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consisted of a hidden layer with 512 neurons activated by ReLU and an output layer
with one neuron. The output of the critic branch estimated the state-value function
𝑉 (𝑠).

3.4.1.2 Discriminator Network

Like the agent network, the discriminator network consisted of a feature
extraction and a fully connected module. The feature extraction module in this
network followed a similar layout to the agent network, which consisted of three
convolutional layers with the same number of kernels, stride lengths, and attention
locations. However, instead of using ReLU to activate the convolutional layers, it
used a leaky ReLU, following Gulrajani et al. (2017) and Miyato et al. (2018).

Feature Extraction Layers 

Convolution 

32 8 x 8 kernels LReL U 

St ride 4 

Convolution Convolution 

64 4 x 4 kernels LReL U 64 3 x 3 kernels LReL U 

Stride 2 Stride 1 

Note: 

If algorithm is POfD then Act. is Sigmoid 

Otherwise, no activation 

Fully Connected Layers 

Fully 
Connected 

512 neurons 
LReLU 

Fully 
Connected 

1 neuron Act . D( ) ---• s , a 

Figure 3.4: A visualization of the implemented discriminator network.

As for the fully connected module in the network, it accepted the feature maps
from the feature extraction layers and concatenated it with the corresponding action.
These concatenated features were passed into a sequence of fully connected layers
with a layout consisting of a hidden layer with 512 neurons, activated with a
leaky ReLU, and an output layer with one neuron. For POfD, this output neuron
implemented a sigmoid activation function. Meanwhile, for SNGAL, the output
neuron was not activated. Either way, the output produced the discriminator value
𝐷𝑤 (𝑠, 𝑎).
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3.4.2 Implemented Hyperparameters

The experiments implemented PPO, POfD, and SNGAL with almost identical
hyperparameters. These hyperparameters were taken from the previous experiments
of Schulman et al. (2017) and are listed in Table 3.1. However, it should be noted that
one hyperparameter was implemented differently in the experiments, which was the
trade-off coefficients for POfD and SNGAL. This was done because of the different
formulations of the reshaped rewards in the two algorithms, where POfD can only
perform guided reinforcement learning and reinforcement learning; SNGAL can
perform all three types of learning: reinforcement learning, imitation learning, and
guided reinforcement learning.

Table 3.1: The implemented hyperparameters for PPO, POfD, and SNGAL. 𝛼 is
linearly annealed from an inital value of 1 to 0, at the final timestep. 𝛽 is annealed

from an initial value of 1 to 0, based on the cosine scheduler.

Algorithm Hyperparameter Value

PPO, POfD, SNGAL

Step size (𝑇) 128
Minibatch size 32 × 8
GAE parameter 0.95
Number of agents 8
Generator epochs 4
Discount factor (𝛾) 0.99
Agent learning rate 2.5 × 10−4 × 𝛼
Number of updates (𝐼) 10000
Clipping coefficient (𝜖) 0.1 × 𝛼
Entropy coefficient (𝑐2 or 𝜆2) 0.01
Value function coefficient (𝑐1) 0.5

POfD, SNGAL Discriminator epochs 5
Discriminator learning rate 2.5 × 10−4

POfD Trade-off Coefficient (𝜆1) 0.01
SNGAL Trade-off Coefficient (𝜆1) 1 × 𝛽

For the selected values, a constant trade-off coefficient value of 0.01 was used
for POfD. In contrast, SNGAL implemented a scheduled trade-off coefficient that
was initialized to 1 at the beginning of training (𝑖 = 0) and gradually decreased to 0,
based on a cosine function, by the final update (𝑖 = 𝐼):

𝜆1(𝑖) = cos
(
𝑖

𝐼

𝜋

2

)
. (3.3)

The intuition behind the cosine annealing was that the agent should learn as much
as possible from the demonstrations before attempting to learn by itself.
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3.4.3 Visualizing Saliency

One of the objectives of this research was to investigate the effects of visual
attention mechanisms on guided reinforcement learning models. To achieve this
goal, a visual analysis was conducted by analyzing the GradCAM (Selvaraju et al.,
2017) produced by the agent’s policy.

The visualization of the GradCAM for the selected action, 𝑎, from a policy, 𝜋𝜃 ,
involved four steps. Firstly, the gradients of the action’s score before the softmax, 𝑦𝑎,
were computed with respect to the feature map activation 𝐴𝑘 of layer 𝑘 , with 𝑘 chosen
to be the final activation layer. After that, the gradients were global-average-pooled
over the width and height dimensions to obtain the neuron importance weights 𝛼𝑎

𝑘
:

𝛼𝑎𝑘 =

global average pooling︷     ︸︸     ︷
1
𝑍

∑︁
𝑖

∑︁
𝑗

𝜕𝑦𝑎

𝜕𝐴𝑘
𝑖 𝑗

. (3.4)

Next, a linear combination of the importance weights and the forward feature-map
activation were calculated and activated by a ReLU to obtain the GradCAM:

𝐿𝑎Grad-CAM = 𝑅𝑒𝐿𝑈

(∑︁
𝑘

𝛼𝑎𝑘 𝐴
𝑘

)
. (3.5)

Finally, the GradCAM was bilinearly extrapolated to the same size of the input image
before being overlayed on the input image to produce a heatmap of the network’s
gradients.
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CHAPTER IV
RESULTS AND DISCUSSIONS

This chapter will explain the results of the two experiments conducted in this
research. The chapter will begin by describing the results of the first experiment
performed to evaluate POfD and SNGAL in Space Invaders. After that, it will detail
the results of the second experiment conducted to integrate guided reinforcement
learning with attention mechanisms. Finally, the chapter will conclude with a
discussion, connecting the obtained results with the previously discussed literature
review.

4.1 Implementing Guided Reinforcement Learning in Space Invaders

Table 4.1 presents a summary of the benchmark results obtained in the first
experiment, while Figure 4.1 shows the learning curves of the models. Table 4.1
shows that SNGAL achieved the best performance in the experiment, with a pooled
average return improvement of 17% over PPO and a significant 94% improvement
over POfD. Additionally, SNGAL obtained the highest minimum and maximum
average returns out of the three algorithms. Figure 4.1a illustrates that PPO and
SNGAL had similar learning curves up to the 8000th update, but after that, SNGAL
learned much faster and achieved greater returns.

On the other hand, Table 4.1 shows that POfD performed the worst in the
experiment, with a 40% performance degradation compared to PPO. The high
entropy of POfD, as shown in Figure 4.1b, suggests that the algorithm experienced
learning difficulties.

Table 4.1: The returns of PPO, POfD, and SNGAL obtained from 200 evaluation
episodes performed in three different runs. The table shows the returns aggregated
on the pooled average, pooled standard deviation, minimum average, and maximum
average. Here, minimum average and maximum average refers to the minimum and

maximum average returns obtained among the three different runs, respectively.

Method Returns
Pooled
Average

Pooled Std.
Dev.

Minimum
Average

Maximum
Average

PPO 603.14 207.71 531.68 702.53
POfD 361.35 191.27 263.43 477.28
SNGAL 701.06 206.70 651.75 748.00
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Figure 4.1: The learning curves of PPO, POfD, and SNGAL averaged on three
different runs. (a) shows the average returns, while (b) shows the average entropy.

4.2 Integrating Attention into Guided Reinforcement Learning

After showing that SNGAL obtained the highest returns, the second experiment
attempted to integrate attention with the algorithm. In this experiment three different
attention modules were attempted: non-local block, convolutional block attention
module (CBAM), and dual attention.

4.2.1 Where To Add the Non-Local Block?

Since Wang et al. (2018) did not suggest a specific location for the non-local
block, the first part of the second experiment aimed to determine the optimal
configuration for the module. This sub-experiment evaluated the non-local block
at three different locations: after the first, second, or third convolutional layers. To
conserve computational resources, this evaluation was only performed on one seed.

Table 4.2 summarizes the results of the sub-experiment. The table shows that
the non-local block worked best at the third convolutional layer, suggesting that the
module can better attend to objects in the images with higher-level feature maps.

Table 4.2: The returns of an agent trained using SNGAL with the non-local block
applied after either the first, second, or third convolutional layers. Here, ”Conv.”

refers to the convolutional layer where the attention mechanism is applied.

Method Attn.
Location

Returns
Average Std. Dev.

SNGAL
Conv. 1 517.33 159.25
Conv. 2 520.80 173.21
Conv. 3 735.25 205.28
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4.2.2 Benchmarking Visual Attention Mechansims

After discovering that the non-local block worked best at the third convolutional
layer, the next experiment compared SNGAL with the three attention mechanisms:
non-local block, CBAM, and dual attention. For, the non-local block, the module
was applied after the third convolutional layer, following the results of the previous
sub-experiment. Meanwhile, for CBAM and dual attention, the modules were
applied at the locations suggested by their original papers, which were at all the
convolutional layers and the final convolutional layer, respectively. The benchmark
results of the experiment are summarized in Table 4.3, while Figure 4.2 illustrates
the learning curves of the models.

Table 4.3: The returns of PPO, pure SNGAL, SNGAL with non-local block (third
convolutional layer), SNGAL with CBAM, and SNGAL with dual attention obtained
from 200 evaluation episodes performed in three different runs. The table shows
the returns aggregated on the pooled average, pooled standard deviation, minimum
average, and maximum average. Here, minimum average and maximum average
refers to the minimum and maximum average returns obtained among the three

different runs, respectively.

Method Attention
Type

Returns
Pooled
Average

Pooled Std.
Dev.

Minimum
Average

Maximum
Average

PPO - 603.14 207.71 531.68 702.53

SNGAL

- 701.06 206.70 651.75 748.00
Non-local 664.34 200.92 561.85 735.25
CBAM 608.97 185.03 577.08 659.00
Dual 615.63 178.03 595.95 640.58

Table 4.3 shows that pure SNGAL still achieved the highest pooled average
returns. Non-local block SNGAL came in second, with a 37-point reduction in
pooled average returns compared to pure SNGAL, but still performed better than
PPO by 10%. In contrast, CBAM and Dual attention performed the worst, with only
a slight improvement over PPO.

Figure 4.2 illustrates that all algorithms had an increasing trend in their learning
curves. Among them, non-local block SNGAL was able to sustain the highest pooled
average returns up to the 7000th update. However, after that update, pure SNGAL
was able to catch up and obtain better overall performance in the end.
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Figure 4.2: The learning curves of pure SNGAL and SNGAL with the three attention
mechanisms: non-local block, CBAM, and dual attention. The curves show the

returns averaged on three different runs.

4.2.3 Visualizing the GradCAMs of Visual Attention Mechanisms

In order to help understand how attention mechanisms affect guided
reinforcement learning models, the saliency maps of pure SNGAL and SNGAL
with the three attention mechanisms (non-local block, CBAM, and dual attention)
were visualized and analyzed. In this visual analysis, three state-action pairs were
randomly sampled from each model’s trajectory and then their GradCAMs were
calculated. Figure 4.3 shows these GradCAMs.

In Figure 4.3, it is apparent that each model views the environment differently.
Figure 4.3a shows that the pure SNGAL model had difficulty focusing on the objects
in the environment. This was demonstrated by the model’s attention to a large
area of aliens and also its attention to the areas which did not contain any objects.
Figure 4.3b shows that with the non-local block, SNGAL displayed better focus to
the objects in the environment, which included the projectiles, player, and aliens.
As for CBAM SNGAL, Figure 4.3c reveals that the model highlights saliency in
only a narrow region of the environment close to the player. Lastly, Figure 4.3d
demonstrates dual attention’s ability to attend to aliens, player, and mothership.
However, the model failed to focus on the aliens near the bottom of screen, which
would have caused the game to end.
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(a)

(b)

(c)

(d)

Figure 4.3: The GradCAMs of (a) SNGAL, (b) SNGAL with non-local block, (c)
SNGAL with CBAM, and (d) SNGAL with dual attention visualized on three randomly
sampled states. The states are visualized on the first frames, where the red regions
indicate where the model attends to, while the blue regions indicate where the model

does not attend to.
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4.3 Discussions

The main objective of this research was to investigate the effects of
visual-attention mechanisms on guided reinforcement learning models. To this
end, two experiments were conducted, and their findings were presented in the
previous sections.

The first experiment aimed to evaluate guided reinforcement learning algorithms
in Space Invaders. The results showed that the POfD algorithm failed to learn in
the environment, which was demonstrated by the 40% reduction in performance
compared to PPO and the high entropy exhibited by the algorithm. This learning
instability was likely caused by its use of the minimax GAN, which is known to be
unstable during training (Arjovsky & Bottou, 2017; Miyato et al., 2018), as well
as the high dimensionality of the environment (Miyato et al., 2018), which can
be difficult to learn. As part of this experiment, a novel guided reinforcement
learning algorithm called SNGAL was also introduced. SNGAL utilized the
Spectral Normalization (Miyato et al., 2018) approach to stabilize GAN training
and a reshaped reward function scheduled to perform imitation learning before
reinforcement learning. This approach resulted in a significant 94% improvement
in performance over POfD and a 17% improvement over PPO, demonstrating the
efficacy of spectral normalization in stabilizing GANs in high-dimensional MDP
environments.

However, it must be noted that, for most of the training, the learning curves
of SNGAL (shown in Figure 4.1a) were almost identical to PPO. SNGAL only
significantly outperformed PPO after it had reached the 8000th update. One possible
explanation to this sudden increase in returns could be attributed to the models’
learning how to destroy the mothership, which would have resulted in a bonus of
200 points. Since the expert trajectories did not demonstrate the destruction of the
mothership, this must have occurred due to self-exploration, which was prioritized
after the 8000th update, when 𝜆1 ≤ 0.3.

After obtaining that SNGAL worked best in Space Invaders, the second
experiment was then performed to explore the effects of visual attention on the
algorithm. In this experiment, three attention mechanisms (non-local block,
CBAM, and dual attention) were integrated with SNGAL. The results showed that,
when evaluated on final model performance, attention mechanisms did not lead
to improved performance compared to pure SNGAL. The best-performing attention
mechanism, non-local block, obtained a 37-point reduction in pooled average returns
compared to pure SNGAL but still showed a respectable 10% improvement over
PPO. CBAM and dual-attention, on the otherhand, performed significantly worse
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than pure SNGAL and only obtained a marginal improvement over PPO.
Although the attention modules failed to improve SNGAL in final model

performance, non-local block SNGAL was exhibited to be performant during
training. Figure 4.2 displayed this by showing the models’ ability to obtain the
highest returns up to the 7000th update before lagging behind in acquired returns
to pure SNGAL. There are two possible explanations for this phenomenon. The
first possibility is that attention limits the exploration of the agent, while the second
possibility is that the pure SNGAL models were initialized with seeds that made
the agents explore the destruction of the mothership. The latter option is more
likely since previous studies by Manchin et al. (2019) and Tang et al. (2020)
had demonstrated that attention does not limit exploration but can improve the
performance of reinforcement learning models in some environments. If this is the
case, then there is potential for further improvements to the models.

Regarding the perceptual effects of attention, the GradCAMs in Figure 4.3
suggest that visual attention mechanisms can help guided reinforcement learning
models better attend to objects in the environment. This was demonstrated by the
attention models’ ability to focus on salient regions of the images, including the
locations of the aliens and projectiles. This result is in line with the claims of
Woo et al. (2018) that attention mechanisms help deep learning models focus on the
salient objects in an image. Meanwhile, when attention modules were not applied,
the models exhibited less structured attention, where they not only focused on a
large area of aliens but also on random regions of the images that did not contain
any objects. This unstructured attention can be attributed to the feature extraction
layers of the non-attention based models utilizing only convolutional layers, which
attend to images purely based on the presence of certain features.
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CHAPTER V
CONCLUSION AND RECOMMENDATIONS

This chapter will conclude the study by summarizing the key research findings
in relation to the research questions and objectives. It will also provide
recommendations for future research.

5.1 Conclusion

Based on the research findings, two conclusions can be drawn related to the
research questions:

1. The first conclusion is that the implemented visual-attention mechanisms
did not lead to improved performance of the guided reinforcement learning
models. However, it is worth noting that one of the implemented attention
modules (non-local block attention) obtained the highest pooled average
returns during the early to middle stages of training, suggesting that there
is potential for further improvements to the models.

2. The second conclusion is that visual attention mechanisms helped the guided
reinforcement learning models to focus on the objects in the environment,
including a better focus on the location of the player, aliens, and projectiles in
Space Invaders. In contrast, models without attention modules exhibited less
attention to those objects.

5.2 Recommendations

Further research is needed to establish whether guided reinforcement learning
with attention performs better than guided reinforcement learning without attention.
For this reason, this study provides three recommendations for future research.

Firstly, future experiments in the Atari environments should explore training the
models to a higher number of timesteps. A good number to follow would be the 40
million timesteps of Schulman et al. (2017) or the 50 million timesteps of Mnih et al.
(2015). In this way, attention models will have more time to learn the importance
of each object in the environment.

Secondly, it may be worthwhile to explore the implementation of a different
network architecture. One idea could be to use a transformer model for both the
agent (W. Li et al., 2023) and discriminator (Jiang et al., 2021) models. Another
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idea could be to implement pooling layers in the feature extraction layers to provide
translation invariance to the model.

Lastly, future research could explore a different reshaped reward function for
SNGAL. A different reshaped reward function might result in a different outcome.
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