL	100	1.000	2.000	2.000	
47.	Total Coliform	MPN/100 mL	1.000	5.000	10.000	10.000	
48.	Sampah		nihil	nihil	nihil	nihil	
49.	Radioaktivitas						
	Gross-A	Bq/L	0,1	0,1	0,1	0,1	
	Gross-B	Bq/L	1	1	1	i	

II. BAKU . . .