Skripsi

DEPOSISI SECARA REDOKS NANOPARTIKEL MnO₂ PADA PERMUKAAN KARBON AKTIF TONGKOL JAGUNG (Zea mays L.) DAN POTENSINYA SEBAGAI MATERIAL ELEKTRODA PSEUDOKAPASITOR

FITRIANI H 311 13 009

JURUSAN KIMIA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM UNIVERSITAS HASANUDDIN

MAKASSAR

2017

DEPOSISI SECARA REDOKS NANOPARTIKEL MnO₂ PADA PERMUKAAN KARBON AKTIF TONGKOL JAGUNG (*Zea mays L.*) DAN POTENSINYA SEBAGAI MATERIAL ELEKTRODA PSEUDOKAPASITOR

skripsi ini diajukan sebagai salah satu syarat untuk memperoleh gelar Sarjana Sains

Oleh:

FITRIANI H 311 13 009

MAKASSAR

2017

SKRIPSI

DEPOSISI SECARA REDOKS NANOPARTIKEL MnO₂ PADA PERMUKAAN KARBON AKTIF TONGKOL JAGUNG (Zea mays) DAN POTENSINYA SEBAGAI MATERIAL ELEKTRODA PSEUDOKAPASITOR

Disusun dan diajukan oleh:

FITRIANI

H 311 13 009

Skripsi ini telah diperiksa dan disetujui oleh:

Pembimbing Utama

- lo

<u>Dr. Sci. Muhammad Zakir</u> NIP. 19701103 199903 1 001

Pembimbing Pertama

<u>Dr. Maming, M.Si</u> NIP. 19631231 198903 1 031

"Kehidupan dunia ini (jika dinilaikan dengan kehidupan akhirat) tidak lain hanyalah ibarat hiburan dan permainan, dan sesungguhnya negeri akhirat itu ialah kehidupan yang sebenar-benarnya, sekiranya mereka mengetahui." (Surah al-Ankabut , ayat 64)

Nooraini Abdul Rahma

"Jika kau berada di jalan ALLAH, berlarilah kencang. Jika sulit, maka tetaplah berlari, meski hanya berlari-lari kecil. Bila lelah, berjalanlah. Apabila semua itu tak mampu dilakukan, tetaplah maju meski harus merangkak dan jangan pernah sekalipun berbalik arah" (al imam As-Syafi'i)

"Orang yang cerdas adalah yang mempersiapkan bekal kematian"

(-----)

PRAKATA

Assalamu'alaikum warahmatullahi wabarokatuh...

Segala puji bagi Allah *Subhaanahu wata'ala* atas limpahan rahmat dan karunia-Nya, tiada henti memberikan nikmat yang begitu besar, khususnya nikmat iman dan Islam yang masih melekat pada diri pribadi. Tidak lupa kami kirimkan salawat dan salam kepada Rasulullah *shallallahu 'alaihi wasallam* sebagai suri taudalan terbaik, atas perjuangan beliau sehingga kita masih bisa merasa nikmat berislam hingga pada detik ini. Tidak lupa pula, kepada keluarga beliau, sahabat, sahabiyah, tab'in, tabi'ut-tabi'in dan orang-orang yang tetap istiqamah di jalan dinul Islam ini hingga qadar ALLAH berlaku pada diri mereka. Alhamdulillah, penulis dapat menyelesaikan skripsi ini yang berjudul **Deposisi secara Redoks Nanopartikel MnO₂ pada Permukaan Karbon Aktif Tongkol Jagung (***zea mays l.***) dan Potensinya sebagai Material Elektroda Pseudokapasitor sebagai salah satu syarat mendapatkan gelar sarjana sains Departemen Kimia Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Hasanuddin.**

Pada lembaran ini, penulis ingin menyampaikan terima kasih yang sedalam-dalamnya kepada orangtua **Kadang** dan **Soji** yang selalu mendukung dalam mendapatkan pendidikan dan yang tiada henti memberikan doa terbaik. Ucapan syukur yang kedua untuk adik-adikku **Nurhidayah, rahmawati** sebagai sumber motivasi. Ketiga, untuk semua keluarga yang senantiasa mengiringi do'a dan dukungannya.

Penulis juga mengucapkan terima kasih kepada :

1. **Dr. Sci. Muhammad Zakir dan <u>Dr. Maming, M.Si</u> selaku pembimbing yang telah berkenan meluangkan waktu dan tenaganya dalam memberikan**

bimbingan dan petunjuk yang sangat berharga dari awal persiapan hingga selesainya penelitian ini.

- Tim penguji hasil penelitian Prof. Dr. Wahid Wahab, M.Sc (ketua), Dr. Seniwati Dali, M.Si (sekretaris), Drs. Frederick Mandey, M.Sc (anggota), Dr. Maming, M.Si (anggota) dan Dr. Sci. Muhammad Zakir (anggota) atas saran dan kritikan yang diberikan.
- Bapak Dr., Syarifuddin Liong, M.Si, selaku Penasehat Akademik. Terima kasih telah memberikan nasehat dan bimbingan selama mengikuti proses perkuliahan di Jurusan Kimia.
- 4. Seluruh staf dosen, dan pegawai Jurusan Kimia analis Laboratorium Kimia, Ibu Sarinah, Ibu Barlian, kak Fibi, kak Linda, kak Hanna, Pak Sugeng, Ibu Tini dan kak Tanto. Terimah kasih yang sebesar-besarnya atas bantuannya.
- 5. Direktorat Jendral Pendidikan Tinggi Republik Indonesia (Dikti). Terima kasih yang sebesar-besarnya atas bantuan beasiswa Bidik Misi yang telah diberikan selama ± 4 tahun.
- Sahabat-sahabat kimia Titrasi 2013, Terima kasih atas kebersamaan dan pengalaman yang tak terlupakan.
- Keluarga Besar Pengurus Mushalla Istiqamah FMIPA Unhas. Terima kasih ukht-ukht atas dukungan do'a, nasihat dan semangat dakwah, dan kebersamaannya di jalan dakwah. Uhibbukifillah......
- 8. **Pengurus Mushalla Ulul Abshaar.** Terima kasih atas kebersamaannya dalam meniti jalan menuju surga. Meskipun terlihat sedikit tapi tidak menurunkan semangat dalam menebarkan dakwah dibuminya **ALLAH**.

- 9. Seluruh warga dan alumni **KMK FMIPA Unhas**. HMK tempat kita dibina, HMK tempat kita ditempa.
- 10. Kakak-kakak, adik-adik, serta alumni **KM FMIPA Unhas**. *Salam Use Your Mind Be The Best*.
- 11. Teman-teman seperjuangan penelitian Kimia Fisika : Terima kasih atas bantuan dan kebersamaannya.
- 12. Halaqah Tarbiyah: Teman sehalaqoh (ulpa, ayu, nunu, aisyah, nana, annisa fitri, nabila, kak upi, kak ika terima kasih atas kebersamaannya menuntut ilmuNya ALLAH. Semoga kita terus bersama hingga ke surgaNya kelak. Terima kasih kak Mispi dan kak Masyta atas bekal ilmu akhirat dan nasehat-nasehat yang begitu berharga dan kebersamaan selama bermajelis ilmu bersama teman-teman halaqoh.
- 13. Halaqah Tahsin: Terimakasih kak Indah atas nasehat-nasehat dan motivasi dalam menggapai kesuksesan akhirat, dan juga teman-teman sehalaqoh: Ana, Rosmini, Irma, dan Tisa.
- KKN Gel. 93 Kec, Baraka Kel. Tomenawa : Firman (kordes), Dewi,
 Vina,Fira, Galang dan terkhusus untuk keluarga Bapak Lurah dan warga-warga Kel.Tomenawa.

12. Sahabat-sahabat **Newton SMA 1 ALLA'**. Semoga ukhuwah diantara kita tetap terjalin.

Penulis sadar bahwa skripsi ini masih memiliki banyak kekurangan. Oleh karena itu, kritik dan saran yang membangun sangat diharapkan demi perbaikan selanjutnya. Akhirnya, penulis berharap hasil penelitian ini dapat bermanfaat dalam pengembangan wawasan bidang ilmu sains dan bidang ilmu kimia khususnya, Aamiin.

Makassar, Mei 2017

Penulis

ABSTRAK

Sintesis dan karakterisasi karbon aktif tongkol jagung (Zea Mays L.) yang terdeposisi MnO₂ sebagai bahan elektroda pseudokapasitor telah dilakukan. Karbon aktif dibuat melalui dua tahap, yakni karbonisasi dan aktivasi. Luas permukaan kabon aktif sebelum dan setelah aktivasi yaitu 155,0244 dan 173,5665 m²/g. Deposisi MnO₂ pada permukaan karbon dilakukan dengan mereaksikan KMnO₄ dengan karbon menggunakan variasi yaitu massa karbon, konsentrasi KMnO₄, pH dan suhu untuk memaksimalkan MnO₂ yang terdeposisi. Hasil analisis XRF menunjukkan kadar MnO₂ meningkat setelah terdeposisi MnO₂ yang menandakan bahwa MnO₂ telah terdeposisi pada permukaan karbon. Hasil analisis XRD sebelum terdeposisi menunjukkan karbon aktif memiliki struktur amorf, dan setelah terdeposisi terbentuk 2 puncak baru sekitar 37° dan 65° yang menunjukkan adanya MnO₂. Hasil analisis dengan spektrofotometer UV-Vis menunjukkan bahwa MnO₂ yang terbentuk sebagian terdispersi ke larutan yang ditandai dengan adanya serapan yang dimulai pada daerah visible dan maksimum pada daerah UV (205-215 nm) kecuali karbon yang terdeposisi pada suasana asam terbentuk spesi $Mn_3O_4^{4+}$ yang terlarut dalam filtrat. Deposisi MnO_2 paling efektif dilakukan dengan mereaksikan 0,6 g karbon dengan KMnO4 0,025 M pada suhu 95 °C dalam suasana netral. Hasil pengukuran kapasitansi spesifik dengan metode cyclic voltammetry menunjukkan bahwa MnO₂ memiliki efek pseudokapasitif yang sangat baik sebab mampu meningkatkan nilai kapasitansi spesifik hingga 15000 kali dengan nilai kapasitansi spesifik karbon aktif sebelum deposisi sebesar 0,0066 mF/g.

Kata kunci: deposisi, MnO₂, kapasitansi spesifik, karbon aktif tongkol jagung, reaksi redoks.

ABSTRACT

The synthesis and characterization of corncobs activated carbon as pseudocapasitor material (Zea Mays L.) on which deposited MnO₂ as pseudocapasapasitor electrode material has been done. Activated carbon is made through two stages, namely carbonization and activation. The surface area of the active kabon before and after activation is 155,0244 and 173,5665 m_2/g . The deposition of MnO₂ on the carbon surface is carried out by reacting KMnO₄ with carbon using a variation of carbon mass, KMnO₄ concentration, pH and temperature to maximize the deposited MnO_2 . The XRF analysis showed that MnO₂ levels increased after MnO₂ deposition indicated that MnO₂ had been deposited on the carbon surface. The results of the XRD analysis before deposition suggest that the activated carbon has an amorphous structure, and after deposition two peaks of uptake of about 37 $^{\circ}$ and 65 $^{\circ}$ indicate the presence of MnO₂. The results of the analysis with UV-Vis spectrophotometer showed that MnO₂ was partially dispersed into solution characterized by absorption starting at the visible and maximum at UV region (205-215 nm) except carbon deposited at the acidic solution there was $Mn_3O_4^{4+}$ Which dissolves in the filtrate. Deposition of MnO₂ was most effectively by reacting 0,6 g of carbon with KMnO₄ 0,025 M at 95 °C in neutral solution. The result of specific capacitance measurement by cyclic voltammetry method shows that MnO_2 has excellent pseudocapacitance effect because it can increase specific capacitance value up to 15000 times with specific capacitance value before MnO₂ deposition was 0,0066 mF/g.

Keywords: deposition, MnO2, specific capacitance, corncobs activated carbon, redox reaction.

DAFTAR ISI

Halaman

PRAKATA	v
ABSTRAK	ix
ABSTRACT	х
DAFTAR ISI	xi
DAFTAR GAMBAR	xiv
DAFTAR TABEL	xvi
DAFTAR LAMPIRAN	xvii
DAFTAR SIMBOL DAN SINGKATAN	xviii
BAB I PENDAHULUAN	1
1.1 Latar Belakang	1
1.2 Rumusan Masalah	4
1.3 Maksud dan Tujuan Penelitian	5
1.3.1 Maksud Penelitian	5
1.3.2 Tujuan Penelitian	5
1.4 Manfaat Penelitian	5
BAB II TINJAUAN PUSTAKA	6
2.1 Kapasitor Elektrokimia	6
2.2 Karbon Aktif	9
2.3 Tinjauan Umum Tongkol Jagung	10
2.4 Mangan Dioksida (MnO ₂) sebagai Senyawa Pseudokapasitif	12
BAB III METODOLOGI PENELITIAN	16
3.1 Bahan Penelitian	16

3.2 Alat Penelitian	16
3.3 Waktu dan Tempat Penelitian	16
3.4 Prosedur Penelitian	17
3.4.1 Tempat dan Waktu Pengambilan Sampel	17
3.4.2 Preparasi Sampel	17
3.4.3 Karbonisasi	17
3.4.4 Aktivasi	17
3.4.5 Penentuan Luas Permukaan	18
3.4.6 Deposisi Redoks Nanopartikel MnO2 pada Permukaan Karbon	
Aktif Tongkol Jagung	19
3.4.6.1 Pengaruh Massa Karbon Aktif	19
3.4.6.2 Pengaruh Konsentrasi KMnO ₄	19
3.4.6.3 Pengaruh Suhu	20
3.4.6.4 Pengaruh pH	20
3.4.7 Pembuatan Elektroda	20
3.4.8 Pengukuran Nilai Kapasitansi Spesifik	21
BAB IV HASIL DAN PEMBAHASAN	22
4.1 Preparasi Sampel Tongkol Jagung	22
4.2 Karbonisasi	23
4.3 Aktivasi	23
4.4 Penentuan Luas Permukaan	24
4.5 Deposisi redoks nanopartikel MnO2 pada Permukaan KATJ	26
4.5.1 Pengaruh Massa Karbon Aktif	27
4.5.1.1 Data XRF	28
4.5.1.2 Data XRD	31
4.5.1.3 Spektrum UV	32

4.5.1.4 Pengukuran Kapasitansi Spesifik	33
4.5.2 Pengaruh konsentrasi KMnO ₄	35
4.5.2.1 Data XRF	36
4.5.2.2 Data XRD	37
4.5.2.3 Spektrum UV	38
4.5.2.4 Pengukuran Kapasitansi Spesifik	39
4.5.3 Pengaruh Suhu	41
4.5.3.1 Data XRF	41
4.5.3.2 Data XRD	43
4.5.3.3 Spektrum UV	44
4.5.3.4 Pengukuran Kapasitansi Spesifik	45
4.5.4 Pengaruh pH	46
4.5.4.1 Data XRF	47
4.5.4.2 Data XRD	48
4.5.4.3 Spektrum UV	49
4.5.4.4 Pengukuran Kapasitansi Spesifik	50
BAB V KESIMPULAN DAN SARAN	53
5.1 Kesimpulan	53
5.2 Saran	53
DAFTAR PUSTAKA	54
LAMPIRAN	60

DAFTAR GAMBAR

Gambar	halaman
1. Struktur kapasitor, kapasitor elektrolit, dan superkapasitor	7
2. Skema dari sebuah kapasitor elektrokimia lapisan ganda listrik	7
3. Proses charging-discharging pada superkapasitor dan baterai	8
4. Struktur Karbon Amorf	9
5. Tongkol Jagung	11
6. Mekanisme penyisipan senyawa elektroaktif pada permukaan elektroda kapasitor yang terbuat dari karbon aktif (a,b) dan karbon nanotube (c,d)	13
7. Penampang permukaan karbon tanpa (a,b) dan dengan penysipan MnO ₂ (c,d)	15
8. Sampel Tongkol Jagung yang Telah dan Bersih dan Kering	22
9. Tongkol Jagung Ukuran 100 mesh	23
10. Kurva kalibrasi deret standar metilen biru	25
11. KATJ sebelum dan setelah deposisi	27
12. Spektrum XRD karbon aktif tanpa deposisi dan dengan deposisi MnO ₂ (a) KATJ, (b) KATJ/MnO ₂ 0,2 gram, (c) KATJ/MnO ₂ 0,4 gram, dan (d) KATJ/MnO ₂ 0,6 gram.	29
13. Spektrum Spektrum UV-Vis larutan KMnO ₄ dan filtrat hasil reduksi larutan KMnO ₄ oleh KATJ 0,2 g/MnO ₂ ; KATJ 0,4 g/MnO ₂ ; dan KATJ 0,6 g/MnO ₂ .	30
14. Voltammogram KATJ (a) , KATJ 0,2 g/MnO ₂ (b), KATJ 0,4 g/MnO ₂ (c), dan KATJ 0,6 g/MnO ₂ (d)	32

15. Spektrum XRD karbon aktif tanpa deposisi dan dengan deposisi MnO ₂ (a) KATJ, (b) KATJ/MnO ₂ 0,025 M gram, (c) KATJ/MnO ₂ 0,05 M, dan (d) KATJ/MnO ₂ 0,1M.	35
 16. Spektrum UV- Vis larutan KMnO₄ dan filtrat hasil reduksi larutan KMnO₄ dengan konsentrasi KATJ/ MnO₂ 0,025; 0,05; dan 0,1 M 17. Voltammogram (a) KATL (b) KATI/(MnO₂ (KMnO₄ 0.02 M) (c) 	36
$\frac{1}{10000000000000000000000000000000000$	37
 Spektrum XRD karbon aktif tanpa deposisi dan dengan deposisi MnO₂(a) KATJ, (b) KATJ/MnO₂ asam, (c) KATJ/MnO₂ basa, dan (d) KATJ/MnO₂ netral 	40
19. Spektrum UV-Vis larutan KMnO ₄ dan filtrat hasil reduksi larutan KMnO ₄ oleh KATJ pada suhu 65 °C; 80°C; dan 95°C	41
20. Voltammogram KATJ (a), KATJ/MnO ₂ (65 °C) (b), KATJ/MnO ₂ (80 °C) (c), dan KATJ/MnO ₂ (95 °C) (d)	42
 Spektrum XRD karbon aktif tanpa deposisi dan dengan deposisi MnO₂(a) KATJ, (b) KATJ/MnO₂ asam, (c) KATJ/MnO₂ basa, dan (d) KATJ/MnO₂ netral 	45
22. Spektrum UV- Vis larutan KMnO ₄ dan filtrat hasil reduksi larutan oleh KATJ pada suasana asam, basa, dan netral	KMnO ₄ 46
23. Filtrat hasil deposisi MnO ₂ dalam suasana asam sebelum dan sesudah penambahan NaOH	47
24. Voltammogram KATJ (a), KATJ/MnO ₂ (asam) (b), KATJ/MnO ₂ (basa) (c), dan KATJ/MnO ₂ (netral) (d)	47

DAFTAR TABEL

Τa	abel h	alaman
	1. Komponen Tongkol Jagung	12
2.	Nilai absorbansi deret standar metilen biru pada λ_{maks} 660 nm	25
3.	Data Luas Permukaan Karbon Aktif Tongkol Jagung dengan dan tanpa aktivasi	1 26
4.	Komponen senyawa oksida dalam KATJ sebelum dan setelah deposisi MnO ₂	28
5.	Data <i>cyclic voltammetry</i> elektroda pasta karbon sebelum dan sesudah deposisi MnO ₂ menggunakan massa KATJ yang berbeda	33
6.	Komponen senyawa oksida dalam KATJ sebelum dan setelah deposisi MnO ₂	34
7.	Data <i>cyclic voltammetry</i> elektroda pasta karbon sebelum dan sesudah deposisi MnO ₂ menggunakan konsentrasi KMnO ₄ yang berbeda	38
8.	Komponen senyawa oksida dalam KATJ sebelum dan setelah deposisi MnO ₂	39
9.	Data <i>cyclic voltammetry</i> elektroda pasta karbon sebelum dan sesudah deposisi MnO ₂ pada suhu yang berbeda	43
10). Komponen senyawa oksida dalam KATJ sebelum dan setelah deposisi MnO ₂	44
11	1. Data <i>cyclic voltammetry</i> elektroda pasta karbon sebelum dan sesudah deposisi MnO ₂ pada suasana yang berbeda	48

DAFTAR LAMPIRAN

Lampiran

halaman

1.	Skema Prosedur Kerja	56
2.	Perhitungan Luas Permukaan	61
3.	Perhitungan Ukuran Partikel	63
4.	Perhitungan Kapasitansi Spesifik	66
5.	Dokumentasi Penelitian	70
6.	Data Hasil Karakterisasi XRD	75
7.	Data Hasil Karakterisasi UV-Vis	88

DAFTAR SIMBOL DAN SINGKATAN

Simbol/Singkatan

Arti

A	Ampere
CV	Cyclic Voltammetry
EC	Elechtrochemical Capasitor
EDLC	Elechtrochemical Double Layer Capasitor
F/g	Faraday per gram
mF/g	mili Faraday per gram
µFcm ⁻²	mikro Faraday per centimeter kuadrat
μm	mikro meter
g/mol	gram per mol
MJ/kg	Mega Joule per kilogram
m^2/g	meter kuadrat per gram
mg/g	milligram per gram
mAh/g	miliAmpere per gram
nm	nanometer
ppm	part per million
V	Volt
V/s	Volt per sekon
XRF	X-Ray Fluoroscence
XRD	X-Ray Diffraction
X _m	berat adsorbat teradsorpsi
КАТЈ	Karbon Aktif Tongkol Jagung
λ_{maks}	lamda maksimum

BAB I

PENDAHULUAN

1.1 Latar Belakang

Seiring dengan perkembangan teknologi yang semakin canggih kebutuhan akan energi saat ini semakin meningkat (Herniyanti dkk., 2014). Cadangan energi fosil sebagai satu-satunya sumber energi yang diandalkan saat ini semakin berkurang. Hal ini menyebabkan terjadinya krisis energi nasional sehingga dibutuhkan sumber energi lain yang terbarukan. Salah satunya adalah penyimpanan energi elektrokimia (Labanni dkk., 2015). Perangkat penyimpan energi yang banyak dikembangkan saat ini seperti, baterai, superkapasitor dan *fuel cell* (Herniyanti dkk., 2014). Superkapasitor telah digunakan secara luas pada bidang elektronik dan transportasi (Bakri, 2014). Superkapasitor memiliki jumlah siklus yang relatif banyak (>100000 siklus), kerapatan energi yang tinggi, kemampuan menyimpan energi yang besar, prinsip yang sederhana dan konstruksi yang mudah (Ariyanto dkk., 2012). Superkapasitor diciptakan untuk memperoleh kapasitansi dengan densitas energi dan daya yang tinggi (Zhang dkk., 2009).

Keunggulan yang dimiliki superkapasitor dibandingkan dengan baterai dan kapasitor konvensional lainnya yaitu memiliki waktu hidup yang lebih lama, prinsip dan modelnya yang sederhana, waktu pengisian yang pendek, aman dan memiliki rapat daya yang tinggi yaitu 10-100 kali lipat lebih besar (Jayalakshmi, 2008). Kemampuan rapat daya yang besar pada superkapasitor disebabkan oleh luas permukaan yang besar dari material elektroda (Liu dkk., 2008). Material yang digunakan untuk elektroda kapasitor elektrokimia adalah karbon aktif karena memiliki luas permukaan internal yang tinggi dan aksesibilitas pori yang baik (Frackowiak dan Beguin, 2001). Dalam pembuatan Elektroda kapasitor material yang digunakan antara lain *graphene*, *carbon nanotube*, *carbon aerogel*, karbon berpori, dan komposit mineral-karbon. Karbon berpori sangat menarik sebagai bahan elektroda untuk superkapasitor karena luas permukaan spesifik yang besar, aksesibilitas pori tinggi, stabilitas termal dan kimia yang sangat baik serta biaya yang relatif murah (Zhu dkk., 2007). Karbon berpori dapat dibuat dengan cara karbonisasi bahan alami seperti tongkol jagung, ampas tebu, tempurung kelapa, sabut kelapa, sekam padi, serbuk gergaji, kayu keras, dan batu bara, kayu, bambu dan limbah kertas (Ariyanto dkk., 2012).

Tongkol jagung merupakan salah satu limbah pertanian yang sangat potensial dimanfaatkan untuk dijadikan arang, karena selain bahan ini mudah didapat dengan jumlah yang berlimpah juga mengandung kadar unsur karbon 43,42% dan hidrogen 6,32% dengan nilai kalornya berkisar antara 14,7-18,9 MJ/kg (Alfiany, 2013). Menurut Badan Pusat Statistik (2012) produksi jagung Indonesia pada tahun 2011 mencapai 16,3 juta ton yang berasal dari luas lahan panen 4 juta Ha dengan produktivitas rata-rata 4,1 ton tiap Ha. Sekitar 40-50% dari berat jagung merupakan tongkol jagung yang beratnya dipengaruhi oleh varietasnya (Richana, dkk., 2004; Wungkana, dkk., 2013). Selain itu, kandungan tongkol jagung sebagian besar tersusun atas lignoselulosa yaitu lignin (6%), selulosa (41%), dan hemiselulosa (36%), yang mengindikasikan bahwa tongkol jagung berpotensi sebagai bahan karbon aktif (Lorenz dan Kulp, 1991; Suryani, 2009). Sebelumnya telah dilakukan penelitian mengenai karbon aktif dari biomassa tongkol jagung dengan nilai kapasitansi 259 F/g⁻¹, bahkan pada tingkat scan tinggi 100 mVs⁻¹ (Qu dkk., 2015).

Pembuatan karbon aktif terdiri atas dua tahap yaitu proses karbonisasi dan aktivasi. Karbonisasi merupakan proses pembakaran bahan baku pada suhu tinggi yang menyebabkan terjadinya dekomposisi senyawa organik yang menyusun strukur bahan baku (Ramdja, dkk., 2008). Aktivasi adalah proses menghilangkan pengotor pada pori-pori karbon dengan cara memutuskan ikatan hidrokarbon sehingga meningkatkan porositas karbon (Rahayu dan Adhitiyawarman, 2014).

Indikator kemampuan penyimpanan energi yang tinggi pada suatu kapasitor ditentukan oleh nilai kapasitansi spesifiknya. Salah satu cara untuk meningkatkan nilai kapasitansi spesifik adalah dengan memanfaatkan efek pseudokapasitansi yang tergantung pada sifat fungsional permukaan karbon dengan adanya spesies elektroaktif seperti logam atau oksida logam transisi, nitrida atau senyawa polimer penghantar (*conducting polymers*) yang disisipkan (*deposited*) pada permukaan karbon aktif (Frackowiak dan Beguin, 2001; Zakir dkk., 2013).

Peningkatan nilai kapasitansi suatu elektroda dapat ditingkatkan dengan menggunakan bahan metal oksida atau hidroksida, seperti *ruthenium, cobalt*, nikel dan mangan oksida atau hidroksida. Diantara semua logam oksida, oksida Ru dan Ir menghasilkan kapasitansi spesifik yang sangat tinggi. Pemakaian ruthenium oxide (RuO₂) pada superkapasitor dengan pertimbangan dapat menghasilkan kapasitan yang relatif konstan pada tegangan di atas 1,4 V dengan spesifik kapasitan dalam range 600-1000 F/g. Seperti yang telah dilakukan oleh Patake dkk (2009) telah melakukan elektrodeposisi Ruthenium oksida (RuO₂) dengan mnghasilkan kapasitan sebesar 650 F/g. Namun kelangkaan dan mahalnya logam tersebut menjadi faktor dalam pembuatannya. Oleh sebab itu, dibutuhkan

terobosan baru dalam pembuatan superkapasitor dengan bahan yang murah dengan performa yang sama. Logam oksida transisi telah dipertimbangkan sebagai bahan yang menjanjikan untuk pembuatan superkapasitor (Fitriana, 2014).

MnO₂ dianggap sebagai salah satu elektroda yang paling menjanjikan sebagai bahan untuk superkapasitor karena biaya rendah dan ramah lingkungan. Mangan dioksida (MnO₂) dapat disintesis secara langsung melalui reduksi KMnO₄ menggunakan karbon aktif itu sendiri sebagai reduktor (Zhang dkk., 2012). Beberapa hasil penelitian menunjukkan bahwa penyisipan MnO₂ pada permukaan elektroda kapasitor baik yang terbuat dari polimer atau karbon ternyata memberikan efek pseudokapasitif yang cukup baik. Zhang dkk (2012) telah mendeposisi MnO₂ pada permukaan karbon aktif komersial menghasilkan nilai kapasitansi spesifik yang jauh lebih tinggi (163,3 Fg⁻¹) dibandingkan dengan karbon aktif komersial tanpa penyisipan MnO₂ (84,3 Fg⁻¹). Selain itu, Meng dkk (2013) telah mensintesis elektroda kapasitor dari nanokomposit MnO₂ dengan polimer polianilin dan ternyata juga memperoleh hasil yang serupa.

Pada penelitian ini dilakukan penyisipan MnO₂ ke dalam permukaan karbon aktif dan aplikasinya sebagai superkapasitor. Pemakaian MnO₂ pada superkapasitor dengan pertimbangan dapat menghasilkan kapasitansi yang relatif konstan pada tegangan 2 V dengan spesifik kapasitansi 135 Fg⁻¹ (Prabunathan dkk.,2014). Karbon aktif terdeposisi selanjutnya akan diukur nilai kapasitansi spesifiknya dengan metode siklik voltametri.

1.1 Rumusan Masalah

Rumusan masalah pada penelitian ini yaitu:

 bagaimana pengaruh massa karbon aktif, konsentrasi KMnO₄, pH, dan suhu terhadap proses deposisi MnO₂ pada permukaan karbon aktif tongkol jagung (Zea mays L.)? bagaimana pengaruh deposisi MnO₂ terhadap nilai kapasitansi spesifik karbon aktif tongkol jagung (*Zea mays L.*)?

1.2 Maksud dan Tujuan Penelitian

1.2.1 Maksud Penelitian

Maksud penelitian ini adalah untuk mengetahui nilai kapasitansi karbon tongkol jagung (*Zea mays L.*) yang telah terdeposisi MnO₂.

1.2.2 Tujuan Penelitian

Tujuan dari penelitian ini adalah untuk:

- menentukan pengaruh massa karbon, konsentrasi KMnO₄, pH, dan suhu terhadap proses deposisi MnO₂ pada permukaan karbon aktif tongkol jagung (Zea mays L.),
- 2. menentukan pengaruh penyisipan MnO₂ terhadap nilai kapasitansi spesifik karbon aktif tongkol jagung(*Zea mays L.*).

1.3 Manfaat Penelitian

Penelitian ini diharapkan dapat memberikan informasi tentang pengembangan ilmu pengetahuan. Terutama sebagai solusi dari krisis energi dan penyimpanan energi di masa yang akan datang. Selain itu dapat pula menjadi media sosialisasi kepada masyarakat tentang pemanfaatan limbah sebagai energi terbarukan.

BAB II

TINJAUAN PUSTAKA

2.1 Kapasitor Elektrokimia

Energi elektrokimia adalah energi yang diperoleh dari proses kimia. Kapasitor elektrokimia merupakan sistem penyimpanan energi yang lebih unggul dibandingkan baterai dan sel bahan bakar. Kapasitor elektrokimia berbahan karbon nanopori (Frackowiak dan Beguin, 2011).

Gambar 1. Struktur kapasitor, kapasitor elektrolit, dan superkapasitor (Nugroho, M.A. 2011)

Kapasitor elektrokimia (superkapasitor), menyimpan energi melalui adsorbsi ion pada antarmuka elektroda yang terbuat dari material dengan luas permukaan yang besar (misalnya karbon) dan larutan elektrolit membentuk suatu lapisan ganda listrik atau melalui reaksi redoks yang terjadi pada permukaan elektroda (pseudokapasitor). Saat ini sedang dikembangkan kapasitor dengan kinerja yang lebih baik melalui pengembangan nanomaterial sebagai bahan pseudokapasitif seperti oksida logam, nitrida, polimer seperti halnya pada elektroda baterai litium dengan stuktur berukuran nano yang diharapkan mampu meningkatkan kerapatan energi pada kapasitor elektrokimia (Antonucci dan Antonucci, 2011; Miller dan Simon, 2008).

Luas permukaan yang tinggi dan ketipisan dari lapisan ganda, perangkat ini dapat memiliki spesifik sangat tinggi dan volumetrik kapasitansi volumetrik. Hal ini memungkinkan memiliki kepadatan energi yang sangat tinggi untuk kapasitor dan siklus yang relatif banyak. Kapasitor elektrokimia menyimpan energi listrik pada lapisan ganda listrik yang terbentuk pada antarmuka elektroda dan elektrolit (Miller dan Burke, 2008).

Gambar 2. Skema dari sebuah kapasitor elektrokimia lapisan ganda listrik (Su dan Schlog, 2010).

Superkapasitor memiliki keunggulan dibanding dengan baterai diantaranya; siklus hidup yang lebih panjang, impedansi yang rendah, waktu *charge* dan *discharge* yang cepat, dan memiliki rating *charge* dan *discharge* yang tinggi. Namun, superkapasitor juga memiliki kekurangan yaitu tegangan yang rendah dibanding baterai, *self-charger* yang tinggi dan memerlukan kontrol elektronik yang lebih rumit (Nugroho, 2011). Berikut adalah grafik perbandingan antara proses *charging-discharging* pada superkapasitor dan baterai

Gambar 3. Proses charging-discharging pada superkapasitor dan baterai (Shukla, dkk., 2000).

Untuk elektroda listrik kapasitor double-layer (EDLC), bahan umum adalah oksida logam, polimer, dan bahan berpori seperti karbon aktif dan karbon aerogel. Selain itu, bahan karbon baru, seperti karbon nanotube, telah dikembangkan sebagai bahan elektroda, tetapi memiliki kekurangan seperti persiapan yang rumit dan biaya tinggi. Dibandingkan dengan bahan karbon lainnya, karbon aktif lebih cocok sebagai bahan super elektroda karena luas permukaan yang tinggi dan biaya yang rendah. Selain itu, menggunakan bahan limbah biomassa untuk karbon aktif menjadi menarik dalam penyusunan bahan elektroda untuk EDLC. Banyak elektroda karbon dari EDLC diperoleh dari bahan biomassa, seperti serat pisang, kayu bakar, biji jagung, bambu, sekam padi, kulit biji bunga matahari, biji *cherry*, dan bulu (Chen dkk., 2013).

2.2 Karbon Aktif

Salah satu elektroda yang digunakan pada superkapasitor adalah karbon aktif. Distribusi pori yang homogen pada karbon aktif menyebabkan elektroda ini memiliki luas permukaan yang besar (Frackowiak dan Beguin, 2001).

Karbon aktif merupakan senyawa karbon dengan struktur amorf, yang dapat diperoleh dari material-material yang mengandung karbon atau dari arang yang diberi perlakuan khusus untuk mendapatkan permukaan yang lebih luas. Karbon aktif memiliki luas permukaan berkisar antara 300-2000 m²/g. Karbon aktif dapat mengadsorpsi senyawa-senyawa kimia tertentu tergantung pada besar atau volume pori-pori dan luas permukaannya (Jamilatun dan Setiawan, 2014; Ramdja dkk., 2008).

Karbon aktif merupakan salah satu jenis karbon amorf yang tersusun pararel berbentuk cincin heksagonal menyerupai struktur grafit. Sifat fisika dari karbon aktif

terutama ditentukan oleh ukuran pori dan luas permukaannya. Karbon aktif mempunyai luas permukaan yang cukup tinggi, yaitu berkisar antara 500-1500 m²g⁻¹ dan volume pori berkisar antara 0,7-1,8 cm³g⁻¹ (Cencen dan Aktas, 2012; Cotton dan Wilkinson, 1989).

Gambar 4. Struktur Karbon Amorf (Tanaka dkk., 1997)

Komposisi unsur karbon aktif yang dihasilkan dari bahan awal alami biasanya terdiri dari 85-90% C; 0,5% H; 0,5 %N; 5 %O; dan 1 %S, dan serta keseimbangan 5-6 % mewakili anorganik (Amelia dkk., 2013).

Mengolah arang menjadi arang aktif pada prinsipnya adalah membuka pori-pori arang menjadi lebih luas yaitu 2 m²/g menjadi 300-2000 m²/g pada arang aktif (Sudrajat dan Pari, 2011). Pembuatan karbon aktif terdiri dari dua tahap, yaitu proses karbonasi bahan baku dan proses aktivasi bahan terkarbonasi pada temperatur tinggi. Proses karbonisasi adalah proses penguraian selulosa organik menjadi unsur karbon dan pengeluaran unsur-unsur nonkarbon yang berlangsung pada suhu 400°C. Aktivasi merupakan proses untuk memperbesar porositas dan surface area. Proses ini menghilangkan sebagian besar jari-jari pori yang telah terbentuk. Aktivasi dapat dibedakan menjadi dua, yaitu aktivasi secara kimia dan aktivasi secara fisika (Prasetyo dan Nasrudin, 2013). Aktivasi secara kimia dilakukan dengan mereaksikan karbon dari hasil karbonasi dengan bahan-bahan kimia yang biasanya digunakan untuk proses aktivasi kimia contohnya H₃PO₄, ZnCl₂, CaCl₂, K₂S, HCl, H₂SO₄, NaCl dan Na₂CO₃ setelah proses karbonisasi (Juliandini dan Trihadiningrum 2008). Sedangkan aktivasi fisika dapat dilakukan dengan mereaksikan gas CO₂ dengan karbon hasil pirolisis (Prasetyo dan Nasrudin, 2013).

Hasil penelitian menunjukkan bahwa ZnCl₂, NaOH dan H₃PO₄ merupakan bahan kimia yang cukup baik untuk digunakan setelah proses karbonisasi (Bakri, 2014). Proses perubahan arang menjadi karbon aktif merupakan hasil pengolahan bahan kimia pada suhu tinggi (Juliandini dan Trihadiningrum, 2008).

2.3 Tinjauan Umum Tongkol Jagung

Tongkol jagung merupakan bagian terbesar dari limbah jagung. Dari berat jagung bertongkol, diperkirakan 40-50% adalah tongkol jagung, yang besarnya dipengaruhi oleh varietas jagungnya. Oleh karena itu dapat diperkirakan untuk produksi jagung 13 juta ton (jagung pipilan) akan terjadi limbah tongkol jagung sekitar 10,6 juta ton/tahun. Selama ini masyarakat cenderung memanfaatkan limbah tongkol jagung hanya sebagai bahan pakan ternak, bahan bakar dapur dan pengasapan untuk mengusir nyamuk atau terbuang percuma (Lumempouw dkk., 2012). Berdasarkan hal tersebut perlu adanya perhatian dan penanganan untuk pemanfaatan limbah tongkol jagung sehingga dapat lebih bermanfaat.

Gambar 5. Tongkol Jagung (Fachry dkk., 2013)

Tongkol jagung merupakan salah satu limbah pertanian yang sangat potensial dimanfaatkan untuk dijadikan arang aktif, karena limbah tersebut sangat banyak dan terbuang percuma. Limbah ini dapat ditingkatkan nilai ekonominya bila diolah, juga dapat mengurangi potensi pencemaran lingkungan. Menurut Badan Pusat Statistik (BPS) Sulawesi Tengah, produksi jagung tahun 2010 diperkirakan sebesar 171.179 ton pipilan kering, dan dalam bobot tongkol jagung terdiri dari kurang lebih 30% buah jagung. Untuk menghindari hal ini perlu adanya pemanfaatan limbah tongkol jagung tersebut, salah satunya yaitu sebagai bahan baku arang aktif (Alfiany dkk., 2013). Tongkol jagung sebagian besar tersusun oleh selulosa (41%), hemiselulosa (36%), lignin (6%), dan senyawa lain yang umum terdapat dalam tumbuhan (Tabel 1). Aktivasi terhadap adsorben mengarah pada aktivasi gugus hidroksil pada selulosa, sehingga kemampuannya menjerap zat warna maupun ion logam meningkat (Sulistyawati, 2008).

Kadar (%)
9,6
1,5
36,0
41,6
6,0
3,0
0,014

Tabel 1. Komposisi tongkol jagung (Lorenz dan Kulp, 1991).

2.4 Mangan Dioksida (MnO₂) sebagai Senyawa Pseudokapasitif

Superkapasitor atau ultrakapasitor memiliki dua macam sistem penyimpanan energi yaitu berdasarkan pada elektrostatik, seperti pada kapasitor EDLC (*Electrohemical Double Layer Capasitor*) dan sistem reaksi faraday (reaksi redoks) seperti yang terjadi pada akumulator. Sifat pseudokapasitansi muncul ketika terjadi perubahan secara termodinamik, muatan q yang diterima oleh elektroda secara berkelanjutan dapat mengubah fungsi dari potensial V, sehingga persamaan turunan C=dq/dV merujuk pada nilai kapasitansi yang muncul dari reaksi faraday tersebut. Kata "pseudo" bersumber dari kenyataan bahwa kapasitansi *double layer* muncul bukan hanya dari proses elektrostatik tetapi juga bersumber dari muatan yang dihasilkan oleh reaksi faraday (redoks). Efek pseudokapasitansi ini (pengikatan hidrogen atau logam melalui reaksi redoks oleh spesies elektroaktif) sangat bergantung pada kemampuan dari material karbon penyusun elektroda dalam meyerap ion pada permukaannya (Frackowiak dan Beguin, 2001).

Bahan yang dijadikan syarat dalam sifat pseudokapasitif adalah alternatif yang menjanjikan untuk EDLCs. Dalam hal ini, kapasitansi terkait dengan biaya dan massa transfer antar elektroda dan elektrolit, proses dimana sebagian besar elektroda bekerja yang menyebabkan nilai-nilai kapasitansi 100-400 μFcm⁻². Oksida logam merupakan contoh pseudokapasitif bahan yang diteliti, salah satu menjadi kinerja terbaik adalah RuO₂. RuO₂ sangat mahal sehingga alternatif oksida lebih murah telah dipertimbangkan, misalnya MnO₂ (Pinero dkk., 2006).

Pada pseudokapasitor terjadi reaksi redoks yang sangat cepat pada permukaan elektroda saat proses pengisian berlangsung. Oksida logam transisi dan polimer konduktif elektron merupakan contoh material yang memiliki sifat pseudokapasitif. Ketika proses pengisian pseudokapasitif berlangsung, terjadi reduksi partikel pada permukaan elektroda sehingga senyawa elektroaktif bertambah. Sebagai contoh, MnO₂ dan RuO₂ yang disisipkan pada permukaan elektroda superkapasitor (misalnya karbon aktif, karbon nanotube, kolektor logam) menunjukkan nilai kapasitansi spesifik yang lebih tinggi dari 1300 Fg⁻¹. Telah diketahui bahwa sintesis elektroda yang terbuat dari material dengan luas permukaan yang tinggi dan mengandung material pseudokapasitif dapat meningkatkan kerapatan energi kapasitor (Antonucci dan Antonucci, 2011).

Gambar 6. Mekanisme penyisipan senyawa elektroaktif pada permukaan elektroda kapasitor yang terbuat dari karbon aktif (a,b) dan karbon nanotube (c,d) (Antonucci dan Antonucci, 2011)

Secara umum, penyimpanan muatan MnO₂ sebagai material pseudokapasitif dalam larutan elektrolit yaitu didasarkan pada terjadinya reaksi redoks yang menyebabkan perubahan bilangan oksidasi Mn dari +4 menjadi +3. Adapun mekanisme akumulasi muatan berdasarkan proses adsorpsi kation elektrolit (K⁺, Na⁺, H⁺, dan sebagainya) yang terjadi pada permukaan elektroda berdasarkan persamaan reaksi dibawah ini (Augustyn dkk., 2014):

$$MnO_2 + xA^+ + xe^- \rightarrow A_xMnO_2$$
(1)

MnO₂ dapat dibuat dengan cara mereduksi ion permanganat (MnO₄⁻) dalam suasana basa atau netral. Cara ini merupakan cara yang sederhana dan membutuhkan biaya yang relatif murah. Selama prosedur tersebut, pH larutan memegang peranan utama dalam pembentukkan produk akhir. Pada pH tinggi, produk utama yang terbentuk adalah MnO₂ sedangkan pada pH rendah produk utamanya adalah Mn²⁺. Adapun reaksinya pembentukkan kedua spesies ini dapat dilihat melalui persamaan reaksi berikut (Meng dkk., 2013; Cotton dan Wilkinson, 1989):

$$MnO_4^- + 2H_2O + 3e \rightarrow MnO_2 + 3OH^-$$
(2)

$$MnO_4 + 8H^+ + 5e \rightarrow Mn^{2+} + 4H_2O$$
 (3)

Menurut Zhang dkk (2012), nanokomposit karbon aktif dan MnO₂ dapat dibuat dengan cara mereduksi langsung larutan KMnO₄ menggunakan karbon aktif itu sendiri sebagai reduktornya dalam suasana basa/netral. Adapun reaksinya dapat dilihat pada persamaan reaksi berikut:

$$4KMnO_4 + 3C + H_2O \rightarrow 4MnO_2 + K_2CO_3 + 2KHCO_3$$
(4)

Gambar 7. Penampang permukaan karbon tanpa (a,b) dan dengan penysipan MnO₂ (c,d) (Zhang dkk., 2012)

BAB III

METODE PENELITIAN

3.1 Bahan Penelitian

Bahan-bahan yang digunakan dalam penelitian ini, yakni tongkol jagung, KMnO₄ (Merck), NaOH 6 N, HCl 6 N, akuades, larutan H₂SO₄ 0,1 M, larutan metilen biru 300 ppm, larutan ZnCl₂ 10% b/v, kawat tembaga, kawat platina, elektroda Ag/AgCl, elektroda Pt, parafin, parafilm, kertas saring Whatman nomor 42, aluminium foil, kertas pH universal, dan kertas saring.

3.2 Alat Penelitian

Alat-alat yang digunakan dalam penelitian ini yaitu tanur (*Muffle Furnace* tipe 6000), cawan porselin, pengaduk magnetik (Fisher tipe 115), ayakan ukuran 100 mesh, desikator, penangas air (hot plate), statif, corong Buchner, alat gelas laboratorium, termometer, lumpang, neraca analitik (Shimadzu AW220), XRF (ThermoFisherXRF), XRD (Shimadzu XRD-7000), labu semprot plastik, pompa vakum (Vacuubrand tipe ME4C), oven (tipe SPNISOSFD), pengaduk magnetik (CERAMAG Midi), Spektrometer UV-Vis 20 D⁺ Shimadzu dan *Cyclic Voltammetry* (Aplikasi eDAQ ED410-159).

3.3 Waktu dan Tempat Penelitian

Penelitian ini dilakukan mulai bulan Desember 2016-April 2017 di Laboratorium Kimia Fisika, dan Laboratorium Kimia Terpadu Fakultas Matematika dan Ilmu Pengetahuan Alam, Universitas Hasanuddin.

3.4 Prosedur Penelitian

3.4.1 Tempat dan Waktu Pengambilan Sampel

Pengambilan sampel tongkol jagung berasal dari sumber lokal yang diambil di perkebunan jagung, alla, Kec. Baroko Kab. Enrekang.

3.4.2 Preparasi Sampel

Tongkol jagung dipotong menjadi bagian-bagian kecil kemudian dicuci dengan air mengalir untuk menghilangkan partikel-partikel kotor yang melekat pada permukaan tongkol jagung kemudian dikeringkan di bawah sinar matahari (Alfiany, dkk., 2013).

3.4.3 Karbonisasi

Tongkol jagung yang kering dan bersih kemudian dimasukkan ke dalam cawan porselen lalu dikarbonisasi pada tanur selama 1 jam pada suhu 400 °C. Proses tersebut menghasilkan karbon tongkol jagung. Karbon yang diperoleh didinginkan dalam desikator, digerus, dan diayak dengan pengayak 100 mesh (Prasetyo dan Nasrudin, 2013).

3.4.4 Aktivasi

Karbon yang diperoleh dari proses karbonisasi kemudian diaktivasi menggunakan ZnCl₂ 10%. Karbon ditambahkan larutan ZnCl₂ 10% dengan perbandingan 1:10 lalu dihomogenkan. Wadah yang berisi campuran kemudian ditutup rapat menggunakan aluminium foil dan didiamkan selama 24 jam. Disaring menggunakan corong Buchner. Karbon yang dihasilkan dicuci dengan akuades hingga pH netral. Kemudian dikeringkan di dalam oven pada suhu 110 °C lalu dibakar di dalam tanur pada suhu 350 °C selama 1 jam (Labanni' dkk., 2015; Danarto dan Samun, 2008).

3.4.5 Penentuan Luas Permukaan

Penentuan luas permukaan karbon aktif dihitung menggunakan metode Metilen Biru yaitu berdasarkan kemampuan karbon aktif mengadsorbsi metilen biru pada permukaannya. Sebanyak 0,3 gram karbon aktif dimasukkan ke dalam 50 mL larutan metilen biru 300 ppm kemudian distirer selama 30 menit. Setelah itu, campuran disaring kemudian filtratnya diukur absorbansinya pada panjang gelombang maksimum. Data absorbansi yang diperoleh kemudian digunakan untuk menghitung konsentrasi adsorbat yang tidak teradsorbsi oleh karbon aktif. Adapun larutan standar yang digunakan yaitu larutan metilen biru dengan konsentrasi 1, 2, 4, dan 8 ppm (Labanni' dkk., 2015).

Persamaan garis yang diperoleh dari kurva kalibrasi standar metilen biru digunakan untuk menghitung konsentrasi metilen biru setelah adsorpsi. Luas permukaan dari karbon dihitung menggunakan persamaan berikut (Andhika, 2015):

$$X_{\rm m} = \frac{(C_{\rm O} - C_{\rm e}) \times V}{g}$$
(5)

$$S = \frac{X_m \cdot N \cdot a}{M_r}$$
(6)

Dimana, X_m adalah berat adsorbat teradsorpsi (mg/g), Co dan Ce masing-masing adalah konsentrasi awal dan konsentrasi akhir (ppm), V adalah volume metilen biru (L), g adalah massa karbon (g), N adalah bilangan Avogadro (6,02 x 10^{23} mol⁻¹), Mr adalah berat molekul metilen biru (320,5 g/mol), a adalah luas permukaan oleh 1 molekul metilen biru (197 x 10-20 m²) dan S adalah luas permukaan adsorben (m²/g).
3.4.6 Deposisi redoks nanopartikel MnO₂ pada Permukaan KATJ

Proses deposisi MnO₂ pada permukaan KATJ didasarkan pada reaksi redoks yang terjadi antara karbon aktif tongkol jagung dengan KMnO₄. Untuk memaksimalkan proses deposisi, maka perlu diketahui beberapa faktor yang mempengaruhi reaksi tersebut diantaranya pengaruh massa karbon aktif, konsentrasi KMnO₄, pH, dan suhu.

3.4.6.1 Pengaruh Massa Karbon Aktif

Sebanyak 0,2; 0,4; dan 0,6 gram karbon aktif tongkol jagung masing-masing dimasukkan ke dalam 100 mL KMnO₄ 0,05 M kemudian diaduk dengan magnetik stirrer sambil dipanaskan pada suhu 95 °C hingga larutan menjadi tidak berwarna. Campuran kemudian disaring, karbon yang diperoleh selanjutnya dicuci beberapa kali dengan akuades dan dikeringkan pada suhu 60 °C selama 12 jam, lalu dikarakterisasi dengan XRD dan XRF (Zhang dkk., 2012). penyaringan Sedangkan filtrat dari hasil pertama dianalisis dengan spektrofotometer UV-Vis pada panjang gelombang 200-700 nm untuk mengetahui jenis spesis yang masih terdapat dalam larutan.

3.4.6.2 Pengaruh Konsentrasi KMnO₄

Sebanyak 0,4 gram karbon aktif tongkol jagung dimasukkan ke dalam gelas kimia yang masing-masing berisi 100 mL KMnO₄ 0,025 M; 0,05 M; dan 0,1 M kemudian diaduk dengan magnetik stirrer sambil dipanaskan pada suhu 95 °C hingga larutan menjadi tidak berwarna. Campuran kemudian disaring, karbon yang diperoleh selanjutnya dicuci beberapa kali dengan akuades dan dikeringkan pada suhu 60 °C selama 12 jam, lalu dikarakterisasi dengan XRD dan XRF. Sedangkan filtrat dari hasil penyaringan pertama dianalisis dengan spektrofotometer UV-Vis pada panjang gelombang 200-700 nm untuk mengetahui jenis spesis yang masih terdapat dalam larutan.

3.4.6.3 Pengaruh Suhu

Sebanyak 0,6 gram karbon aktif tongkol jagung dimasukkan ke dalam tiga gelas kimia yang masing-masing berisi 100 mL KMnO₄ 0,025 M kemudian diaduk dengan magnetik stirrer sambil dipanaskan pada suhu berturut-turut 65 °C; 80 °C; dan 95 °C hingga larutan menjadi tidak berwarna. Campuran kemudian disaring, karbon yang diperoleh selanjutnya dicuci beberapa kali dengan akuades dan dikeringkan pada suhu 60 °C selama 12 jam, lalu dikarakterisasi dengan XRD dan XRF. Sedangkan filtrat dari hasil penyaringan pertama dianalisis dengan spektrofotometer UV-Vis pada panjang gelombang 200-700 nm untuk mengetahui jenis spesis yang masih terdapat dalam larutan.

3.4.6.4 Pengaruh pH

Sebanyak 0,6 gram karbon aktif sekam padi dimasukkan ke dalam dua gelas kimia yang berbeda. Gelas kimia pertama ditambahkan 20 mL NaOH 6 N sedangkan gelas kimia kedua ditambahkan 20 mL HCl 6 N. kemudian, masing-masing gelas kimia ditambahkan 100 mL KMnO₄ 0,025 M. Setelah itu, campuran diaduk dengan magnetik stirrer sambil dipanaskan pada suhu 95 °C hingga larutan menjadi tidak berwarna. Campuran kemudian disaring, karbon yang diperoleh selanjutnya dicuci beberapa kali dengan akuades dan dikeringkan pada suhu 60 °C selama 12 jam, lalu dikarakterisasi dengan XRD dan XRF. Sedangkan filtrat dari hasil penyaringan pertama dianalisis dengan spektrofotometer UV-Vis pada panjang gelombang 200-700 nm untuk mengetahui jenis spesis yang masih terdapat dalam larutan.

3.4.7 Pembuatan Elektroda

Badan elektroda dibuat dengan cara menyambungkan kawat tembaga dan kawat platina menggunakan solder uap. Kemudian dimasukkan kedalam pipet yang selanjutnya direkatkan dengan parafilm. Karbon aktif tongkol jagung sebelum dan sesudah disisipkan MnO₂ dicampur dengan lilin paraffin dengan perbandingan 1:1 diaduk sampai homogen menggunakan spatula dalam cawan petri. Pasta karbon yang telah jadi dimasukkan ke dalam badan elektroda dengan cara ditekan menggunakan spatula agar memadat dan merata (Vytras dkk., 2009; Wachid dan Setiarso, 2014).

3.4.8 Pengukuran Nilai Kapasitansi Spesifik

Elektroda yang telah dibuat, diukur nilai kapasitansi spesifiknya dengan metode siklik voltametri menggunakan alat potensiostats EA161. Adapun tipe sel yang digunakan yaitu sistem tiga elektroda yang terdiri dari elektroda Ag/AgCl (elektroda pembanding), elektroda Pt (elektroda pembantu) dan elektroda pasta karbon (elektroda kerja) dengan larutan H₂SO₄ 0,1 M sebagai elektrolit. Pengukuran dilakukan dengan *scan rate* sebesar 100 mV/s sehingga diperoleh voltagram antara tegangan dan arus. Kemudian nilai kapasitansi spesifik dapat dihitung menggunakan rumus sebagai berikut (Ramli, 2015):

$$Cs = \frac{Ic - Id}{v x m}$$
(7)

Dimana,

- Cs = Nilai kapasitansi spesifik (F/g)
- Ic = arus charge (A)
- Id = arus discharge (A)
- v = scan rate (V/s)
- m = massa elektroda karbon aktif (g)

BAB IV

HASIL DAN PEMBAHASAN

Bab ini membahas deposisi secara redoks nanopartikel MnO₂ pada permukaan karbon aktif tongkol jagung yang dikarakterisasi dengan metode XRD, XRF dan UV-Vis. Karbon aktif sebelum dan sesudah deposisi diukur nilai kapasitansi spesifiknya menggunakan metode siklik voltametri untuk mengetahui potensinya sebagai material elektroda pseudokapasitor.

4.1 Preparasi Sampel Tongkol Jagung

Limbah tongkol jagung hasil panen dikumpulkan. Tongkol jagung diambil di Desa Patongloan, Kec. Baroko, Kab. Enrekang. Bahan baku selanjutnya dibersihkan dengan air mengalir dan dibilas dengan akuades untuk menghilangkan kotoran yang melekat seperti pasir dan debu (Alfiany dkk., 2013) kemudian dikeringkan di bawah sinar matahari untuk menguapkan kandungan air pada bahan baku setelah dicuci. Selanjutnya tongkol jagung yang telah kering dipotong kecil-kecil untuk memudahkan dalam proses pengarangan.

Gambar 8. Sampel tongkol jagung yang telah bersih dan kering

4.2 Karbonisasi

Karbonisasi atau pengarangan adalah proses pembakaran bahan baku pada suhu tertentu sekitar 300-900 °C yang menyebabkan terjadinya dekomposisi senyawa organik yang menyusun struktur bahan membentuk metanol, uap asam asetat, tar dan hidrokarbon. Pelepasan unsur-unsur volatil ini menyebabkan struktur pori-pori terbuka (Ramdja dkk., 2008; Surest dkk., 2008).

Proses karbonisasi tongkol jagung pada penelitian ini dilakukan dengan menggunakan *furnace* (tanur). Suhu optimum pada penelitian ini menggunakan suhu 400° C yang mengindikasikan bahwa karbon tongkol jagung sudah menghasilkan arang yang sempurna. Proses karbonisasi di atas suhu 400° C sudah menghasilkan abu, dan suhu di bawah 400° C menghasilkan arang tetapi tidak semua menjadi arang atau proses yang belum sempurna. Selanjutnya karbon digerus dan diayak dengan ayakan berukuran 100 mesh untuk mendapatkan arang yang berukuran kecil, sehingga memiliki luas permukaan yang besar (Andika dkk., 2015).

Gambar 9. Karbon Tongkol Jagung ukuran 100 mesh

4.3 Aktivasi

Aktivasi adalah proses untuk penghilangan hidrokarbon yang melapisi permukaan karbon sehingga meningkatkan porositas karbon (Andhika dkk., 2015). Pada tahap karbonisasi didapatkan luas permukaan yang kecil disebabkan karena pori-pori karbon masih tertutupi oleh residu. Pada penelitian ini dilakukan aktivasi dengan menggunakan ZnCl₂ 10%. Aktivasi karbon tongkol jagung dilakukan dengan perbandingan 1:10 dengan mencampurkan 10 gram karbon tongkol jagung dengan 100 mL larutan aktivator ZnCl₂ 10% kemudian direndam selama 24 jam. Perendaman dilakukan untuk memaksimalkan kontak antara karbon dengan aktivator sehingga residu-residu yang menutupi pori karbon akan terangkat sehingga pori-pori pada karbon akan terbuka. Dengan demikian terbentuk sisi aktif pada karbon. Semakin banyak pori yang terbentuk, maka akan semakin banyak ruang yang tersedia untuk penyimpanan muatan listrik berupa ion-ion elektrolit di dalam karbon nanopori (Rosi, dkk., 2013).

4.4 Penentuan Luas Permukaan

Penentuan luas permukaan karbon diukur berdasarkan kemampuan karbon dalam mengadsorpsi metilen biru. Banyaknya metilen biru yang teradsorpsi berbanding lurus dengan luas permukaan adsorben. Penentuan panjang gelombang maksimum dilakukan dengan menggunakan larutan metilen biru 4 ppm yang diukur absorbansinya pada rentangan panjang gelombang 400-700 nm. Panjang gelombang maksimum yang diperoleh adalah 660 nm. Deret standar metilen biru dibuat berdasarkan absorbansi dari berbagai konsentrasi larutan standar metilen biru yaitu 1, 2, 4, dan 8 ppm pada panjang gelombang maksimum. Nilai absorbansi deret standar larutan metilen biru dapat dilihat pada Tabel 2.

Tabel 2. Nilai absorbansi deret standar metilen biru pada λ_{maks} 660 nm

Konsentrasi Metilen Biru (ppm)	Absorbansi
1	0,4760
2	0,5700
4	0,9800
8	1,5200

Tabel 2 menunjukkan bahwa absorbansi meningkat seiring meningkatnya konsentrasi metilen biru. Hal ini sesuai dengan hukum Lambert-Beer bahwa jumlah sinar yang diserap berbanding lurus dengan konsentrasi zat. Dari data absorbansi deret standar, kemudian dibuat kurva kalibrasi seperti ditunjukkan pada Gambar 10.

Gambar 10. Kurva kalibrasi deret standar metilen biru

Nilai persamaan garis yang diperoleh pada kurva kalibrasi deret standar metilen biru digunakan untuk menghitung konsentrasi metilen biru setelah adsorpsi. Luas permukaan karbon dihitung menggunakan persamaan (5) dan (6) sehingga diperoleh nilai luas permukaan seperti yang ditunjukkan pada Tabel 3. Luas permukaan karbon sebelum dan sesudah aktivasi mengalami peningkatan yang cukup besar yaitu sekitar 19 m²/g.

Untuk meningkatkan luas permukaan maka dilakukan tahap aktivasi dengan menggunakan aktivator ZnCl₂ 10%. Setelah diaktivasi ternyata memberikan sedikit peningkatan luas permukaaan. Kenaikan yang terjadi tidak terlalu signifikan, dapat dilihat pada Tabel 3.

sampel	S (m ² /g)
Tanpa aktivasi	155,0244
Setelah aktivasi	173,5665

Tabel 3. Data Luas Permukaan Karbon Aktif Tongkol Jagung dengan dan tanpa aktivasi

Luas permukaan KATJ sebelum aktivasi adalah 155,0244 m²/g, setelah diaktivasi meningkat sedikit menjadi 173,5665 m²/g. Kenaikan luas permukaan tersebut disebabkan karena aktivator tersebut mengangkat residu yang menutupi pori-pori, sehingga pori-pori menjadi terbuka yang menyebabkan luas permukaan menjadi besar.

Dalam penelitian ini untuk meningkatkan kapasitansi sebagai kapasitor, digunakan oksida logam. MnO₂ merupakan salah satu oksida logam yang digunakan karena selain bahan yang murah, juga proses sintesis yang mudah.

4.5 Deposisi redoks nanopartikel MnO2 pada Permukaan KATJ

Deposisi secara redoks pada penelitian ini merupakan proses pendeposisian nanopartikel MnO₂ kedalam permukaan karbon aktif. Hal tersebut merupakan langkah dalam meningkatkan nilai kapasitansi spesifiknya. Oksida logam tersebut berperan sebagai spesi elektroaktif yang berfungsi untuk meningkatkan kapasitansi. MnO₂ dihasilkan dari proses pencampuran antara karbon dan KMnO₄, dengan karbon itu sendiri yang berperan sebagai reduktor dalam mereduksi KMnO₄ menjadi MnO₂ (Zhang, 2012).

MnO₂ yang dihasilkan sebagian akan terdeposisi pada permukaan karbon aktif yang ditandai dengan perubahan warna karbon dari hitam menjadi hitam kecoklatan (Zhang, 2012) dan sebagian terdispersi ke dalam larutan membentuk sistem koloid yang ditandai dengan perubahan warna larutan dari ungu (warna KMnO₄) menjadi kuning hingga kuning kecoklatan (Moon dkk., 2014; Jaganyi dkk., 2013; Chacon-Patino dkk., 2013).

Sehingga pada penelitian ini dilakukan karakterisasi baik pada karbon aktif maupun pada filtrat sebelum dan sesudah deposisi tersebut. Karakterisasi pada karbon aktif dilakukan menggunakan XRD untuk mengetahui keberadaan MnO₂ pada permukaan karbon aktif serta ukuran partikelnya dan XRF untuk mengetahui secara langsung komposisi senyawa yang terkandung di dalam karbon aktif sebelum dan sesudah proses deposisi khususnya persentase senyawa oksida mangan dalam sampel. Sedangkan filtrat dikarakterisasi menggunakan spektrofotometer UV-Vis pada panjang gelombang 180-700 nm untuk mengetahui keberadaan MnO₂ yang kemungkinan besar tersuspensi dalam larutan.

Proses deposisi MnO₂ pada permukaan karbon aktif dipengaruhi oleh beberapa faktor. Sehingga, deposisi MnO₂ dalam penelitian ini dilakukan dalam berbagai variasi diantaranya massa karbon aktif, konsentrasi KMnO₄, suhu dan pH untuk memaksimalkan nilai kapasitansi yang diperoleh.

4.5.1 Pengaruh Massa Karbon Aktif

Proses deposisi MnO₂ dengan variasi karbon yaitu 0,2; 0,4 dan 0,6 gram dengan konsentrasi KMnO₄ yang sama, memberikan pengaruh terhadap kemampuan karbon aktif dalam menyerap MnO₂. Seperti penelitian yang dilakukan (Zhang dkk., 2015). Terbentuknya MnO₂ didapatkan dari adanya reaksi reduksi KMnO₄ dengan karbon. Tereduksinya KMnO₄ ditandai dengan hilangnya warna KMnO₄ pada filtrat yang sebelumnya berwarna ungu menjadi warna kecoklatan. Karbon yang dihasilkan juga mengalami perubahan warna dari warna hitam menjadi warna kecoklatan. Seperti yang ditunjukkan oleh gambar:

Gambar 11. KATJ sebelum dan setelah deposisi Hal tersebut juga didukung dengan adanya karakterisasi menggunakan XRD dan XRF.

4.5.1.1 Data XRF

Karakterisasi dengan XRF sebelum dan sesudah deposisi menunjukkan adanya perbedaan komposisi senyawa oksida seperti mangan oksida yang merupakan senyawa yang akan dideposisi pada permukaan karbon. Data XRF dalam suatu sampel ditunjukkan dalam bentuk persentase kadar. Kadar MnO₂ dalam sampel diterjemahkan oleh detektor dalam bentuk MnO yang berfungsi sebagai standar untuk mendeteksi semua oksida mangan yang ada pada sampel. Valensi oksida mangan yang terdapat dalam sampel dapat diketahui dengan cara melihat spektrum XRF yang terbentuk. Menurut Urch dan Wood, MnO (Mn²⁺) dengan MnO₂ (Mn⁴⁺) dapat dibedakan dengan melihat puncak Kβ' (transisi elektronik d→d yang bergantung pada jumlah elektron yang tidak berpasangan pada orbital 3d) dan K $\beta_{1,3}$ (transisi elekrtronik 3p→1s) pada spektrum XRF seperti ditunjukkan pada gambar X.

Penelitian tersebut menunjukkan adanya persentase kadar dari MnO₂ yang diberikan dalam bentuk MnO. Terdapatnya MnO₂ dalam sampel dapat didukung dengan adanya pola spektrum XRD seperti yang terlihat pada gambar 15.

Tabel 4.	Komponen	senyawa	oksida	dalam	KATJ	sebelum	dan	setelah	deposisi
	MnO ₂ 0,2 g	ram; 0,4 g	gram da	n 0,6 g	ram				

	Sebelum		Setelah deposisi (%)	
Senyawa oksida	deposisi (%)	KATJ 0,2g/MnO ₂	KATJ 0,4g/MnO ₂	KATJ 0,6/MnO2
MnO	-	87,24	77,83	88,24
K_2O	31,72	12,26	10,74	10,95
SiO ₂	31,88	-	-	-
ZnO	7,60	0,124	0,243	0,397
TiO ₂	0,620	-	-	-
CaO	15,32	-	-	-
Nb_2O_5	0,043	0,0144	0,0103	0,0197
Rb ₂ O		-	0,0085	0,0139
P_2O_5	10,17	0,355	0.33	0.373
SnO_2	0,0169	0,0052	-	-
MgO	-	-	10,82	-
Ga ₂ O ₃	-	-	0,0132	-

Sebelum deposisi menunjukkan adanya perbedaan komposisi senyawa oksida khususnya SiO₂ yang merupakan senyawa oksida tertinggi dengan kadar 31,88%, sedangkan untuk MnO₂ yang akan dideposisikan belum terdapat dalam KATJ. Setelah deposisi kadar SiO₂ sudah tidak terdapat dalam KATJ, sedangkan MnO₂ sudah terdapat dalam sampel dan memiliki kadar yang cukup tinggi. Untuk massa karbon 0,2 g kadar MnO₂ menjadi 87,24%. Adanya peningkatan gugus Mn disebabkan karena sudah terdeposisinya MnO₂ kedalam permukaan karbon. Untuk massa karbon 0,4 g terjadi penurunan kadar MnO₂ menjadi 77,83%, dan pada massa karbon 0,6 g memiliki peningkatan kadar yang lebih tinggi dengan nilai 88,24%. Hal tersebut menunjukkan bahwa semakin banyak massa karbon, maka semakin banyak pula MnO₂ yang diserap. Namun berbeda pada massa karbon 0,2 dan 0,4 g. Perbedaan tersebut disebabkan oleh beberapa faktor seperti pengadukan, sehingga tidak optimal dalam mengadsorbsi MnO₂ Perbedaan kadar yang diperoleh bergantung pada kemampuan karbon dalam mengadsorpsi MnO₂ yang terbentuk dari reaksi reduksi KMnO4 oleh karbon aktif. Adapun senyawasenyawa lain yang terdeteksi oleh XRF yang diduga tidak ada dalam sampel disebabkan oleh data standar yang ada pada instrumen tersebut. Sehingga instrumen XRF perlu untuk dikalibrasi ulang untuk dapat memberikan data yang akurat.

4.5.1.2 Data XRD

Gambar 12. Spektrum XRD karbon aktif tanpa deposisi dan dengan deposisi MnO₂ (a) KATJ, (b) KATJ/MnO₂ 0,2 gram, (c) KATJ/MnO₂ 0,4 gram, dan (d) KATJ/MnO₂ 0,6 gram.

Hasil karakterisasi XRD menunjukkan pola difraksi yang sangat berbeda antara karbon aktif sebelum dan sesudah deposisi MnO₂ (Gambar 12). Difraktogram untuk sampel karbon sebelum deposisi MnO₂ menunjukkan adanya satu puncak lebar pada 20 yang dimulai dari 13,85° dan optimum pada 20,81° kemudian berakhir pada 29,88° yang merupakan karakteristik dari struktur amorf karbon tongkol jagung yang bersesuaian dengan hasil penelitian yang dilakukan oleh Nashrullah dan Darminto (2013). Setelah deposisi dengan massa karbon 0,2 g terbentuk 2 puncak baru pada 20 sekitar 37,28° dan 67,10° dengan ukuran partikel MnO₂ sekitar 7,4728 nm yang dihitung menggunakan persamaan *Debye Schereer*.

Massa karbon 0,4 g juga menunjukkan 2 puncak baru dengan masingmasing 20 36,93° dan 65° dengan ukuran partikel MnO_2 sekitar 15,6647 nm. Massa karbon yang lain 0,6 gram juga memberikan 2 puncak pada 20 yaitu 36,93° dan 64,95° dengan ukuran partikel MnO_2 sekitar 32,7674 nm. Kedua sudut yang terdapat pada ketiga pengaruh massa karbon tersebut mengindikasikan adanya MnO_2 dengan terbentuk 2 puncak baru pada 2 θ sekitar 37° dan 65° bersesuaian dengan hasil penelitian yang dilakukan oleh (Viscarini dkk., 2014).

4.5.1.3 Spektrum UV-Vis

Gambar 13. Spektrum UV-Vis larutan KMnO₄ dan filtrat hasil reduksi larutan KMnO₄ oleh KATJ 0,2 g/MnO₂; KATJ 0,4 g/MnO₂; dan KATJ 0,6 g/MnO₂

Hasil karakterisasi UV-Vis menunjukkan spektrum yang juga sangat jauh berbeda antara filtrat sebelum dan sesudah deposisi (Gambar 13). Sebelum deposisi, filtrat masih berupa larutan KMnO₄ yang belum tereduksi membentuk MnO₂ dengan karakteristik spektrum terdapat puncak serapan pada panjang gelombang 545,5 nm, 525,5 nm, 507,5 nm, 317 nm, dan 310 nm yang bersesuaian dengan hasil penelitian Jaganyi dkk (2013).

Pada proses deposisi ini karbon dicampur dengan KMnO₄, kemudian distirrer sampai warna larutan menjadi warna kuning kecoklatan, terjadi perubahan warna larutan menjadi kuning hingga kuning kecoklatan yang menunjukkan bahwa MnO₂ yang dihasilkan sebagian terdispersi ke dalam larutan membentuk sistem koloid, setelah itu disaring sehingga menghasilkan filtrat. Hal tersebut dikarenakan karena ukuran yang yang sangat kecil sehingga MnO₂ bisa lolos pada saat proses penyaringan. Proses terbentuknya MnO₂ dihasilkan dari proses tereduksinya KMnO₄ menjadi MnO₂. Pada penelitian ini, filtrat yang

dihasilkan berwarna coklat dimana larutan berbentuk koloid yang menandakan bahwa ada MnO_2 yang berada pada larutan tersebut. Ketiga variasi massa dalam spektrum tersebut menunjukkan pola yang sama yaitu mulai memberikan serapan pada panjang gelombang *visible* (400 nm – 600 nm) dan optimum pada daerah UV (205 nm – 215 nm). Semakin besar absorbansi maka semakin banyak MnO_2 yang terdispersi ke dalam larutan. Perbedaan intensitas ketiga puncak tersebut tidak jauh berbeda yang menunjukkan jumlah MnO_2 dalam larutan berada dalam jumlah yang sedikit. Hal tersebut disebabkan karena kadar MnO_2 yang banyak pada padatan karbon, hal tersebut dapat dilihat pada data XRF dengan menunjukkan kadar mangan sekitar 80 an %.

4.5.1.4 Pengukuran Kapasitansi Spesifik

Karakteristik pengukuran kapasitansi spesifik dilakukan dengan menggunakan metode voltammetri siklik dan pengujian elektroda dilakukan dengan laju *scan* 100 mV/s. Gambar 14 menunjukkan voltammogram dari elektroda pasta karbon sebelum dan sesudah deposisi.

Gambar 14. Voltammogram KATJ (a), KATJ 0,2 g/MnO₂ (b), KATJ 0,4 g/MnO₂ (c), dan KATJ 0,6 g/MnO₂ (d

Voltammogram dari elektroda pasta karbon sebelum dan sesudah deposisi menunjukkan bentuk kurva yang cukup identik walaupun sedikit berbeda pada kurva elektroda karbon tanpa deposisi. Bentuk kurva yang diperoleh dari hasil pengukuran dengan metode voltametri siklik memberikan gambaran besarnya nilai kapasitansi spesifik yang dihasilkan. Nilai kapasitansi spesifik dipengaruhi oleh arus *charge*, garis yang berada bidang atas kurva dan arus *discharge*, garis yang berada pada bidang bawah kurva seperti yang ditunjukkan pada Gambar 14. Nilai arus *charge* dan *discharge* dari elektroda digunakan untuk menghitung nilai kapasitansi spesifik menggunakan persamaan 7.

$$Cs = \frac{Ic - Id}{v x m}$$
(7)

Dimana, Cs = Nilai kapasitansi spesifik (F/g), Ic = arus *charge* (A), Id = arus, *discharge* (A), v = scan rate (V/s), m = massa elektroda karbon aktif (g).

Nilai kapasitansi spesifik yang diperoleh berdasarkan pengukuran dengan metode *cyclic voltammetry* mengalami peningkatan drastis setelah karbon aktif dideposisi dengan MnO₂. Peningkatan nilai kapasitansi disebabkan karena MnO₂ bersifat pseudokapasitif. Penyimpanan muatan MnO₂ sebagai material pseudokapasitif dalam larutan elektrolit yaitu didasarkan pada terjadinya reaksi redoks yang menyebabkan perubahan bilangan oksidasi Mn dari +4 menjadi +3. Adapun mekanisme akumulasi muatan berdasarkan proses adsorpsi kation elektrolit berupa ion H⁺ yang berasal dari elektrolit H₂SO₄ yang terjadi pada permukaan elektroda pasta karbon berdasarkan persamaan reaksi (Augustyn dkk., 2014):

$$MnO_2 + xH^+ + xe^- \rightarrow H_xMnO_2$$
 (2)

Nilai kapasitansi spesifik dari elektroda pasta karbon aktif sebelum dan sesudah deposisi ditunjukkan pada Tabel 5.

Elektroda Pasta Karbon	Laju scan (V/s)	Massa (g)	Ic (mA)	Id (mA)	Cs (mF/g)
KATJ	0,1	0,0615	2,48734. 10 ⁻⁵	-1,5881. 10 ⁻⁵	0,0066
KATJ 0,2 g/MnO ₂	0,1	0,0615	0,0248	-0,0898	18,6323
KATJ 0,4 g/MnO ₂	0,1	0,0615	0,00103	-0,0319	5,3540
KATJ 0,6 g/MnO ₂	0,1	0,0615	0,0256	-0,0245	8,1445

Tabel 5. Data *cyclic voltammetry* elektroda pasta karbon sebelum dan sesudah deposisi MnO₂ menggunakan massa KATJ yang berbeda

Keterangan: Ic = arus *charge* (A); : Id = arus *discharge* (A); Cs adalah kapasitansi spesifik (F/g)

Nilai kapasitansi spesifik paling tinggi yang dihasilkan oleh elektroda pasta karbon yaitu KATJ/MnO₂ 0,2 g dengan nilai kapasitansi spesifik sebesar 18,6323 mF/g. Selain itu, karbon aktif terdeposisi KATJ/MnO₂ 0,4 g dan KATJ/MnO₂ 0,6 g juga mengalami peningkatan dibandingkan sebelum deposisi dengan nilai kapasitansi spesifik hanya 0,0066 mF/g. Hal ini mengindikasikan bahwa deposisi MnO₂ pada permukaan karbon menyebabkan kemampuan penyimpanan elektroda meningkat sekitar 1000 kali lipat dari sebelumnya. Karbon dengan massa 0,2 g memiliki nilai kapasitansi spesifik yang lebih besar daripada karbon dengan massa 0,6 gram meskipun jumlah MnO₂ yang lebih banyak. Hal tersebut dapat disebabkan karena dengan banyaknya MnO₂ yang terdeposisi justru menutupi pori-pori sehingga proses adsorpsi ion oleh karbon menjadi lebih sedikit yang menyebabkan kapasitansinya menjadi berkurang.

4.5.2 Pengaruh konsentrasi KMnO₄

Proses deposisi MnO₂ dengan variasi konsentrasi KMnO₄ dengan variasi konsentrasi 0,025; 0,05 dan 0,1 M dengan massa karbon yang sama, memberikan

pengaruh terhadap MnO₂ yang terdeposisi kedalam karbon. Pengaruh tersebut dapat dilihat dengan adanya karakterisasi menggunakan XRD, XRF dan UV.

4.5.2.1 Data XRF

Data XRF dalam suatu sampel ditunjukkan dalam bentuk persentase kadar. Pembacaan dalam bentuk kadar diterjemahkan oleh detektor dari standar yang ada pada instrumen. Penelitian tersebut menunjukkan adanya persentase kadar dari MnO₂ yang diberikan dalam bentuk MnO. Terdapatnya MnO₂ dalam sampel dapat didukung dengan adanya pola spektrum XRD seperti yang terlihat pada gambar 15.

Tabel 6. Komponen senyawa oksida dalam KATJ sebelum dan setelah deposisi MnO₂ 0,025 M; 0,05 M dan 0,01 M

	Sebelum	Setelah deposisi (%)					
Senyawa	deposisi	KATJ/MnO ₂	KATJ/MnO ₂	KATJ/MnO ₂			
oksida	(%)	(KMnO ₄ 0,025 M)	(KMnO ₄ 0,05 M)	(KMnO ₄ 0,1 M)			
MnO	-	82,30	77,83	85,40			
K_2O	31,72	15,47	10,74	13,28			
SiO_2	31,88	-	-	-			
ZnO	7,60	0,501	0,243	0,120			
TiO_2	0,620	1,18	-	0,978			
CaO	15,32	-	-	-			
Nb_2O_5	0,043	-	0,0103	-			
Rb ₂ O	-	-	0,0085	-			
P_2O_5	10,17	0,55	0,33	0,202			
MgO	-	-	10,82	-			
Ga ₂ O ₃	-	-	0,0132	-			

Data menunjukkan kadar oksida sebelum dan sesudah deposisi. Sebelum deposisi, kadar SiO₂ memiliki kadar yang paling tinggi dari yang lainnya dengan kadar 31,88%. Sedangkan kadar MnO₂ belum terdapat dalam sampel KATJ.

Setelah deposisi kadar SiO₂ sudah tidak ada. Dan kadar MnO₂ memiliki kadar yang cukup tinggi. Untuk konsentrasi 0,025 M memiliki kadar 82,30 % kemudian konsentrasi KMnO₄ 0,05 M terjadi penurunan kadar MnO₂ menjadi 77,83%, dan konsentrasi KMnO₄ 0,1 M memiliki peningkatan yang lebih tinggi dengan kadar MnO₂ 85,40 %. Adapun pada konsentrasi 0,05 M terjadi penurunan yang kemungkinan disebabkan oleh beberapa faktor salah satunya adalah faktor pengadukan sehingga proses penyerapan MnO₂ yang tidak maksimal dan juga diantaranya masih ada MnO₂ yang menempel pada dinding tabung reaksi.. Penelitian ini menunjukkan kadar yang paling besar dengan konsentrasi paling tinggi yaitu 0,1 M. Hal tersebut disebabkan karena semakin tinggi konsentrasi KMnO₄ maka semakin banyak MnO₂ yang dihasilkan.

Gambar 15. Spektrum XRD karbon aktif tanpa deposisi dan dengan deposisi MnO₂(a) KATJ, (b) KATJ/MnO₂ 0,025 M gram, (c) KATJ/MnO₂ 0,05 M, dan (d) KATJ/MnO₂ 0,1M.

Data XRD menunjukkan pola difraksi yang sangat berbeda antara karbon aktif sebelum dan sesudah deposisi MnO₂ (Gambar 15). Difraktogram untuk sampel karbon sebelum deposisi MnO₂ menunjukkan adanya satu puncak lebar pada 20 20,81° yang merupakan karakteristik dari struktur amorf karbon aktif tongkol jagung. Setelah deposisi dengan variasi konsentrasi KMnO₄ yaitu 0,025 M menunjukkan adanya puncak baru yang terbentuk pada 20 36,96° dan 64,94° dengan ukuran partikel 10,9245 nm. Konsentrasi KMnO₄ 0,05 M juga menunjukkan adanya pembentukan 2 puncak pada 20 36,93° dan 65° dengan ukuran partikel 15,6647 nm. Konsentrasi KMnO₄ 0,01 M juga memberikan 2 puncak pada 20 38,46° dan 66,27° dengan ukuran partikel 46,1682 nm. Ketiga variasi konsentrasi tersebut mengindikasikan adanya MnO₂ dengan terbentuk 2 puncak baru pada 20 sekitar 37° dan 65° bersesuaian dengan hasil penelitian yang dilakukan oleh Viscarini dkk. (2014). Hal tersebut menandakan bahwa telah terjadi deposisi MnO₂ pada permukaan karbon aktif.

Gambar 16. Spektrum UV-Vis larutan KMnO₄ dan filtrat hasil reduksi larutan KMnO₄ dengan konsentrasi KATJ/ MnO₂ 0,025; 0,05; dan 0,1 M.

Hasil karakterisasi UV-Vis menunjukkan spektrum yang juga sangat jauh berbeda antara filtrat sebelum dan sesudah deposisi (Gambar 16). Sebelum deposisi, filtrat masih berupa larutan KMnO₄ yang belum tereduksi membentuk MnO₂ dengan kararteristik spektrum terdapat puncak serapan pada panjang gelombang 545,5 nm, 525,5 nm, 507,5 nm, 317 nm, dan 310 nm yang bersesuaian dengan hasil penelitian Jaganyi dkk. (2013). Pada spektrum tersebut merupakan karakterisasi larutan dengan variasi konsentrasi dari KMnO₄ masing-masing 0,025; 0,05; dan 0,1 M, . Filtrat yang dihasilkan berwarna coklat dimana larutan berbentuk koloid yang menandakan bahwa ada MnO₂ yang berada pada larutan tersebut. Ketiga variasi konsentrasi dalam spektrum tersebut menunjukkan pola yang sama yaitu mulai memberikan serapan pada panjang gelombang visible (400 nm- 600 nm) dan optimum pada daerah UV (205 nm - 215 nm). Semakin besar absorbansi maka semakin banyak MnO₂ yang terdispersi ke dalam larutan. Ketiga spektrum puncak tersebut menunjukkan bahwa tingginya intensitas serapan disebabkan karena tingginya konsentrasi pada KMnO₄. Pada konsentrasi 0,1 M memiliki puncak yang paling tinggi dan lebar. Hal tersebut menunjukkan bahwa semakin banyak MnO₂ yang terdispersi dalam larutan berada pada konsentrasi tertinggi yaitu 0,1 M.

4.5.2.4 Pengukuran Kapasitansi Spesifik

Karakteristik pengukuran kapasitansi spesifik dilakukan dengan menggunakan metode voltammetri siklik dan pengujian elektroda dilakukan dengan laju *scan* 100 mV/s. Gambar 17 menunjukkan voltammogram dari elektroda pasta karbon sebelum dan sesudah deposisi MnO₂.

Gambar 17. Voltammogram (a) KATJ, (b) KATJ/MnO₂ (KMnO₄ 0,02 M),(c) KAJ/MnO₂ (KMnO₄ 0,05 M), dan (d) KATJ/MnO₂ (KMnO₄ 0,08 M)

Voltammogram arus dan tegangan KATJ sebelum dan sesudah terdeposisi MnO₂. Pola siklik yang diperoleh antara KATJ sebelum dan sesudah deposisi sangat berbeda. Hal ini disebabkan karena keberadaan MnO₂ menyebabkan perubahan nilai arus dan tegangan saat pengukuran. Nilai kapasitansi spesifik yang diperoleh juga mengalami peningkatan drastis setelah karbon aktif dideposisi dengan MnO₂. Peningkatan nilai kapasitansi disebabkan karena MnO₂ bersifat pseudokapasitif. Nilai kapasitansi spesifik dari elektroda pasta karbon aktif sebelum dan sesudah deposisi ditunjukkan pada Tabel 7.

Tabel 7. Data *cyclic voltammetry* elektroda pasta karbon sebelum dan sesudah deposisi MnO₂ menggunakan konsentrasi KMnO₄ yang berbeda

Elektroda Pasta Karbon	Laju scan (V/s)	Massa (g)	Ic (mA)	Id (mA)	Cs (mF/g)
KATJ	0.1	0.0615	$2.48734.10^{-5}$	-1.58819, 10 ⁻⁵	0.0066
$KATJ/MnO_2$ (KMnO_10.025M)	0,1	0,058	0,406187	-0,22981	109,6552
$\frac{(KWIIO_4 \ 0,025WI)}{KATJ/MnO_2}$	0,1	0,0615	0,001036562	-0,031890312	5,3539
KATJ/MnO ₂ (KMnO ₄ 0,1 M)	0,1	0,01595	0,004819	-0,00462	5,91732

Keterangan: Ic = arus *charge* (A); Id = arus *discharge* (A); Cs adalah kapasitansi spesifik (F/g)

Nilai kapasitansi spesifik paling tinggi yang dihasilkan oleh elektroda pasta karbon yaitu KATJ/MnO₂ 0,025 M dengan nilai kapasitansi spesifik sebesar 109,6552 mF/g. Selain itu, karbon aktif terdeposisi KATJ/MnO₂ 0,05 M dan KATJ/MnO₂ 0,1 M juga mengalami peningkatan dibandingkan sebelum deposisi dengan nilai kapasitansi spesifik hanya sebesar 0,0066 mF/g. Hal ini menunjukkan bahwa deposisi MnO₂ pada permukaan karbon aktif dapat meningkatkan nilai kapasitansi spesifik. Nilai kapasitansi yang tinggi pada hasil deposisi dengan konsentrasi 0,025 M. Hal ini dapat disebabkan karena MnO₂ yang terdeposisi cukup banyak dengan ukuran partikel yang lebih kecil dibandingkan dengan ukuran partikel dari konsentrasi 0,05 M dan 0,1 M sehingga menimbulkan efek pseudokapasitansi yang cukup besar jika dibandingkan dengan konsentrasi lainnya.

4.5.3 Pengaruh Suhu

Selain variasi massa karbon, konsentrasi KMnO₄ dan pH yang berpengaruh juga variasi suhu yang berpengaruh pada proses deposisi. Pada penelitian ini variasi suhu yang digunakan yaitu 65 °C; 80 °C dan 95 °C. Hal tersebut dapat dilihat dengan adanya karakterisasi menggunakan XRD, XRF, UV dan CV.

4.5.3.1 Data XRF

Tabel 8. Komponen senyawa oksida dalam KATJ sebelum dan setelah deposisi MnO₂ 65 °C; 80 °C dan 95 °C

	KATJ	Se	etelah deposisi (9	%)
Senyawa	Sebelum	KATJ/MnO ₂	KATJ/MnO ₂	KATJ/MnO ₂
oksida	deposisi (%)	65 °C	80 °C	95 °C
MnO	-	86,85	79,13	73,44
K_2O	31,72	10,79	19,07	9,51
SiO_2	31,88	-	-	-
ZnO	7,60	0,770	0,525	0,526
TiO ₂	0,620	1,08		-
Co_3O_4	-	0,052	0,064	0,043
P_2O_5	10,17	0,448	1,17	0,237
Ga ₂ O ₃	-	-	0,0146	-
CS_2O	-	-	0,0033	-
Ι	-	-	0,0064	-

Data menunjukkan kadar oksida sebelum dan sesudah deposisi. Sebelum deposisi SiO₂ memiliki kadar yang paling tinggi dengan nilai 31,72%. Sedangkan MnO₂ belum terdapat dalam sampel KATJ. Setelah deposisi, kadar SiO₂ tidak terdapat dalam sampel yang dideposisi. Sedangkan kadar MnO₂ menunjukkan kadar yang cukup tinggi. Kadar MnO₂ pada suhu 65 °C yaitu 86,85%, pada suhu 80°C yaitu 79,13%. Dan pada suhu 95 °C yaitu 73,44%. Terjadinya peningkatan suhu menyebabkan terjadinya sedikit penurunan kadar. Hal tersebut kemungkinan disebabkan karena suhu yang tinggi pada saat distirrer menyebabkan terjadinya penguapan.

4.5.3.2 data XRD

Gambar 18. Spektrum XRD karbon aktif tanpa deposisi dan dengan deposisi MnO₂(a) KATJ, (b) KATJ/MnO₂ 65 °C, (c) KATJ/MnO₂ 80 °C, dan (d) KATJ/MnO₂ 95 °C.

Data XRD menunjukkan bahwa sebelum deposisi menunjukkan tidak terbentuknya puncak pada sudut 2θ; setelah deposisi dengan variasi suhu yaitu 65°C menunjukkan adanya 2 serapan pada sudut 36,94° dan 64,96° dengan ukuran partikel 12,1209 nm. Pada suhu 80°C juga menunjukkan adanya pembentukan 2 puncak dengan masing-masing sudut 36,94° dan 64,94° dengan ukuran partikel 8,4786 nm. Pada suhu 95°C memberikan 2 puncak dengan masing-masing sudut yaitu 36,96° dan 64,96° dengan ukuran partikel 15,7699 nm. Ketiga pengaruh suhu tersebut menunjukkan keberadaan adanya MnO₂ dengan terbentuk 2 puncak baru pada 2θ sekitar 37° dan 65° bersesuaian dengan hasil penelitian yang dilakukan oleh Viscarini dkk. (2014).

Gambar 19. Spektrum UV-Vis larutan KMnO₄ dan filtrat hasil reduksi larutan KMnO₄ oleh KATJ pada suhu 65 °C; 80°C; dan 95°C.

Hasil karakterisasi UV-Vis menunjukkan spektrum yang juga sangat jauh berbeda antara filtrat sebelum dan sesudah deposisi (Gambar 22). Sebelum deposisi, filtrat masih berupa larutan KMnO₄ yang belum tereduksi membentuk MnO₂ dengan kararteristik spektrum terdapat puncak serapan pada panjang gelombang 545,5 nm, 525,5 nm, 507,5 nm, 317 nm, dan 310 nm yang bersesuaian dengan hasil penelitian Jaganyi dkk. (2013). Pada spektrum tersebut merupakan karakterisasi larutan dengan suhu yaitu 65 °C; 80°C; dan 95°C. Filtrat yang dihasilkan berwarna coklat dimana larutan berbentuk koloid yang menandakan bahwa ada MnO₂ yang berada pada larutan tersebut. Ketiga variasi konsentrasi dalam spektrum tersebut menunjukkan pola yang sama yaitu mulai memberikan serapan pada panjang gelombang *visible* (400 nm– 600 nm) dan optimum pada daerah UV (205 nm – 215 nm). Semakin besar absorbasi maka semakin banyak MnO₂ yang terdispersi ke dalam larutan. Ketiga spektrum puncak tersebut menunjukkan bahwa semakin tinggi suhu maka semakin tingginya intensitas serapan.

4.5.3.4 Pengukuran Kapasitansi Spesifik

Gambar 19 merupakan voltammogram arus dan tegangan KATJ sebelum dan sesudah terdeposisi MnO₂. Pola siklik yang diperoleh antara KATJ sebelum dan sesudah deposisi sangat berbeda. Hal ini disebabkan karena keberadaan MnO₂ menyebabkan perubahan nilai arus dan tegangan saat pengukuran. Nilai kapasitansi spesifik yang diperoleh juga mengalami peningkatan drastis setelah karbon aktif dideposisi dengan MnO₂. Peningkatan nilai kapasitansi disebabkan karena MnO₂ bersifat pseudokapasitif.

Gambar 20. Voltamogram KATJ (a), KATJ/MnO₂ (65 °C) (b), KATJ/MnO₂ (80 °C) (c), dan KATJ/MnO₂ (95 °C) (d)

Tabel 9 menunjukkan nilai kapasitansi spesifik KATJ sebelum dan sesudah deposisi MnO₂ yang dilakukan pada suhu yang berbeda. Nilai kapasitansi spesifik untuk KATJ sebelum deposisi MnO₂ sebesar 0,0066 mF. Sedangkan untuk sampel karbon setelah deposisi pada suhu 65 °C, 80 °C, dan 95 °C diperoleh nilai kapasitansi spesifik berturut-turut sebesar 5,5919 mF, 58,0101 mF dan 102,363 mF. Hal ini mengindikasikan bahwa deposisi MnO₂ pada permukaan karbon menyebabkan kemampuan penyimpanan elektroda meningkat sekitar 8000 kali lipat dari sebelumnya. Kapasitansi tertinggi terdapat pada karbon yang terdeposisi pada suhu 95 °C. Akan tetapi nilai kapasitansi yang diperoleh tidak terlalu jauh berbeda. Hal ini dapat disebabkan karena MnO₂ yang terdeposisi cukup banyak sehingga menimbulkan efek pseudokapasitansi yang cukup besar jika dibandingkan dengan suhu lainnya.

Tabel 9. Data *cyclic voltammetry* elektroda pasta karbon sebelum dan sesudah deposisi MnO₂ pada suhu yang berbeda

Elektroda Pasta	Laju	Massa	Ic	Id	Cs
Karbon	scan	(g)	(mA)	(mA)	(mF/g)
	(V/s)				
KATJ	0,1	0,0615	2,48734. 10 ⁻⁵	-1,58819. 10 ⁻⁵	0,0066
$KATJ/MnO_2 (65 °C)$	0,1	0,01665	0,004901	-0,00441	5,5919
0.7					
$KATJ/MnO_2 (80 \ ^{\circ}C)$	0,1	0,01705	0,058857	-0,04005	58,0101
$V \wedge T I / M_{TO} = (0.5 {}^{\circ}C)$	0.1	0.01825	0 05/857	0 13106	102 363
$KATJ/WINO_2 (95 °C)$	0,1	0,01823	0,034637	-0,13190	102,305

Keterangan: Ic = arus *charge* (A); : Id = arus *discharge* (A); Cs adalah kapasitansi spesifik (F/g)

4.5.4 Pengaruh pH

Deposisi MnO₂ dengan variasi pH dengan massa karbon, konsentrasi dan suhu yang sama juga memberikan pengaruh yang besar terhadap proses deposisi. Pada penelitian ini digunakan variasi pH yaitu dalam kondisi asam, basa dan netral.

4.5.4.1 Data XRF

	Sebelum	Setelah deposisi (%)				
Senyawa	deposisi (%)	asam	basa	netral		
oksida						
MnO	-	48,53	95,88	73,44		
K_2O	31,72		1,27	9,51		
Cl	-	45,45	-	-		
SiO ₂	31,88	5,38	-	-		
ZnO	7,60	0,0990	0,831	0,526		
CaO	15,32	0,53	0,50	-		
TiO ₂	0,620	-	1,12	-		
Co_3O_4	-	-	0,052	0,043		
Nb ₂ O ₅	0,043	-	-	0,0065		
P_2O_5	10,17	-	0,336	0,237		
SrO	0,039	-	0,0133	-		

Tabel 10. Komponen senyawa oksida dalam KATJ sebelum dan setelah deposisi MnO₂ asam; basa dan netral

Sebelum deposisi kadar SiO₂ memiliki kadar paling tinggi yaitu 31,88%. Sedangkan kadar MnO₂ belum terdapat dalam sampel. Setelah deposisi kadar SiO₂ sudah tidak terdapat dalam sampel. Sedangkan kadar MnO₂ sudah tedapat dalam sampel. Dalam suasana asam dengan kadar 48,53%, peningkatan kadar paling tinggi dalam suasana basa dengan kadar 95,88%. Dan pada suasana netral menunjukkan kadar 73,44%. Penelitian ini menunjukkan kadar yang paling besar yang paling tinggi diantara ketiganya, yaitu dalam suasana basa. Suasana basa terjadi peningkatan kadar yang cukup signifikan dengan nilai 95,88%. (Meng dkk., 2013; Cotton dan Wilkinson, 1989) menyatakan bahwa pada pH tinggi, produk utama yang terbentuk adalah MnO₂ sedangkan pada pH rendah produk utamanya adalah Mn²⁺.

4.5.4.2 data XRD

Gambar 21. Spektrum XRD karbon aktif tanpa deposisi dan dengan deposisi MnO₂ (a) KATJ, (b) KATJ/MnO₂ asam, (c) KATJ/MnO₂ basa, dan (d) KATJ/MnO₂ netral.

Data XRD menunjukkan pola difraksi yang sangat berbeda antara karbon aktif sebelum dan sesudah deposisi MnO₂ (Gambar 15). Difraktogram untuk sampel karbon sebelum deposisi MnO₂ menunjukkan adanya satu puncak lebar pada 20 20,81° yang merupakan karakteristik dari struktur amorf karbon aktif tongkol jagung. Setelah deposisi dengan variasi pH yaitu asam menunjukkan adanya 2 puncak baru pada 20 44,65° dan 64,94° dengan ukuran partikel 15,8439 nm. Suasana basa memberikan 2 puncak baru pada 20 36,97° dan 64,97° dengan ukuran partikel 13,0726 nm.

Pada suasana netral juga menunjukkan adanya pembentukan 2 puncak baru pada 20 36,96° dan 64,96° dengan ukuran partikel 15,7699 nm. Kedua puncak dari variasi pH tersebut menunjukkan keberadaan adanya MnO_2 dengan terbentuk 2 puncak baru pada 2 θ sekitar 37° dan 65° bersesuaian dengan hasil penelitian yang dilakukan oleh Viscarini dkk. (2014).

Ketiga pengaruh pH tersebut dapat disimpulkan bahwa telah terjadi deposisi MnO₂ pada permukaan karbon aktif.

4.5.4.3 Spektrum UV-Vis

Gambar 22. Spektrum UV-Vis larutan KMnO₄ dan filtrat hasil reduksi larutan KMnO₄ oleh KATJ pada suasana asam, basa, dan netral

Menurut Zakir dkk (2005), reduksi TcO₄⁻ (Tc terletak segolongan dengan Mn) merupakan fungsi pH. Pada pH lebih dari 3, produk dominan yang terbentuk adalah fraksi Tc(IV) koloidal dalam bentuk senyawa TcO2 sedangkan pada pH kurang dari 3 produk yang dominan terbentuk adalah fraksi Tc(IV) polimerik dalam bentuk ion Tc₃O₄⁴⁺ yang merupakan prekursor dari koloid TcO₂.nH₂O yang dapat diperoleh dengan meningkatkan pH. Sehingga, semakin tinggi pH maka semakin banyak MnO₂ koloidal yang dihasilkan dan begitupun sebaliknya. Dalam penelitian ini, absorbansi tertinggi terjadi pada basa suasana yang mengindikasikan MnO₂ yang terdispersi banyak. Sedangkan spesi terlarut dalam suasana asam yang ditawarkan berupa ion $Mn_3O_4^{4+}$ (Mn(IV) polimerik). Hal ini terbukti dengan terbentuknya MnO₂ saat pH filtrat ditingkatkan melalui penambahan NaOH seperti ditunjukkan pada Gambar 23.

Gambar 23. Filtrat hasil deposisi MnO₂ dalam suasana asam sebelum dan sesudah penambahan NaOH

4.5.4.4 Pengukuran Kapasitansi Spesifik

Karakteristik pengukuran kapasitansi spesifik dilakukan dengan menggunakan metode voltammetri siklik dan pengujian elektroda dilakukan dengan laju *scan* 100 mV/s. Gambar 20 menunjukkan voltammogram dari elektroda pasta karbon sebelum dan sesudah modifikasi.

Gambar 24. Voltammogram KATJ (a), KATJ/MnO₂ (asam) (b), KATJ/MnO₂ (basa) (c), dan KATJMnO₂ (netral) (d)

Voltammogram arus dan tegangan KATJ sebelum dan sesudah terdeposisi MnO₂. Pola siklik yang diperoleh antara KATJsebelum dan sesudah deposisi sangat berbeda. Hal ini disebabkan karena keberadaan MnO₂ menyebabkan perubahan nilai arus dan tegangan saat pengukuran. Nilai kapasitansi spesifik yang diperoleh juga mengalami peningkatan drastis setelah karbon aktif dideposisi dengan MnO₂. Peningkatan nilai kapasitansi disebabkan karena MnO₂ bersifat pseudokapasitif.

Nilai kapasitansi spesifik dari elektroda pasta karbon aktif sebelum dan sesudah deposisi ditunjukkan pada Tabel 11.

Tabel 11. Data *cyclic voltammetry* elektroda pasta karbon sebelum dan sesudah deposisi MnO₂ pada suasana yang berbeda

Elektroda Pasta karbon	Laju scan (V/s)	Massa (g)	Ic (mA)	Id (mA)	Cs (mF/g)
KATJ	0,1	0,0615	2,48734. 10-5	-1,58819. 10 ⁻⁵	0,0066
KATJ/MnO ₂ (asam)	0,1	0,0156	0,029666	-0,03394	40,7754
KATJ/MnO2 (basa)	0,1	0,0155	0,002219	-0,00421	4,1456
KATJ/MnO ₂ (netral)	0,1	0,01825	0,054857	-0,13196	102,363

Keterangan: Ic = arus *charge* (A); : Id = arus *discharge* (A); Cs adalah kapasitansi spesifik (F/g)

Nilai kapasitansi spesifik paling tinggi yang dihasilkan oleh elektroda pasta karbon yaitu KATJ/MnO₂ dala suasana netral dengan nilai kapasitansi spesifik sebesar 102,363 mF/g. Selain itu, karbon aktif terdeposisi KATJ/MnO₂ asam dengan nilai kapasitansi 40,7754 mF/g dan KATJ/MnO₂ basa dengan nilai kapasitansi 4,1456 mF/g juga mengalami peningkatan dibandingkan sebelum deposisi dengan nilai kapasitansi spesifik hanya sebesar 0,0066 mF/g. Nilai kapasitansi yang tinggi pada hasil deposisi dalam suasana netral. Hal tersebut dapat disebabkan karena dengan banyaknya MnO₂ yang terdeposisi justru menutupi pori-pori sehingga proses adsorpsi ion oleh karbon menjadi lebih sedikit yang menyebabkan kapasitansinya menjadi berkurang.

BAB V

KESIMPULAN DAN SARAN

5.1 Kesimpulan

5.1 Kesimpulan

Kesimpulan dari hasil penelitian yang diperoleh adalah sebagai berikut:

- massa karbon aktif, konsentrasi KMnO₄, suhu, dan pH mempengaruhi jumlah MnO₂ yang terdeposisi pada permukaan KATJ. Agar MnO₂ yang terdeposisi maksimum, proses deposisi dilakukan dengan cara mereaksikan 0,6 gram KATJ dan KMnO₄ 0,025 M pada suhu 95 °C dalam suasana netral, dan
- deposisi MnO₂ dapat meningkatkan nilai kapasitansi spesifik karbon aktif tongkol jagung hingga 15000 kali lipat dari sebelumnya.

5.2 Saran

Adapun saran untuk penelitian selanjutnya yaitu :

- perlu dilakukan studi lebih lanjut mengenai cara pembuatan elektroda karbon serta jenis dan pengaruh konsentrasi elektrolit dalam penentuan kapasitansi spesifik karbon aktif.
- 2. untuk peneliti selanjutnya, sebaiknya digunakan metode lain yang lebih akurat dalam pengukuran nilai kapasitansi spesifiknya, dan
- untuk peneliti selanjutnya, sebaiknya digunakan metode sentrifugasi untuk memisahkan karbon dengan filtrat agar MnO₂ yang terbentuk tidak lolos ke larutan.

DAFTAR PUSTAKA

- Alfiany, H., Bahri, S., Nurakhirawati, 2013, Kajian Penggunaan Arang Aktif Tongkol Jagung sebagai Adsorben Logam Pb dengan Beberapa Aktivator Asam, Jurnal Natural Science, 2 (3), 75-86.
- Amelia, R., Harlanto, P., dan Purwanto., 2013, Pembuatan dan Karaktristik Katalisis Karbon Aktif Tersulfonasi sebagai Katalisis Ramah Lingkungan pada Proses Hidrolisis Biomassa, Jurnal Teknologi Kimia dan Industri, 2 (4), 145-156.
- Andhika, R., 2015, Elektrodeposisi Logam Cu Pada Permukaan Karbon Aktif Sekam Padi Bebas Silika dengan Iradiasi Ultrasonik, Skripsi tidak diterbitkan, Jurusan Kimia Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Hasanuddin, Makassar.
- Antonucci, P.L., and Antonucci, V., 2011, *Electrochemical Energy Storage*, In Tech China, Shanghai.
- Ariyanto, T., Prasetyo, I., dan Rochmadi, 2012, Pengaruh Struktur Pori terhadap Kapasitansi Elektroda Superkapasitor yang Dibuat dari Karbon Nanopori, Reaktor, Vol. 14 (1), 25-32.
- Augustyn, V., Simon, P., dan Dunn, B., 2014, Pseudocapacitive oxide materials for high-rate electrochemical energy storage, *Open Archive Toulouse Archive Ouverte, Energy & Environmental Science*, 7; 1597-1614
- Badan Pusat Statistik dan Direktorat Jendral Tanaman Pangan, 2012, Statistika Indonesia, Jakarta.
- Bakri, F., 2014, Pembuatan dan Karakterisasi Hidrogel Polimer Konduktif Berbasis Arang Aktif sebagai Bahan Superkapasitor, Skripsi tidak diterbitkan, Jurusan Fisika Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Hasanuddin, Makassar.
- Chacon-Patino, M. L., Blanco-Tirado, C., Hinesfroza, J. P., and Combariza, M. Y., 2013, Biocomposite of Nanodstructure MnO₂ and Fique Fibers for Efficient Dye Degradations Green Chemistry, DOI: 10.1039C36C40911B.
- Chen, M., Kang, X., Wumaier, T., Dou, J., Gao, B., Han, Y., Xu, G., Liu, Z., Zhang, L., 2013, Preparation of activated carbon from cotton stalk and its application in supercapacitor, *J Solid State Electrochem*, **17**; 1005–1012.
- Cotton, F. A., dan Wilkinson, G., 1989, Kimia Anorganik Dasar, UI-Press, Jakarta.
- Danarto, Y.C., dan Samun, T., 2008, Pengaruh Aktivasi Karbon Dari Sekam Padi Pada Proses Adsorpsi Logam Cr(VI), *Ekuilibrium*, **7**(1): 13–6.
- Daud, Wan, W.M.A., Wan, W.S., Zaki, M., 2000, The Effects of Carbonization Temperature on Pore Development in Palm Shell Gased Activated Carbon, *Carbon*, 38, 1925-1932.
- Fauziyah, R., Zakir, M., dan Maming., 2015, Elektrodeposisi Logam Pb Pada Permukaan Karbon Aktif Sekam Padi Bebas Silika Dengan Iradiasi Ultrasonik, Skripsi diterbitkan, UniversitasHasanuddin, Makassar.
- Fachry, A.R., Astuti, P., Puspitasari, T.G., 2013, Pembuatan Bietanol dari Limbah Tongkol jagung dengan Variasi Konsentrasi, Asam klorida dan Waktu Fermentasi, Jurnal Teknik Kimia, **19**(1): 60-69.
- Fitriana, F.N., 2014, Sintesis dan Karakterisasi Superkapasitor berbasis Nanokomposit TiO₂ /C, Skripsi tidak diterbitkan, Jurusan Fisika Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Negeri Malang, Malang.
- Frackowiak, E., dan Beguin, F., 2001. Carbon materials for the electrochemical storage of energi in capacitors, *Carbon*, **39**(1): 937-950.
- Halper M.S., and Ellenbogen, J.C., 2006. *Supercapacitors: A Brief Overview*. Virginia: MITRE Nanosystems Group.
- Herniyanti, S., Taer, E., dan Sugianto., 2014, Pengaruh Aktivasi Karbon Dioksida pada Produksi Karbon Aktif Monolit dari Kayu Karet, *JOM FMIPA*, **1** (2), 205-210.
- Jaganyi, D., Altaf, M., dan Wekesa, I., 2013, Synthesis and Characterization of Whisker-Shaped MnO₂ Nanostructure at Room Temperature, *Appl Nanosci*, 3: 329-333.
- Jayalakshmi, M., dan Balasubramanian, K., 2008, Simple Capacitors to Supercapacitors An Overview, *Int. J. Electrochem. Sci*, **3**; 1196–1217.
- Juliandini, F., dan Trihadiningrum, Y., 2008, Uji Kemampuan Karbon Aktif dari Limbah Kayu dalam Sampah Kota untuk Penyisihan Fenol, *Prosiding* Seminar Nasional Manajemen Teknologi VII, D2-1-2-11.
- Labanni, A., Zakir, M. dan Maming, 2015, Sintesis dan Karakterisasi Karbon Nanopori Ampas Tebu (*Saccharum officinarum*) dengan Aktivator ZnCl₂ melalui Iradiasi Ultrasonik sebagai Bahan Penyimpan Energi Elektrokimia, *Indo. Chim. Acta*, **8** (1), 1-9
- Liu, Y., Hu, Z., Xu, K., Zheng, X., Gao, Q., 2008, Surface Modification and Performance of Activated Carbon Electrode Material, *Acta Phys. Chim. Sinica*, 24 (7), 1143-1148.

- Lorenz, K.J., Kulp, K., 1991, *Handbook of Cereal Science and Technology*, Marcel Dekker, New York.
- Lumempouw, L.I., Edi,S., dan Jessy, J.E.P., 2012, Aktivitas Anti UV-B Ekstrak Fenolik dari Tongkol Jagung (Zea mays L.), Jurnal Mipa Unsrat Online, **1** (1), 1-4.
- Meng, F., Yan, X., Zhu, Y., dan Si, P., 2013, Controlable synthesis of MnO2/polyaniline nanocomposite and its electrochemical capasitive property, Nanoscale Research Letter, 8; 1-8.
- Miller, J.R., dan Simon, P., 2008, Electrochemical Capacitors for Energy Management, Open Archive Toulouse Archive Ouverte, Science Magazine, 321; 651-652.
- Miller, J.R., dan Burke, A.F., 2008, Electrochemical Capacitors: Challenges and Opportunities for Real-World Applications, The Electrochemical Society Interface Spring, 53-57.
- Moon, S. A., Salunke, B. P., Alkotaini, B., Sethiyamoonthi, E., Kim, B. S., 2014, Biological Synthesis of Manganese Dioxide Nanoparticles by Kalopanax Pictus Plant Extract, *The Institution of Engineering and Technology*, ISSN 1751-8741, 1-6.
- Nashrullah, M., dan Darminto, 2013, Analisa Fasa dan Lebar Celah Pita Energi Karbon pada Hasil Pemanasan Tempurung Kelapa, *Jurnal Seni dan Sains Pomits*, 1-5.
- Nugroho, M.A. 2011. Rancang Bangun Sistem Sumber Daya Tag Aktif RFID Berbasis Tenaga Surya dengan Superkapasitor sebagai Media Penyimpanan Energi. Jakarta: Universitas Indonesia
- Patake, V.D., Patake, C.D., Joo, O.S., 2009, Electrodeposited ruthenium oxide thin films for supercapacitor: Effect of surface treatments, *Applied Surface Science*, 255; 4192–4196.
- Pinero, I.R., Leroux, F., Beguin, F., 2006, A High-Performance Carbon for Supercapacitors Obtained by Carbonization of a Seaweed Biopolymer, Adv. Mater, 18; 1877–1882.
- Prabunathan, P., Sethuraman, K., Alagar, M., 2014, MnO₂-doped, polyaniline grafted rice husk ash nanocomposites and their electrochemical capacitor applications, *Royal Society of Chemistry*, **4**; 47726.
- Prasetyo, Y., Nasrudin, H., 2013, Penentuan Konsentrasi ZnCl₂ Pada Proses Pembuatan karbon Aktif Tongkol Jagung dan Penurunan Konsentrasi Surfaktan Linier Alkyl Benzene Suphonate (LAS), Unesa Journal of Chemistry, 2 (3), 231-235.

- Qu, W.H., Xu, Y.Y., Lu, A.H., Zhang, X.Q., Li,W.C., 2015, Converting Biowaste Corncob Residue Into High Value Added Porous Carbon for Supercapacitor Electrodes, *Bioresource Technology*, ISSN, 0960-8524.
- Ramdja, A.F., Halim, M., Handi, J., 2008, Pembuatan Karbon Aktif dari Pelepah Kelapa (Cocus nucifera), *J. Tek.Kim*, **15** (2), 1-8.
- Rahayu, A.N.R., Adhitiyawarman, 2014, Pemanfaatan Tongkol Jagung sebagai Adsorben Besi pada Air Tanah, *JKK*, **3** (3), 7-13.
- Ramli, T.A, Zakir, M., dan Ramang, M., 2015, Sintesis Dan Karakterisasi Karbon Nanopori Sekam Padi (Oryza Sativa) Melalui Iradiasi Ultrasonik Dengan Aktivator KOH Sebagai Bahan Kapasitor Elektrokimia, Skripsi diterbitkan, UniversitasHasanuddin, Makassar.
- Richana, N., Lestina, P., Irawadi, T.T., 2004, Karakterisasi Lignoselulosa Xylan dari limbah Tanaman Pangan dan Pemanfaatannya untuk Pertumbuhan Bakteri, RXA III-5 Penghasil Xilanase, J. Penelitian Pertanian, 23; 171-176.
- Rosi, M., Iskandar, F., Abdullah, M. dan Khairurrijal, 2013, Sintesis Nanopori Karbon dengan Variasi Jumlah NaOH dan Aplikasinya sebagai Superkapasitor, Seminar Nasional Material, Institut Teknologi Bandung, Bandung.
- Sekine, T., Narushima, H., Suzuki, T., Takayama, T., Kudo, H., Lin, M., Katsumura, Y., 2004, Technetium(IV) oxide colloids produced by radiolytic reactions in aqueous pertechnetate solution, *Colloids and Surfaces A: Physicochem. Eng. Aspects*, 249; 105–109
- Sudrajat, R. dan Pari, G. 2011. Arang aktif: Teknologi pengolahan dan masa depannya. Jakarta: Badan Penelitian dan Pengembangan Kehutanan.
- Sulistyawati, S., 2008, Modifikasi Tongkol Jagung sebagai Adsorben Logam Berat Pb(II), Skripsi diterbitkan, Institut Pertanian Bogor, Bogor.
- Shukla, A.K., S. Sampath, S., and Vijayoman, K. 2000. Electrochemical Supercapasitor : Energy Storage Beyond Batteries, Current Science, 79 (12), 1-6.
- Su, D.S., and Schlog, R., 2010, Nanostructured Carbon and Carbon Nanocomposites for Electrochemical Energy Storage Applications, *ChemSusChem*, 3; 136-168.
- Sudrajat, R. dan Pari, G. 2011. Arang aktif: Teknologi pengolahan dan masa depannya. Jakarta: Badan Penelitian dan Pengembangan Kehutanan.

- Surest, A.H., Kasih, J.A.F. dan Wisanti, A., 2008, Pengaruh Suhu, Konsentrasi Zat Aktivator dan Waktu Aktivasi Terhadap Daya Serap Karbon Aktif dari Tempurung Kemiri, *J. Tek. Kim.*, **15** (2): 17-21.
- Suryani, A.M., 2009, *Pemanfaatan Tongkol Jagung untuk Pembuatan Arang Aktif* sebagai Adsorben Pemurnian Minyak Goreng Bekas, Skripsi diterbitkan, Departemen Kimia, Institut Pertanian Bogor, Bogor.
- Tanaka, K., Aoki, H., Ago, H., Yamake, T. and Okahara, K., 1997, Interlayer Interaction of Two Graphene Sheets as A Model of Double Layer Carbon Nanotubes, *Carbon*, 35 (1); 121-125.
- Viscarini, V.P., Rokhima, N., Yuwana, M., dan Setyawan, H., 2014, Sintesa Partikel MnO2 dengan Teknik Elektrokimia dalam Sel Membran, *Jurnal Teknik Pomits*, **2** (1): 1-5.
- Vytras, K., Svancara, I. and Metelka, R., 2009, Carbon Paste Electrodes in Electroanalytical Chemistry, J. Serb. Chem. Soc., **74** (10), 1021-1033.
- Wachid, M.R. dan Setiarso, P., 2014, Pembuatan Elektroda Pasta Karbon Termodifikasi Bentonit untuk Analisis Ion Logam Tembaga(II) secara Cyclic Voltammetry Stripping, Prosiding Seminar Nasional Kimia, Universitas Negeri Surabaya, Surabaya, 20 September.
- Winter, M. and Brodd, R.J., 2004, What Are Batteries, Fuel Cells and Supercapacitors?, *Chem. Rev.*, **104** (10), 4245-4269.
- Wungkana, I., Suryanto, E., Momuat, L., 2013, Aktivitas Antioksidan dan Tabir Surya Fraksi Fenolik dari Limbah Tongkol Jagung (Zea mays L.), Jurnal Ilmiah Farmasi Unsrat, 2 (4), 149-155.
- Xing, L., Cui, C. M, C., Xue, X., 2011, Facile synthesis of α-MnO₂/graphene nanocomposites and their high performance as lithium-ion battery anode, *Material letter*, Vol 65, 2104-2106.
- Zakir, M., 2013, Ultrasound-assisted adsorbtion of lead (II) and Copper (II) ions on rice husk activated carbon, Proceeding of The International Conference on Quality in Research, Yogyakarta, 25-28 Juni 2013.
- Zakir, M., Maming, Raya, I., Karim, A. dan Santi, 2012, Pemanfaatan Energi Gelombang Ultrasonik dalam Adsorpsi Ion Logam Berat Cu(II) pada Biosorben Karbon Aktif dari Sekam Padi, *Indo. Chim. Acta*, **5** (2), 1-9.
- Zakir, M., Sekine, T., Takayama, T., Kudo, H., Lin, M. and Katsumura, Y., 2005, Technetium(IV) Oxide Colloids and The Precursor Produced by Bremsstrahlung Irradiation of Aqueous Pertechnetate Solution, J. Nucl. Radiochem. Sci., 6 (3), 243-247.

- Zhang, X., Sun, X., Zhang, H., Zhang, D., Ma, Y., 2012, Development of redox deposition of birnessite-type MnO2 on activated carbon as highperformance electrode for hybrid supercapacitors, *Materials Chemistry and Physics*, 137, 290-296.
- Zhang, Y., Feng, H., Wu, X., Wang. L., Zhang, A., Xia, T., Dong, H., Li, X., Zhang, L., 2009, Progress of Electrochemical Capacitor Electrode Materials : A Review, *Int. J. Hydrogen Energy*, **34**, 4889-4899.
- Zhu, Z., Hu, H., Li, W., and Zhang, X., 2007, Resorcinol Formaldehyde Based Porous Carbon as an Electrode Material for Supercapacitors, *Carbon*, vol 45, 160-165.

LAMPIRAN

Lampiran 1. Skema Prosedur Kerja

1. Skema Kerja Preparasi Sampel

Tongkol Jagung

- Dipotong-potong menjadi bagian-bagian kecil
- Dicuci dengan air mengalir sampai bersih
- Dikeringkan di bawah sinar matahari

Tongkol jagung bersih dan kering

2. Skema Kerja Karbonisasi

Tongkol jagung bersih dan kering

- Dimasukkan kedalam cawan porselen
- Dikarbonisasi pada tanur selama 1 jam pada suhu 400 $^{\rm o}{\rm C}$
- Didinginkan dalam desikator, digerus, dan diayak dengan pengayak 100 mesh

Karbon tongkol jagung

3. Skema Kerja Aktivasi

Karbo	n tongkol jagung
	 Ditambahkan masing-masing aktivator ZnCl₂ 10% dengan perbandingan volume ZnCl₂ : massa karbon (10 :1) Ditutup rapat menggunakan aluminium foil Didiamkan selama 24 jam Dicuci dengan akuades hingga pH netral Dikeringkan di dalam oven pada suhu 110 °C Dibakar di dalam tanur pada suhu 350 °C selama 1 jam
Karbon akti	if teraktivasi

4. Skema Kerja Penentuan Luas Permukaan

ka	arbon al	tif tongl	kol jagung						
		-	Sebanyak 0,3 gr	am dimasukka	an ke da	alam Erle	nmeyer		
		-	Ditambahkan 50	Ditambahkan 50 mL larutan metilen biru 300 ppm.					
		_	Diaduk dengan magnetik stirrer selama 30 menit, la disaring.						
		_	Filtrat diukur a maksimum deng	bsorbannya p gan spektrofoto	ada pa ometer	njang gel UV-Vis.	lombang		
		_	Larutan stand konsentrasi 1;	ar metilen 2;4 dan 8 pj	biru pm	dibuat	dengan		
	D	ata							

5. Deposisi redoks nanopartikel MnO₂ pada Permukaan Karbon Aktif Tongkol Jagung

5.1 Pengaruh Massa Karbon Aktif

5.2 Pengaruh Konsentrasi KMnO₄

5.3 Pengaruh Suhu

5.4 Pengaruh pH

6. Skema Kerja Pembuatan Elektroda Pasta Karbon

7. Skema Kerja Pengukuran Kapasitansi Spesifik

Lampiran 2. Perhitungan Luas Permukaan Karbon Aktif

sampel	Absorbansi	Akhir	Awal	Volume	Massa	Xm	S (m ² /g)
	(A)	(ppm)	(ppm)	Larutan	Karbon	(mg/g)	
		(Ce)	(Co)	(L)	(g)		
Tanpa	0,350	48,628	300	0,05 L	0,3	41,8953	155,0244
aktivasi							
Setelah	0,327	18,562	300	0,05 L	0,3	46,9063	173,5665
aktivasi							

 $X_{m} = \frac{(C_{O}-C_{e}) \times V \text{ Larutan (L)}}{\text{Massa Karbon Aktif (g)}}$

$$S = \frac{X_m \times N \times a}{Mr}$$

1. Luas Permukaan Karbon Aktif Tongkol Jagung sebelum Aktivasi

y = 0,153x + 0,3128
0,350 = 0,153x + 0,3128
x = Ce = 0,24314 ppm x fp 200x = 48,628 ppm
A = 0,350 Ce = 48,628 ppm N = 6,02 x 10²³ mol⁻¹
Co = 300 ppm g = 0,3 gram a = 197 x 10⁻²⁰ m²
Mr = 320,5 g/mol
X_m =
$$\frac{(C_0 - C_e) x V}{g}$$

= $\frac{(300-48,62) 0,05 L}{0,3 g}$
= 41,8953 mg/g.
S = $\frac{X_m x N x a}{Mr}$

$$=\frac{41,8953\frac{\text{mg}}{\text{g}} \times 6,02 \times 10^{23} \text{ mol}^{-1} \times 197 \times 10^{-20} \text{ m}^2}{320,5 \text{ g/mol}}$$

= 155,0244 m²/g.

2. Luas Permukaan Karbon Aktif Tongkol Jagung setelah Aktivasi

$$y = 0,153x + 0,3128$$

$$0,327 = 0,153x + 0,3128$$

$$x = Ce = 0,0928 \text{ ppm x fp } 200x = 48,628 \text{ ppm}$$

A = 0,327	Ce = 18,562 ppm	$N = 6,02 \text{ x } 10^{23} \text{ mol}^{-1}$
Co = 300 ppm	g = 0.3 gram	$a = 197 \text{ x } 10^{-20} \text{ m}^2$
Mr = 320,5 g/mol		
$X_{\rm m} = \frac{(C_{\rm O} - C_{\rm e}) \ge V}{g}$		
$=\frac{(300-18,562)}{0,3 \text{ g}}$	0,05 L	
= 46,9063 mg/	g.	
$S = \frac{X_m \ge N \ge a}{Mr}$		
_ 46,9063	x 6,02 x 10^{23} mol ⁻¹ x 197	$x 10^{-20} m^2$
	320,5 g/mol	
$= 173,5665 \text{ m}^2$	/g.	

Lampiran 3. Perhitungan Ukuran Partikel

Persamaan Schrereer:

$$D = \frac{K. \lambda}{\beta \cos \theta}$$

Keterangan:

D = Ukuran Partikel (nm)

K = Faktor bentuk dari kristal (0,98)

 λ = panjang gelombang dari sinar X (1,54056 Å)

 β = Nilai FWHM (rad) = $(\beta_{ins}^2 - \beta_{match}^2)^{1/2}$

K = Faktor bentuk dari kristal (0,98)

 θ = Sudut Bragg/sudut difraksi (2 θ /2)

1. Pengaruh Massa KATJ terhadap Deposisi MnO₂

Tabel 1. KATJ 0,2 g/MnO₂

20	θ	β Inst.	β Match	β (derajat)	β (radian)	D (nm)
37,2000	18,6000	1,3600	0,1600	1,3506	0,0236	6,7615
67,2400	33,6200	1,2800	0,1600	1,2699	0,0222	8,18399
					Ra	ta-rata 7,4728

Tabel 2. KATJ 0,4 g/MnO₂

20	θ	β Inst.	β Match	β (derajat)	β (radian)	D (nm)
37,0600	18,5300	1,4480	0,1600	1,4391	0,0251	6,3427
64,6400	32,3200	0,4400	0,1600	0,4099	0,0072	24,9867
					Rata-ra	ata 15,6647

Tabel 3. KATJ 0,6 g/MnO₂

20	θ	β Inst.	β Match	β (derajat)	β (radian)	D (nm)
36,8600	18,4300	1,9500	0,1600	1,9434	0,0339	4,6941
64,2800	32,1400	0,2320	0,1600	0,1680	0,0029	60,8407
					Rata-1	rata 32,7674

2. Pengaruh Konsentrasi KMnO₄ terhadap Deposisi MnO₂

Tabel 4. KATJ/MnO₂ (KMnO₄ 0,025 M)

20	θ	β Inst.	β Match	β (derajat)	β (radian)	D (nm)
36,6	18,3	1,184	0,1600	1,173139	0,020465	7,770489
64,5021	32,25105	0,7443	0,1600	0,726899	0,01268	14,07859
					Rata-rat	a 10,92454

Tabel 5. KATJ/MnO₂ (KMnO₄0,1M)

20	θ	β Inst.	β Match	β (derajat)	β (radian)	D (nm)
37,28	18,64	1,26	0,1600	1,2498	0,0218	7,3083
63,96	31,98	0,2	0,1600	0,12	0,0021	85,0281
					Rata	a-rata 46,1682

3. Pengaruh Suhu terhadap Deposisi MnO₂

Tabel 6. KATJ/MnO₂ suhu 65°

20	θ	β Inst.	β Match	β (derajat)	β (radian)	D (nm)
37,4000	18,7000	1,3600	0,1600	1,3505	0,0236	6,7655
64,3600	32,1800	0,6066	0,1600	0,5851	0,0102	17,4763
					Rata-rat	ta 12,1209

Tabel 7. KATJ/MnO₂ suhu 80°

20	θ	β Inst.	β Match	β (derajat)	β (radian)	D (nm)	
36,9600	18,4800	1,6000	0,1600	1,5920	0,0278	5,7321	
64,9800	32,4900	0,9280	0,1600	0,9141	0,0159	11,2250	
Rata-rata 8,4786							

Tabel 8. KATJ/MnO₂ suhu 95°

20	θ	β Inst.	β Match	β (derajat)	β (radian)	D (nm)
			0,1600			
37,7633	18,88165	0,7133		0,695124	0,0121	13,1588
			0,1600			
64,4384	32,2192	0,5791		0,556558	0,0097	18,3811
					Rata-1	rata 15,7699

4. Pengaruh pH terhadap Deposisi MnO₂

Tabel 8. KATJ/MnO₂ (asam)

20	θ	β Inst.	β Match	β (derajat)	β (radian)	D (nm)	
37,7241	18,8621	0,7417	0,1600	0,7242	0,0126	12,6284	
			0,1600				
64,4060	32,2030	0,5600		0,5367	0,0094	19,0593	
	Rata-rata 15,8439						

Tabel 9. KATJ/MnO₂ (basa)

20	θ	β Inst.	β Match	β (derajat)	β (radian)	D (nm)		
			0,1600					
38,6000	19,3000	0,9200		0,9060	0,0158	10,1218		
			0,1600					
64,3810	32,1905	0,6580		0,6383	0,0111	16,0233		
					Rata-rata 13,0726			

Tabel 10. KATJ/MnO2 (netral)

20	θ	β Inst.	β Match	β (derajat)	β (radian)	D (nm)	
			0,1600				
37,7633	18,88165	0,7133		0,6951	0,01213	13,1588	
			0,1600				
64,4384	32,2192	0,5791		0,5565	0,0097	18,3811	
	Rata-rata 15,7699						

Lampiran 4. Perhitungan Kapasitansi Spesifik

Elektroda pasta karbon	Ic (mA)	Id (mA)	Laju scan (V/s	Cs (mF/g)
КАТЈ	2,48734. 10-5	-1,58819. 10 ⁻⁵	0,1	0,00662
KATJ 0,2 g/MnO ₂	0,024838229	-0,089750623	0,1	18,6323
KATJ 0,4 g/MnO ₂	0,001036562	-0,031890312	0,1	5,3540
KATJ 0,6 g/MnO ₂	0,02556	-0,02453	0,1	8,1445

5. Pengaruh Massa Karbon Aktif terhadap Proses Deposisi MnO2

Keterangan: Massa Karbon = 0,0615 g

$$Cs = \frac{lc - ld}{v x m}$$

a. Karbon Aktif Tongkol Jagung (KATJ)

$$Cs = \frac{2,48734 \times 10^{-5} - (-1,58819 \times 10^{-5}) \text{mA}}{0,1 \text{ V/s } \times 0,0615 \text{ gram}}$$

= 0,00662 mF/g

b. KATJ 0,2 g/MnO₂

$$Cs = \frac{0,024838229 - (-0,089750623)mA}{0,1 V/s \ x \ 0,0615 gram}$$

= 18,63233 mF/g

c. KATJ 0,4 g/MnO₂

$$Cs = \frac{0,001036562 - (-0,031890312) \text{mA}}{0,1 \text{ V/s x } 0,0615 \text{gram}}$$
$$= 5,3540 \text{ mF/g}$$

d. KATJ 0,6 g/MnO₂

$$Cs = \frac{0,02556 - (-0,02453) \text{mA}}{0,1 \text{ V/s x } 0,0615 \text{gram}}$$

Elektroda pasta karbon	Ic (mA)	Id (mA)	Laju scan (V/s	Cs (mF/g)
КАТЈ	2,48734. 10 ⁻⁵	-1,58819. 10 ⁻⁵	0,1	0,0066
KATJ/MnO ₂ (KMnO ₄ 0,025 M)	0,406187	-0,22981	0,1	109,6552
KATJ/MnO ₂ (KMnO ₄ 0,05 M)	0,001036562	-0,031890312	0,1	5,3539
KATJ/MnO ₂ (KMnO ₄ 0,1 M)	0,004819	-0,00462	0,1	5,91732

6. Pengaruh Konsentrasi KMnO4 terhadap Proses Deposisi MnO2

Keterangan: 1. Massa Karbon KATJ/MnO₂ (KMnO₄ 0,025 M) = 0,058 g

2. Massa Karbon KATJ/MnO₂ (KMnO₄ 0,05 M) = 0,0615 g

3. Massa Karbon KATJ/MnO₂ (KMnO₄ 0,1 M) = 0,01595g

$$Cs = \frac{Ic - Id}{v \ x \ m}$$

a. KATJ/MnO₂ (KMnO₄ 0,025 M)

 $Cs = \frac{0,406187 - (-0,22981)mA}{0,1 \text{ V/s x } 0,058 \text{ gram}}$

= 109,6552 mF/g

b. KATJ/MnO₂ (KMnO₄ 0,05 M)

 $Cs = \frac{0,001036562 - (-0,031890312) \text{mA}}{0,1 \text{V/s x } 0,0615 \text{gram}}$

= 5,3539 mF/g

c. KATJ/MnO₂ (KMnO₄0,1 M)

$$Cs = \frac{0,004819 - (-0,00462) \text{mA}}{0,1 \text{ V/s x } 0,01595 \text{ gram}}$$

= 5,91732 mF/g

Elektroda pasta karbon	Ic (mA)	Id (mA)	Laju scan (V/s	Cs (mF/g)
КАТЈ	2,48734. 10 ⁻⁵	-1,58819. 10 ⁻⁵	0,1	0,00662
KATJ/MnO ₂ (65°C)	0,004901	-0,00441	0,1	5,5919
KATJ/MnO ₂ (80°C)	0,058857	-0,04005	0,1	58,0101
KATJ/MnO ₂ (95°C)	0,054857	-0,13196	0,1	102,363

7. Pengaruh Suhu terhadap Proses Deposisi MnO₂

Keterangan: 1. KATJ/MnO₂ (65°C) = 0,01665 g

2. KATJ/MnO₂ (80°C) = 0,01705 g

3. KATJ/MnO₂ (95°C) =
$$0,01825$$
 g

$$Cs = \frac{Ic - Id}{v x m}$$

a. KATJ/MnO₂ (65° C)

$$Cs = \frac{0,004901 - (-0,00441)mA}{0,1 \text{ V/s x } 0,01665 \text{ gram}}$$

= 5,5919 mF/g

b. KATJ/MnO₂ (80° C)

$$Cs = \frac{0.058857 - (-0.04005) \text{mA}}{0.1 \text{ V/s x } 0.01705 \text{ gram}}$$

= 58,0101 mF/g

c. KATJ/MnO₂ (95° C)

$$Cs = \frac{0,054857 - (-0,13196)mA}{0,1 V/s \ x \ 0,01825 \ gram}$$

= 102,363 mF/g

Elektroda pasta karbon	Ic (mA)	Id (mA)	Laju scan (V/s	Cs (mF/g)
КАТЈ	2,48734. 10 ⁻⁵	-1,58819. 10 ⁻⁵	0,1	0,00662
KATJ/MnO ₂ (asam)	0,029666	-0,03394	0,1	40,77544
KATJ/MnO ₂ (basa)	0,002219	-0,00421	0,1	4,145565
KATJ/MnO ₂ (netral)	0,054857	-0,13196	0,1	102,363

8. Pengaruh pH terhadap Proses Deposisi MnO₂

Keterangan: 1. KATJ/MnO₂ (asam) = 0,0156 g

2. KATJ/MnO₂ (basa) =
$$0,0155$$
 g

3. KATJ/MnO₂ (netral) =
$$0,0182$$
 g

$$Cs = \frac{Ic - Id}{v x m}$$

a. KATJ/MnO₂ (asam)

 $Cs = \frac{0,029666 - (-0,03394) \text{mA}}{0,1 \text{ V/s x } 0,0156 \text{ gram}}$

= 40,77544 mF/g

b. KATJ/MnO₂ (basa)

$$Cs = \frac{0,002219 - (-0,00421)mA}{0,1 \text{ V/s x } 0,0155 \text{ gram}}$$

= 4,145565 mF/g

c. KATJ/MnO₂ (netral)

Cs =
$$\frac{0,054857 - (-0,13196)\text{mA}}{0,1 \text{ V/s x } 0,01825 \text{ gram}}$$

= 102,363 mF/g

Lampiran 5. Dokumentasi Kegiatan Penelitian

Sampel tongkol jagung

Karbon tongkol jagung yang telah diayak dengan pengayak 100 mesh

Karbon aktif tongkol jagung

Proses deposisi MnO₂

Karbon tongkol jagung

Proses aktivasi karbon tongkol jagung

Deret standar metilen biru

Setelah deposisi MnO₂

Proses penyaringan karbon aktif terdeposisi MnO₂

Proses pencucian karbon aktif terdeposisi MnO₂

Karbon aktif sebelum dan setelah deposisi MnO_2

Filtrat sebelum deposisi MnO2

Filtrat setelah deposisi MnO2

Badan elektroda

Lampiran 6. Data Hasil Karakterisasi XRD

1. Karbon Aktif Tongkol Jagung (KATJ)

G1 Da	roup : ata :	St KZ	andard ATJ							
#	Strongest no. peak no. 1 11 2 12 3 14	3	peaks 2Theta (deg) 21.4200 22.6800 24.6200	d (A) 4.14501 3.91750 3.61302	I/I1 100 96 84	FWH (de 0.0 0.0	IM 93) 00000 00000 00000	Intensity (Counts) 141 135 119	Integrate (Counts) 0 0 0	d Int
#	Peak Data peak no. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25	L	ist 2Theta (deg) 10.4700 11.3858 12.2733 13.2300 14.2250 15.2400 16.5800 17.5600 18.9400 19.8200 21.4200 22.6800 23.6600 24.6200 23.6600 24.6200 25.7000 26.6600 28.1383 29.1633 30.1225 32.2606 33.6150 34.6825 36.7000 37.9400 38.7400	d (A) 8.44248 7.76540 7.20579 6.68679 6.22123 5.80910 5.34250 5.04649 4.68179 4.47586 4.14501 3.91750 3.75740 3.61302 3.46359 3.34101 3.16875 3.05967 2.96439 2.77263 2.66395 2.58436 2.4679 2.36962 2.32251	I/I1 4 13 19 17 23 18 40 53 70 83 100 96 80 84 50 42 17 9 4 5 11 5 40 34 19	FWH (dd 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	IM ig) i6000 i5830 i9330 i00000 i0000 i0000 i00000 i0000 i0000 i0000 i0000 i0000	Intensity (Counts) 6 19 27 24 32 26 56 56 75 99 117 141 135 113 119 70 59 24 12 6 7 16 7 56 48 27	Integrate. (Counts)) 38 339 753 803 1754 0 5144 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	3 Int
			3	*** Basic	Data Pro	oces	s ***			
			# Data In:	fomation Group Data Sample Nma Comment Date & Tim	ne		Stand KATJ serbu 02-08	ard k -17 11:22:5	1	
			# Measuren X-ray Slits	ment Condit tube target voltage current Auto Slit divergence scatter sl receiving	ion slit slit		Cu 40.0 30.0 Used 1.0 1.0 0.3	(kV) (mA) 0000 (deg) 0000 (deg) 0000 (mm)		
			Scann:	ing drive axis scan range scan mode scan speed sampling p preset tim	e d oitch ne		Theta 10. Conti 2. 0.	-2Theta 0000 - 70.0 nuous Scan 0000 (deg/m 0200 (deg) 60 (sec)	000 (deg) in)	
			<pre># Data Pro Smooth B.G.Su Kal-a: Peak S System Preci:</pre>	ocess Condi ning smoothing ubtruction sampling p repeat tim 2 Separate Kal a2 rat Search differenti FWHM thref intensity FWHM ratic m error Con se peak Con	tion points points tio al point old threhold (n-1), crection	ts : d : /n :	AUTO 51 AUTO 51 30 MANUA 50 (% AUTO 51 0.050 30 (p 2 NO] NO]]])] (deg) ar mil)		

2. Pengaruh Massa Karbon Aktif terhadap Proses Deposisi MnO₂

a. KATJ 0,2 g/MnO₂

*** Basic Data Process ***

: Standard : KAtj#MnO2#02gram

3 peaks 2Theta (deg) 37.2000 66.3033 37.9800	d (A) 2.41504 1.40860 2.36722	I/I1 100 98 80	FWHM (deg) 1.36000 1.15330 0.00000	Intensity (Counts) 82 80 66	Integrated I (Counts) 5653 3871 0	
List						
2Theta	d	I/I1	FWHM	Intensity	Integrated I	
(deg)	(A)		(deg)	(Counts)	(Counts)	
11.1600	7.92200	33	0.46660	27	766	
12.4600	7.09824	50	1.48000	41	3315	
13.3800	6.61217	60	0.00000	49	0	
14.2000	6.23213	60	0.00000	49	0	
15.2000	5.82429	63	1.00000	52	4170	
16.3800	5.40728	38	0.00000	31	0	
17.4600	5.07516	40	0.00000	33	0	
18.4200	4.81277	43	0.00000	35	0	
20.2400	4.38392	56	1.45000	46	4708	
21.1600	4.19535	62	0.00000	51	0	
22.6200	3.92775	79	0.00000	65	0	
23.8000	3.73562	79	0.00000	65	0	
24.8800	3.57585	77	0.00000	63	0	
26.0200	3.42171	57	0.00000	47	0	
26.8800	3.31416	41	0.00000	34	0	
27.8800	3.19752	39	0.00000	32	0	
28.4800	3.13150	33	0.45720	27	1302	
29.7810	2.99760	27	0.13800	22	247	
30.4833	2.93012	16	0.52670	13	497	
31.2233	2.86234	6	0.03330	5	13	
32.2600	2.77268	17	0.44000	14	382	
33.1600	2.69946	28	0.52000	23	639	
34.1350	2.62455	32	0.70000	26	834	
35.4016	2.53350	4	0.01670	3	3	
37.2000	2.41504	100	1.36000	82	5653	
37.9800	2.36722	80	0.00000	66	0	
38.5800	2.33177	73	0.00000	60	0	
	3 peaks 2Theta (deg) 37.2000 66.3033 37.9800 List 2Theta (deg) 11.1600 12.4600 13.3800 14.2000 15.2000 16.3800 27.4600 28.4800 26.0200 24.8800 27.8800 28.4800 28.4800 28.4800 28.4800 29.7810 30.4833 31.2233 32.2600 33.1600 34.1350 35.4016 37.2000 38.5800	3 peaks 2Theta d (deg) (A) 37.2000 2.41504 66.3033 1.40860 37.9800 2.36722 List 2Theta d (deg) (A) 11.1600 7.92200 12.4600 7.09824 13.3800 6.61217 14.2000 6.23213 15.2000 5.82429 16.3800 5.40728 17.4600 5.07516 18.4200 4.81277 20.2400 4.81277 20.2400 4.81277 20.2400 4.9535 22.6200 3.92775 23.8000 3.73562 24.8800 3.57585 26.0200 3.42171 26.8800 3.19752 28.4800 3.13150 29.7810 2.99760 30.4833 2.93012 31.2233 2.86234 32.2600 2.77268 33.1600 2.69946 34.1350 2.62455 35.4016 2.53350 37.2000 2.41504 37.9800 2.36722 38.5800 2.33177	3 peaks 2Theta d I/I1 (deg) (A) 37.2000 2.41504 100 66.3033 1.40860 98 37.9800 2.36722 80 List 2Theta d I/I1 (deg) (A) 11.1600 7.92200 33 12.4600 7.09824 50 13.3800 6.61217 60 14.2000 6.23213 60 15.2000 5.82429 63 16.3800 5.40728 38 17.4600 5.07516 40 18.4200 4.81277 43 20.2400 4.81277 43 20.2400 4.81277 43 20.2400 4.9535 62 22.6200 3.92775 79 23.8000 3.73562 79 24.8800 3.57585 77 26.0200 3.42171 57 26.8800 3.13150 33 29.7810 2.99760 27 30.4833 2.93012 16 31.2233 2.86234 6 32.2600 2.77268 17 33.1600 2.69245 32 35.4016 2.53350 4 37.2000 2.41504 100 37.9800 2.33177 73	3 peaks 2Theta d I/II FWHM (deg) (A) (deg) 37.2000 2.41504 100 1.36000 66.3033 1.40860 98 1.15330 37.9800 2.36722 80 0.00000 List 2Theta d I/II FWHM (deg) (A) (deg) 11.1600 7.92200 33 0.46660 12.4600 7.09824 50 1.48000 13.3800 6.61217 60 0.00000 14.2000 6.23213 60 0.00000 15.2000 5.82429 63 1.00000 15.2000 5.82429 63 1.00000 16.3800 5.40728 38 0.00000 17.4600 5.07516 40 0.00000 18.4200 4.81277 43 0.00000 20.2400 4.81277 43 0.00000 22.6200 3.92775 79 0.00000 23.8000 3.73562 79 0.00000 24.8800 3.57585 77 0.00000 24.8800 3.57585 77 0.00000 24.8800 3.57585 77 0.00000 24.8800 3.57585 77 0.00000 24.8800 3.31416 41 0.00000 27.8800 3.31416 41 0.00000 27.8800 3.13150 33 0.45720 29.7810 2.99760 27 0.13800 30.4833 2.93012 16 0.52670 31.2233 2.86234 6 0.03330 32.2600 2.77268 17 0.44000 33.1600 2.6946 28 0.52000 34.1350 2.62455 32 0.70000 35.4016 2.53350 4 0.01670 37.2000 2.41504 100 1.36000 37.9800 2.36722 80 0.00000	3 peaks 2Theta d I/II FWHM Intensity (deg) (A) (deg) (Counts) 37.2000 2.41504 100 1.36000 82 66.3033 1.40860 98 1.15330 80 37.9800 2.36722 80 0.00000 66 List 2Theta d I/II FWHM Intensity (deg) (A) (deg) (Counts) 11.1600 7.92200 33 0.46660 27 12.4600 7.09824 50 1.48000 41 13.3800 6.61217 60 0.00000 49 14.2000 6.23213 60 0.00000 49 15.2000 5.82429 63 1.00000 52 16.3800 5.40728 38 0.00000 31 17.4600 5.07516 40 0.00000 33 18.4200 4.81277 43 0.00000 35 20.2400 4.81277 57 0.00000 65 23.8000 3.73562 79 0.00000 65 24.8800 3.57585 77 0.00000 65 24.8800 3.57585 77 0.00000 63 26.0200 3.42171 57 0.00000 63 26.0200 3.42171 57 0.00000 47 26.6800 3.31416 41 0.00000 32 28.4800 3.57585 77 0.00000 65 24.8800 3.57585 77 0.00000 65 24.8800 3.57585 77 0.00000 47 26.8800 3.13150 33 0.45720 27 29.7810 2.99760 27 0.13800 22 30.4833 2.93012 16 0.52670 13 31.2233 2.86234 6 0.03330 5 32.2600 2.77268 17 0.44000 14 33.1600 2.6946 28 0.52000 23 34.1350 2.62455 32 0.70000 26 35.4016 2.5350 4 0.01670 3 37.2000 2.41504 100 1.36000 82 37.9800 2.36722 80 0.00000 66 37.9800 2.33177 73 0.00000 66 37.9800 2.33177 73 0.00000 66 37.9800 2.33177 73 0.00000 66 38.5800 2.33177 73 0.00000 66 38.5800 2.33177 73 0.00000 60	3 peaks 2 2Theta d I/I1 FWHM Intensity Integrated I (deg) (A) (deg) (Counts) (Counts) 37.2000 2.41504 100 1.36000 82 5653 66.3033 1.40860 98 1.15330 80 3871 37.9800 2.36722 80 0.00000 66 0 List

b. KATJ 0,4 g/MnO₂

roup ita	:	Standard KATJ#MnO2#04	4gram					
Stron no. p 1 2 3	ngest peak no. 25 11 10	3 peaks 2Theta (deg) 37.0600 23.4800 22.2600	d (A) 2.42384 3.78580 3.99045	I/I1 100 85 84	FWHM (deg) 1.44800 0.00000 0.00000	Intensity (Counts) 117 99 98	Integrated (Counts) 7277 0 0	Int
Peak F	Data peak no. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 6 17 18 9 20	List 2Theta (deg) 12.2750 13.0400 13.9600 14.6600 15.4400 17.2400 18.7800 19.8200 21.2800 22.2600 23.4800 24.7000 25.3000 25.4800 25.4800 27.4400 28.2133 29.3775 30.3600 30.9400 31.9100	d (A) 7.20480 6.78379 6.33872 6.03759 5.73430 5.13943 4.72131 4.47586 4.17196 3.99045 3.78580 3.60150 3.51744 3.49299 3.24778 3.16050 3.03784 2.94173 2.88790 2.80229	I/I1 15 19 24 19 28 62 62 62 62 84 85 85 85 37 36 28 17 11	FWHM (deg) 0.41000 0.40000 0.00000 1.22400 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.55500 0.48000 0.023340	Intensity (Counts) 17 22 28 22 33 66 73 93 98 99 72 68 76 43 42 33 20 13 16	Integrated (Counts) 443 538 1206 0 1890 7118 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Int
	21 22 23 24 25 26	33.6173 34.9800 35.2000 36.1600 37.0600 38.1600	2.66377 2.56306 2.54754 2.48208 2.42384 2.35646	32 23 14 45 100 57	1.17870 0.32000 0.00000 0.84000 1.44800 0.00000	38 27 16 53 117 67	2311 475 0 2394 7277 0	
	roup ata Stroi no. 1 2 3 3 Peak 1	roup : strongest no. peak no. peak 1 25 2 11 3 10 Peak Data peak no. 1 2 3 4 5 6 7 8 9 10 11 12 5 6 7 8 9 10 11 12 2 3 4 5 6 6 7 7 8 9 10 11 12 5 2 11 3 10 Peak Data 10 10 10 10 10 10 10 10 10 10 10 10 10	<pre>coup : Standard : KATJ#Mn02#0. Strongest 3 peaks no. peak 2Theta no. (deg) 1 25 37.0600 2 11 23.4800 3 10 22.2600 Peak Data List peak 2Theta no. (deg) 1 12.2750 2 13.0400 3 13.9600 4 14.6600 5 15.4400 6 17.2400 7 18.7800 8 19.8200 9 21.2800 10 22.2600 11 23.4800 12 24.7000 13 25.3000 14 25.4800 15 27.4400 15 27.4400 16 28.2133 17 29.3775 18 30.3600 19 30.9400 20 31.9100 21 33.6173 22 34.9800 23 35.2000 24 36.1600 25 37.0600 26 38.1600</pre>	<pre>coup : Standard : KATJ#Mn02#04gram Strongest 3 peaks no. peak 2Theta d (deg) (A) 1 25 37.0600 2.42384 2 11 23.4800 3.78580 3 10 22.2600 3.99045 Peak Data List peak 2Theta d no. (deg) (A) 1 1 2.2750 7.20480 2 13.0400 6.78379 3 13.9600 6.33872 4 14.6600 6.03759 5 15.4400 5.73430 6 17.2400 5.73430 6 17.2400 5.73430 6 17.2400 5.73430 6 17.2400 5.73430 6 17.2400 3.78580 12 24.7000 3.60150 13 25.3000 3.51744 14 25.4800 3.49299 15 27.4400 3.24778 16 28.2133 3.16050 17 29.3775 3.03784 18 30.3600 2.94173 19 30.9400 2.88229 21 33.6173 2.66377 22 34.9800 2.56306 23 35.2000 2.54754 24 36.1600 2.42384 25 37.0600 2.42384 26 38.1600 2.42384 26 38.1600 2.42384 26 38.1600 2.42384</pre>	<pre>troop : Standard : KATJ#Mn02#04gram</pre> Strongest 3 peaks no. peak 2Theta d I/II no. (deg) (A) 1 25 37.0600 2.42384 100 2 11 23.4800 3.78580 85 3 10 22.2600 3.99045 84 Peak Data List peak 2Theta d I/II no. (deg) (A) 1 12.2750 7.20480 15 2 13.0400 6.78379 19 3 13.9600 6.33872 24 4 14.6600 6.03759 19 5 15.4400 5.73430 28 6 17.2400 5.13943 56 7 18.7800 4.72131 62 8 19.8200 4.47586 62 9 21.2800 3.99045 84 11 23.4800 3.78580 85 12 24.7000 3.60150 62 8 19.8200 4.47586 62 9 9 21.2800 4.17196 79 10 22.2600 3.99045 84 11 23.4800 3.78580 85 12 24.7000 3.61574 58 14 25.4800 3.49299 65 15 27.4400 3.51744 58 14 25.4800 3.49299 65 15 27.4400 3.51744 58 14 25.4800 3.9245 84 11 23.4800 3.78580 85 12 24.7000 3.6150 36 17 29.3775 3.03784 28 18 30.3600 2.94173 16 28.2133 3.16050 36 17 29.3775 3.03784 28 18 30.3600 2.94173 17 19 30.9400 2.88790 11 20 31.9100 2.80229 14 21 33.6173 2.66377 32 22 34.9800 2.56306 23 23 35.2000 2.54754 14 24 36.1600 2.42284 15 25 37.0600 2.42384 100 26 38.1600 2.42384 100 26 38.1600 2.42384 100 26 38.1600 2.35646 57 27 38.9000 2.51332 50	<pre>coup : Standard i KATJ#Mn02#04gram</pre> Strongest 3 peaks no. peak 2Theta d I/II FWHM no. (deg) (A) (deg) 1 25 37.0600 2.42384 100 1.44800 2 11 23.4800 3.78580 85 0.00000 3 10 22.2600 3.99045 84 0.00000 Peak Data List peak 2Theta d I/II FWHM no. (deg) (A) (deg) 1 12.2750 7.20480 15 0.41000 2 13.0400 6.78379 19 0.40000 3 13.9600 6.33872 24 0.48000 4 14.6600 6.03759 19 0.40000 5 15.4400 5.73430 28 1.22400 6 17.2400 5.13943 56 1.87200 6 17.2400 5.13943 56 1.87200 7 18.78800 4.72131 62 0.00000 8 19.8200 4.47586 62 0.00000 10 22.2600 3.99045 84 0.00000 11 23.4800 3.78580 85 0.00000 12 24.7000 3.60150 62 0.00000 13 13.53000 3.51744 58 0.00000 14 25.4800 3.78580 85 0.00000 15 27.4400 3.54774 58 0.00000 16 28.23000 3.51744 58 0.00000 17 29.3775 3.03784 28 0.55500 18 30.3600 2.94173 17 0.48000 19 30.9400 2.88790 11 0.00000 19 30.9400 2.88790 11 0.00000 19 30.9400 2.88770 11 0.00000 19 30.9400 2.88770 11 0.00000 20 31.9100 2.80229 14 0.27340 20 31.9100 2.80229 14 0.27340 20 31.9100 2.80229 14 0.27340 20 31.9100 2.8077 32 1.17870 22 34.9800 2.56306 23 0.32000 23 35.2000 2.54754 14 0.00000 24 36.1600 2.42284 100 1.44800 25 37.0600 2.42384 100 1.44800 26 38.1600 2.42384 100 1.44800 26 38.1600 2.42384 100 1.44800 26 38.1600 2.42384 100 1.44800 26 38.1600 2.42384 50 0.00000	<pre>roup : Standard : KATJ#Mn02#04gram Strongest 3 peaks no. peak 2Theta d I/II FWHM Intensity</pre>	<pre>roup : Standard : KATJ#Mn02#04gram</pre> Strongest 3 peaks no. peak 2Theta d I/II FWHM Intensity Integrated no. (deg) (A) (deg) (Counts) 1 25 37.0600 2.42384 100 1.44800 117 7277 2 11 23.4800 3.78580 85 0.00000 98 0 3 10 22.2600 3.99045 84 0.00000 98 0 Peak Data List

c. KATJ 0,6 g/MnO₂

*** Basic Data Process ***

: Standard : KASP#MnO2#06gram

ngest peak no. 24 25 11	3 peaks 2Theta (deg) 36.7600 37.3800 22.5200	d (A) 2.44293 2.40382 3.94497	I/I1 100 97 90	FWHM (deg) 1.71000 0.00000 0.00000	Intensity (Counts) 102 99 92	Integrate((Counts) 7230 0 0
Data	List					
peak	2Theta	d	I/I1	FWHM	Intensity	Integrated
no.	(deg)	(A)	-,	(deg)	(Counts)	(Counts)
1	11.0700	7.98621	9	0.10000	9	81
2	11.9100	7.42477	11	0.26000	11	166
3	12.8433	6.88724	3	0.04670	3	13
4	13.9300	6.35231	5	0.10000	5	43
5	14.9600	5.91719	10	0.28000	10	253
6	16.0483	5.51828	10	0.19670	10	211
7	17.5000	5.06365	26	0.88000	27	1552
8	18.5600	4.77678	44	1.28000	45	2142
9	19.9000	4.45805	61	1.84000	62	6129
10	21.1000	4.20714	78	0.00000	80	0
11	22.5200	3.94497	90	0.00000	92	0
12	23.6600	3.75740	78	0.00000	80	0
13	25.2200	3.52841	82	0.00000	84	0
14	26.4400	3.36830	61	0.00000	62	0
15	27.1000	3.28775	37	0.00000	38	0
16	27.9400	3.19079	35	0.94400	36	2147
17	29.3620	3.03941	24	0.51600	24	917
18	30.4000	2.93795	12	0.00000	12	0
19	30.7800	2.90254	21	0.46000	21	644
20	32.0200	2.79291	7	0.04000	7	39
21	32.6025	2.74433	24	0.47500	24	703
22	34.2000	2.61971	35	1.14660	36	2231
23	35.1000	2.55457	29	0.00000	30	0
24	36.7600	2.44293	100	1.71000	102	7230
25	37.3800	2.40382	97	0.00000	99	0
2.6	38.8400	2.31676	62	1.88000	63	8332

3. Pengaruh Konsentrasi KMnO4 terhadap Proses Deposisi MnO2

a. KATJ/MnO₂ (KMnO₄ 0,025 M)

	Basic Data	Process	•••				
:	Standard 00245M#KATJ						
rongest peak no. 26 27 2	3 peaks 2Theta (deg) 36.6000 37.4200 12.0200	d (A) 2.45324 2.40135 7.35707	I/I1 100 76 66	FWHM (deg) 1.18400 0.00000 1.84000	Intensity (Counts) 116 88 77	Integrated I (Counts) 6722 0 5723	nt
ak Data peak no. 1 2 3	List 2Theta (deg) 10.4200 12.0200 13.2400 14.1600	d (A) 8.48288 7.35707 6.68177 6.24954	1/11 7 66 45	FWHM (deg) 0.12000 1.84000 0.74660	Intensity (Counts) 8 77 52 26	Integrated I (Counts) 121 5723 1563 1034	nt
5 6 7 8 9	15.9000 17.0250 18.5933 19.7150 20.4600	5.56942 5.20384 4.76830 4.49946 4.33727 4.15267	22 3 24 24 24 24	0.08000 0.03000 0.69330 0.87000 0.59000	4 3 28 28 28	24 12 1119 1020 735	
10 11 12 13 14 15	21.3800 21.8800 22.7000 23.3400 23.6800 24.2800	4.05889 3.91409 3.80819 3.75428 3.66284	47 62 66 60 64	0.00000 0.00000 0.00000 0.00000 0.00000	43 55 72 77 70 74	2070 0 0 0	
16 17 18 19 20 21	25.2600 26.6800 27.2400 28.8066 30.4700 31.4750	3.52291 3.33855 3.27117 3.09674 2.93136 2.84002	60 34 14 18 7 5	1.32000 0.46000 0.68000 0.81330 0.10000 0.13000	70 39 16 21 8 6	5723 962 571 881 55 42	
22 23 24 25 26 27 28	33.1125 33.8100 34.5475 35.6200 36.6000 37.4200 38.3600	2.70322 2.64903 2.59415 2.51846 2.45324 2.40135 2.34464	20 8 12 39 100 76 66	0.41500 0.11340 0.16500 0.62000 1.18400 0.00000 0.00000	23 9 14 45 116 88 76	561 93 190 1622 6722 0 0	
	27 2 28 27 2 27 2 2 3 4 5 6 7 8 9 10 11 12 13 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 22 23 24 25 26 27 22 24 25 26 27 22 24 25 26 27 22 24 25 26 27 22 24 25 26 27 22 24 25 26 27 22 24 26 27 22 26 27 27 22 26 27 27 22 27 22 26 27 27 27 27 27 27 27 27 27 27 27 27 27	*** Basic Data 2 : Standard : 00245M#KATJ congest 3 peaks peak 2Theta no. (deg) 26 36.6000 27 37.4200 2 12.0200 ak Data List peak 2Theta no. (deg) 1 10.4200 2 12.0200 3 13.2400 4 14.1600 5 15.9000 6 17.0250 7 18.5933 8 19.7150 9 20.4600 10 21.3800 11 21.3800 12 22.7000 13 23.3400 14 23.6800 15 24.2800 16 25.2600 17 26.6800 18 27.2400 19 28.8066 20 30.4700 21 31.4750 22 33.1125 23 3.8100 24 34.5475 25 35.6200 26 36.6000 27 37.4200 28 38.3600	<pre>*** Basic Data Process 9 : Standard : 00245M#KATJ rongest 3 peaks . peak 2Theta d no. (deg) (A) 26 36.6000 2.45324 27 37.4200 2.40135 2 12.0200 7.35707 ak Data List peak 2Theta d no. (deg) (A) 1 10.4200 8.48288 2 12.0200 7.35707 3 13.2400 6.68177 4 14.1600 6.24964 5 15.9000 5.56942 6 17.0250 5.20384 7 18.5933 4.76830 8 19.7150 4.49946 9 20.4600 4.33727 10 21.3800 4.15267 11 21.8800 4.05889 12 22.7000 3.91409 13 23.3400 3.80819 14 23.6800 3.75428 15 24.2800 3.66284 16 25.2600 3.52291 17 26.6800 3.32855 18 27.2400 3.27117 19 28.8066 3.09674 20 30.4700 2.93136 21 31.4750 2.84002 22 33.1125 2.70322 23 33.8100 2.64903 24 34.5475 2.59415 25 35.6200 2.51846 26 36.6000 2.45324 </pre>	<pre>*** Basic Data Process *** 9 : Standard : 00245M#KATJ rongest 3 peaks . peak 2Theta d I/11 no. (deg) (A) 26 36.6000 2.45324 100 27 37.4200 2.40135 76 2 12.0200 7.35707 66 ak Data List peak 2Theta d I/11 no. (deg) (A) 1 10.4200 8.48288 7 2 12.0200 7.35707 66 3 13.2400 6.68177 45 4 14.160 6.24964 22 5 15.9000 5.56942 3 6 17.0250 5.20384 3 7 18.5933 4.76830 24 8 19.7150 4.49946 24 9 20.4600 4.33727 24 10 21.3800 4.15267 37 11 22.7000 3.91409 62 13 23.3400 3.80819 66 14 23.6800 3.75428 60 15 24.2800 3.66284 64 16 25.2600 3.52291 60 17 26.6800 3.35428 60 15 24.2800 3.66284 64 16 25.2600 3.52291 60 17 26.6800 3.75428 60 15 24.2800 3.66284 64 16 25.2600 3.52291 60 17 26.6800 3.375428 60 15 24.2800 3.66284 64 16 25.2600 3.52291 60 17 26.6800 3.32855 34 18 27.2400 3.27117 14 19 28.8066 3.09674 18 20 30.4700 2.93136 7 21 31.4750 2.84002 5 22 33.1125 2.70322 20 23 33.8100 2.64903 8 24 34.5475 2.59415 12 25 35.6200 2.51846 39 26 36.6000 2.45324 100 27 37.4200 2.40135 76 28 38.3600 2.34464 66 </pre>	**** Basic Data Process **** 9 : Standard : 00245M#KATJ rongest 3 peaks . . (deg) 1 no. (deg) (A) (deg) 26 36.6000 2.45324 100 1.184000 27 37.4200 2.40135 76 0.00000 2 12.0200 7.35707 66 1.84000 ak Data List	**** Basic Data Process *** p : Standard : 00245M#KATJ congest 3 peaks . (deg) (Counts) peak 2Theta d I/II FWHM Intensity no. (deg) (A) (deg) (Counts) 26 36.6000 2.45324 100 1.18400 116 27 37.4200 2.40135 76 0.00000 88 2 12.0200 7.35707 66 1.84000 77 ak Data List peak 2Theta d I/II FWHM Intensity no. (deg) (A) (deg) (Counts) 8 2 12.0200 7.35707 66 1.84000 77 3 13.2400 6.68177 45 0.74660 52 4 14.1600 6.24964 24 0.78000 28 10 21.3800 4.76830 24 0.69330 28 19	*** Basic Data Process *** > : Standard : 00245M#KATJ rongest 3 peaks .peak 2Theta d I/II FWHM Intensity Integrated I no. (deg) (A) (deg) (Counts) (Counts) 26 36.6000 2.45324 100 1.18400 116 6722 27 37.4200 2.40135 76 0.00000 88 0 2 12.0200 7.35707 66 1.84000 77 5723 ak Data List peak 2Theta d I/II FWHM Intensity Integrated I no. (deg) (A) (deg) (Counts) (Counts) 1 10.4200 8.48288 7 0.12000 8 121 2 12.0200 7.35707 66 1.84000 77 5723 3 13.2400 6.68177 45 0.74660 52 1563 5 15.9000 5.56942 3 0.03000 3

b. KATJ/MnO₂ (KMnO₄ 0,05 M)

***	Basic	Data	Process	***

Group Data	: Standard : KATJ#MnO2#	04gram					
# Strong no. pe 1 2 2 1 3 1	est 3 peaks ak 2Theta o. (deg) 5 37.0600 1 23.4800 0 22.2600	d (A) 2.42384 3.78580 3.99045	I/I1 100 85 84	FWHM (deg) 1.44800 0.00000 0.00000	Intensity (Counts) 117 99 98	Integrated (Counts) 7277 0 0	Int
# Peak D pe n 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2	ata List ak 2Theta o. (deg) 1 12.2750 2 13.0400 3 13.9600 4 14.6600 5 15.4400 6 17.2400 7 18.7800 8 19.8200 9 21.2800 0 22.2600 1 23.4800 0 22.2600 1 23.4800 0 22.4400 6 28.2133 7 29.3775 8 30.3600 9 30.9400 0 31.9100 1 33.6173 2 5.000	d (A) 7.20480 6.78379 6.33872 6.03759 5.73430 5.13943 4.72131 4.47586 4.17196 3.99045 3.78580 3.60150 3.6150 3.51744 3.49299 3.24778 3.16050 3.03784 2.94173 2.88790 2.86377 2.66377	I/I1 15 19 24 19 28 56 62 79 84 85 62 58 56 28 28 17 11 14 32	FWHM (deg) 0.41000 0.40000 0.40000 1.22400 1.87200 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.555500 0.48000 0.555500 0.48000 0.27340 1.17870	Intensity (Counts) 17 22 28 22 33 66 73 93 98 99 72 68 76 43 42 43 42 33 20 13 16 38	Integrated (Counts) 443 538 1206 0 1890 7118 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Int
2 2 2 2 2 2 2 2	2 34.9800 3 35.2000 4 36.1600 5 37.0600 6 38.1600 7 38.9000	2.56306 2.54754 2.48208 2.42384 2.35646 2.31332	23 14 45 100 57 50	0.32000 0.00000 0.84000 1.44800 0.00000 0.00000	27 16 53 117 67 59	475 0 2394 7277 0 0	

c. KATJ/MnO₂ (KMnO₄ 0,1M)

Group Data	:	Standard 01M#KATJ						
# Str no. 1	no. 57	3 peaks 2Theta (deg) 67.3200	d (A) 1.38977	1/11 100	FWHM (deg) 0.00000	Intensity (Counts) 51 45	Integrated (Counts) 0 2631	Int
3	58	68.3000	1.37220	84	0.60000	43	2474	
# Pes	k Data	List						
# rea	peak no.	2Theta (deg)	d (A)	1/11	FWHM (deg)	Intensity (Counts)	Integrated (Counts)	Int
	1	10.5950	8.34316	14	0.15000	7	86	
	2	11.4800	7.70189	22	0.84000	11	476	
	3	12.4800	7.08691	53	0.96000	27	1589	
		13.3400	6.63190	57	0.00000	29	0	
	5	14.1800	6.24087	47	0.00000	24	000	
	-	15.1000	5.03132		0.28000	21	333	
	8	16.5400	5.42042	10	0.06000	5	45	
	9	17 9700	4 93226	22	0 30000	11	159	
	10	19.5250	4.54281	22	0.27000	11	223	
	11	20,4450	4.34042	12	0.33000	6	145	
	12	21.7400	4.08471	33	0.76000	17	618	
	13	22.7050	3.91324	39	0.57000	20	591	
	14	23.8033	3.73511	45	1.03330	23	1017	
	15	24.8400	3.58152	47	0.74660	24	712	
	16	25.4800	3.49299	51	0.72000	26	722	
	17	26.4550	3.36643	35	0.71000	18	609	
	18	27.7450	3.21277	22	0.31000	11	372	
	19	29.4966	3.02585	22	0.23330	11	317	
	20	30.1766	2.95919	10	0.03330	5	17	
	21	32.1900	2.77855	16	0.10000	8	96	
	22	33.8066	2.64929	27	0.41330	14	402	
	23	34.9391	2.56597	22	0.34830	11	238	
	24	36.0200	2.49140	39	0.28000	20	454	
	25	37.2800	2.41004	73	1.26000	37	2054	
	26	38,2000	2.35409	61	1.12000	31	1890	

4. Pengaruh Suhu terhadap Proses Deposisi MnO₂

a. KATJ/MnO₂ (65 °C)

*** Basic Data Process ***

Gr Da	ta :	Standard KATJ#mn02#6	5C					
#	Strongest no. peak no. 1 24 2 14 3 13	3 peaks 2Theta (deg) 36.8200 24.1200 23.2000	d (A) 2.43909 3.68678 3.83085	I/I1 100 89 86	FWHM (deg) 1.21600 0.00000 0.00000	Intensity (Counts) 96 85 83	Integrated : (Counts) 3516 0 0	Int
#	Peak Data	List						
	peak no.	2Theta (deg)	d (A)	1/11	FWHM (deg)	Intensity (Counts)	Integrated : (Counts)	Int
	1	11.4800	7.70189	44	1.00000	42	2702	
	2	12.3600	6 82549	36	0.00000	4.5	0	
	4	13,2800	6.66173	40	0.99000	38	1338	
	5	14.4300	6.13331	22	0.70000	21	665	
	6	15.7800	5.61150	20	0.40000	19	522	
	7	16.7533	5.28762	17	0.24670	16	327	
	8	17.6600	5.01813	21	0.32000	20	524	
	9	18,8550	4.70270	26	0.71000	25	1139	
	10	19,9800	4.44038	53	0.80000	51	3267	
	11	21.0600	4.21504	56	0.00000	54	0	
	12	22.0400	4.02979	74	0.00000	71	0	
	13	23.2000	3.83085	86	0.00000	83	0	
	14	24.1200	3.68678	89	0.00000	85	0	
	15	25.2600	3.52291	75	0.00000	72	0	
	16	26.9600	3.30451	57	1.25340	55	6633	
	17	28.1400	3.16856	29	0.18000	28	992	
	10	29.0400	3.0/155	17	0.25600	10	315	
	20	31 2383	2.54303	10	0.09670	10	60	
	21	32 0300	2 79206		0 12000		40	
	22	33,2900	2.68921	26	0.78000	25	1064	
	23	35,9000	2,49946	35	0.33340	34	747	
	24	36.8200	2.43909	100	1.21600	96	3516	
	25	37.4000	2.40259	78	1.36000	75	4372	
	26	38,5800	2.33177	57	0.00000	55	0	

b. KATJ/MnO₂ (80 °C)

Group	: Standard					
Data	: KATJ#Mno2#8	0oC				
# Stronges	t 3 peaks					
no. peak	2Theta	d	1/11	FWHM	Intensity	Integrated
no.	(deg)	(A)		(deg)	(Counts)	(Counts)
1 23	37.5800	2.39149	100	0.00000	105	0
2 22	36.9600	2.43017	99	1.60000	104	7838
3 2	12.5400	7.05313	68	2.59000	71	5354
# Peak Dat	a List					
peak	2Theta	d	1/11	FWHM	Intensity	Integrated
no.	(deg)	(A)		(deg)	(Counts)	(Counts)
1	11.4200	7.74222	52	1.12000	55	2263
2	12.5400	7.05313	68	2.59000	71	5354
3	14.1400	6.25844	45	1.00000	47	2110
4	15.2200	5.81668	15	0.39000	16	398
5	16.5166	5.36286	20	0.88670	21	992
6	18.4000	4.81795	22	0.40000	23	554
7	19.2700	4.60235	21	0.66000	22	646
8	20.1000	4.41414	28	0.81340	29	950
9	21.0400	4.21900	49	1.26660	51	2429
10	21.6600	4.09962	35	0.00000	37	0
11	22.6000	3.93118	50	0.79000	53	3401
12	23.2200	3.82760	64	0.00000	67	0
13	24.2600	3.66582	62	0.00000	65	0
14	26.0200	3.42171	49	1.04000	51	6301
15	27.4250	3.24952	33	0.75000	35	1260
16	28.4300	3.13690	24	0.86000	25	1086
17	29.9240	2.98360	8	0.07200	8	39
18	30.7300	2,90715	12	0.22000	13	246
19	33.1100	2.70342	27	0.54000	28	1097
20	33.7800	2.65131	8	0.24000	8	306
21	34.5200	2.59615	12	0.16000	13	189
22	36.9600	2.43017	99	1.60000	104	7838
23	37.5800	2.39149	100	0.00000	105	0
24	38,4800	2.33760	59	0.00000	62	0

c. KATJ/MnO₂ (95 °C)

G	roup :	Standard						
Da	ata :	KATJ#MnO2#9	SoC					
#	Strongest	3 peaks						
	no. peak	2Theta	d	1/11	FWHM	Intensity	Integrated	Int
	no.	(deg)	(A)		(deg)	(Counts)	(Counts)	
	1 68	64.4384	1.44478	100	0.57910	112	3090	
	2 44	44.0533	2.05393	71	0.57330	79	2139	
	3 35	37.7633	2.38030	64	0.71330	72	2608	
#	Peak Data	List						
	peak	2Theta	d	1/11	FWHM	Intensity	Integrated	Int
	no.	(deg)	(A)		(deg)	(Counts)	(Counts)	
	1	10.9200	8.09557	6	0.26660	7	118	
	2	11.4200	7.74222	19	0.44000	21	402	
	3	11,9550	7.39692	27	0.73000	30	846	
	4	12.7600	6.93202	23	1.00000	26	1458	
	5	13.8600	6.38423	18	0.00000	20	0	
	6	14.2800	6.19739	26	0.00000	29	0	
	7	15.2400	5.80910	26	0.00000	29	0	
	8	16.4000	5.40073	32	0.00000	36	0	
	9	16.8400	5.26059	35	0.00000	39	0	
	10	17.4600	5.07516	43	0.00000	48	0	
	11	18.4200	4.81277	42	0.00000	47	0	
	12	19.0200	4.66228	46	0.00000	51	0	
	13	20.0000	4.43598	47	0.00000	53	0	
	14	21.0600	4.21504	57	0.00000	64	0	
	15	21.4000	4.14883	51	0.00000	57	0	
	16	21.8800	4.05889	44	0.00000	4.9	0	
	17	22.3800	3.96933	50	0.00000	56	0	
	18	22.7600	3.90391	47	0.00000	53	0	
	19	23.3200	3.81141	52	0.00000	58	0	
	20	23.8000	3.73562	57	0.00000	64	0	
	21	24.5400	3.62462	45	0.00000	50		
	22	26.0000	3.42430	36	0.00000	40	1000	
	23	26.4200	3.37081	27	0.66660	30	1363	
	29	27.3600	3.25/10	10	0.20000	20	407	
	25	27.8000	3.20654	16	0.00000		836	
	20	20.0003	3.11//5	10	0.71670	10	030	
	27	30.1000	2.30033	16	0.33000	10	440	
	20	32.9050	2.04015	10	0.33000	10		
	29	32.2700	2 77395	12	0.26670	14	275	
	31	33 2200	2 69472	8	0.08000		54	
	32	33.9666	2 63717	21	0.57330	24	731	
	33	35 1800	2 54894	18	0 60000	20	709	
	34	36.4100	2.46561	57	1.34000	64	3762	
	35	37.7633	2.38030	64	0.71330	72	2608	
	36	38,9000	2.31332	20	0.40000	22	470	

5. Pengaruh pH terhadap Proses Deposisi MnO₂

a. KATJ/MnO₂ (Asam)

0	Chandrand					
Group :	standard					
Data	<pre>katj#mnoz#a</pre>	10.21				
# Strongest	3 peaks					
no. peak	2Theta	d	1/11	FWHM	Intensity	Integrated Int
no.	(deg)	(A)		(deg)	(Counts)	(Counts)
1 72	64,4060	1,44543	100	0.56000	131	3561
2 48	44.0339	2.05479	72	0.55500	94	2419
3 3	11,9000	7.43099	44	0.00000	57	0
# Peak Data	List					
peak	2Theta	d	1/11	FWHM	Intensity	Integrated Int
no.	(deg)	(A)		(deg)	(Counts)	(Counts)
1	10.6800	8.27695	21	0.34000	28	381
2	11.3400	7.79666	33	1.20000	43	2252
3	11.9000	7.43099	44	0.00000	57	0
4	12.5600	7.04195	36	0.00000	47	0
5	13.3200	6.64181	35	0.00000	46	0
6	14.0200	6.31173	27	0.80000	36	1827
7	15.0250	5.89173	24	0.81000	32	1234
8	15.6200	5.66862	16	0.00000	21	0
9	16.1000	5.50068	18	0.00000	24	0
10	16.5000	5.36822	15	0.50000	20	840
11	17.3000	5.12174	10	0.00000	13	0
12	17.4400	5.08094	11	0.00000	15	0
13	17,9600	4.93498	19	0.76000	25	1506
14	18,9000	4.69161	21	0.00000	28	0
15	19.5400	4.53936	22	0.00000	29	0
16	20.8200	4.26308	28	1.30000	37	2537
17	21.3800	4.15267	26	0.00000	34	0
18	21.8000	4.07360	30	0.00000	39	0
19	22.2400	3.99400	25	0.00000	33	0
20	22.7000	3.91409	28	0.00000	37	0
21	23.6200	3.76368	26	0.00000	34	0
22	24.5800	3.61881	24	0.00000	31	0
23	25.0800	3.54779	20	0.00000	26	0
24	25.5800	3.47956	18	0.00000	23	0
25	25.9000	3.43729	15	0.00000	20	0
26	26.5400	3.35584	15	0.75200	20	947
27	27.3650	3.25651	5	0.07000	6	99
20	27.0300	3.20315	2	0.06000	-	30
29	30 2800	2 94932	7	0.12000	9	123
21	31 6826	2 93060		0.08500	10	96
32	32 5733	2 74673	ă	0.05330	5	36
33	32 9800	2 71378	9	0 12000	12	95
34	33,3600	2.68373	11	0.52000	14	219
35	33,5200	2,67128	11	0.12000	15	69
36	33,8800	2.64372	10	0.48000	13	395
37	34.9566	2.56472	8	0.11330	11	116
38	35.3200	2.53916	5	0.08000	6	70
39	36.7920	2.44088	37	0.86400	48	2087
40	37.7241	2.38269	31	0.74170	41	1406
41	38.5183	2.33536	9	0.25670	12	181

b. KATJ/MnO₂ (Basa)

		***		Basic Dat	a Process	•••			
a	COUD		g	tandard					
n	ata		ĩ.	stillmo2#					
				ac J #miloz #r	A DA				
#	Stro	ngest	з	peaks					
	no.	peak		2Theta	d	1/11	FWHM	Intensity	Integrated
		no.		(deg)	(A)	-	(deg)	(Counts)	(Counts)
	1	14		24.9200	3.57020	100	0.00000	93	0
	2	13		24.2400	3.66880	91	0.00000	85	0
	з	24		36.8400	2.43781	91	0.00000	85	0
		-							
Ŧ	reak	Data	Б	1SC		- /			
	1	реак		2Theta	a (1)	1/11	FWHM	Intensity (Country)	integrated
		no.		(deg)	(A)	-	(deg)	(Counce)	(Counts)
		1		11.3800	7.76934	39	1 31000	32	2022
		-		12,3800	7.33304	33	1.31000	31	3022
		4		14 9400	5 92506	13	0.00000	12	63
				16 5550	5.32506	14	0.17000	12	202
		6		17 8000	4 97898	24	0 69340	22	721
		7		18 6200	4 76152	34	1 16000	32	1435
		8		20.0800	4.41849	51	1.50000	47	3448
		9		21.0800	4 21109	5.8	0.00000	54	0
		10		22.7800	3.90052	78	0.00000	73	0
		11		23,6600	3.75740	84	0.00000	78	0
		12		23,9200	3.71715	89	0.00000	83	0
		13		24.2400	3.66880	91	0.00000	85	0
		14		24.9200	3.57020	100	0.00000	93	0
		15		26.2800	3.38845	75	1.05600	70	6431
		16		27.3250	3.26119	45	0.69000	42	1232
		17		28.1840	3.16371	22	0.59200	20	809
		18		29.3543	3.04019	14	0.07530	13	93
		19		31.1250	2.87115	9	0.13000	8	66
		20		32.0166	2.79320	11	0.11330	10	91
		21		33.3050	2.68803	17	0.35000	16	504
		22		34.9000	2.56875	37	0.61000	34	1183
		23		36.3400	2.47020	80	1.34660	74	4365
		24		36.8400	2.43781	91	0.00000	85	0
		25		37.5200	2.39518	65	0.00000	60	0
		26		38.6000	2.33061	38	0.92000	35	3251

c. KATJ/MnO₂ (Netral)

G	coup :	Standard						
Da	ata :	KATJ#MnO2#9	95oC					
#	Strongest	3 peaks						
	no. peak	2Theta	d	1/11	FWHM	Intensity	Integrated	Int
	no.	(deg)	(A)		(deg)	(Counts)	(Counts)	
	1 68	64.4384	1.44478	100	0.57910	112	3090	
	2 44	44.0533	2.05393	71	0.57330	79	2139	
	3 35	37.7633	2.38030	64	0.71330	72	2608	
Ħ	Peak Data	List						
	peak	2Theta	d	1/11	FWHM	Intensity	Integrated	Int
	no.	(deg)	(A)	-	(deg)	(Counts)	(Counts)	
	1	10.9200	8.09557	- 6	0.26660	7	118	
	2	11.4200	7.74222	19	0.44000	21	402	
	3	11.9550	7.39692	27	0.73000	30	846	
	4	12.7600	6.93202	23	1.00000	26	1458	
	5	13.8600	6.38423	18	0.00000	20	0	
	6	14.2800	6.19739	26	0.00000	29	0	
	7	15.2400	5.80910	26	0.00000	29	0	
	8	16.4000	5.40073	32	0.00000	36	0	
	9	16.8400	5.26059	35	0.00000	39	0	
	10	17.4600	5.07516	43	0.00000	48	0	
	11	18.4200	4.81277	42	0.00000	47	0	
	12	19.0200	4.66228	46	0.00000	51	0	
	13	20.0000	4.43598	47	0.00000	53	0	
	14	21.0600	4.21504	57	0.00000	64	0	
	15	21.4000	4.14883	51	0.00000	57	0	
	16	21.8800	4.05889	44	0.00000	49	0	
	17	22.3800	3.96933	50	0.00000	56	0	
	18	22.7600	3.90391	47	0.00000	53	0	
	19	23.3200	3.81141	52	0.00000	58		
	20	23.8000	3.73562	57	0.00000	64		
	21	24.5400	3.62462	45	0.00000	50	0	
	22	26.0000	3.42430	36	0.00000	40		
	23	26.4200	3.37081	27	0.66660	30	1363	
	24	27.3600	3.25710	18	0.20000	20	487	
	25	27.8000	3.20654	1	0.00000	8	0	
	26	28.6083	3.11775	10	0.71670	18	836	
	27	30.1000	2.96655	3	0.04000	3	27	
	28	31.4050	2.84619	16	0.33000	18	448	
	29	32.2700	2.77185		0.10000	8	32	
	30	32.0533	2.72395	13	0.26670	14	275	
	31	33.2200	2.69972	21	0.08000	9	221	
	32	33.9066	2.63717	21	0.57330	29	731	
	33	35.1800	2.56896	18	1 34000	20	709	
	34	36.4100	2.90001	57	1.34000	64	3/62	
	35	37.7633	2.38030	20	0.71330	72	2608	
	30	38.9000	2.31332	20	0.40000	22	470	

Lampiran 7. Data Hasil Karakterisasi UV-Vis

1. Pengaruh massa karbon aktif terhadap deposisi MnO₂

Sampel	Panjang gelombang (nm)	Absorbansi
KMnO ₄ 0,05 M	545,5; 525,5; 507,5; 317; 310	1,168; 1,213; 0,911; 0,844; 0,877
KATJ 0,2 g + KMnO ₄	230,00	4,800
KASP 0,4 g + KMnO ₄	220,00	4,400
KASP 0,6 g + KMnO ₄	220,00	4,200

2. Pengaruh konsentrasi KMnO4 terhadap deposisi MnO2

Sampel	Panjang gelombang (nm)	Absorbansi
$KATJ + KMnO_4 0,025 M$	220,00	4,400
$KATJ + KMnO_4 0,05 M$	210,00	4,400
$KATJ + KMnO_4 0, 1 M$	270,00	5,200

3. Pengaruh suhu terhadap deposisi MnO₂

Sampel	Panjang gelombang (nm)	Absorbansi
$KATJ + KMnO_4 (65 \ ^{\circ}C)$	204,545	2,600
KATJ + KMnO ₄ (80 °C)	204,545	3,000
$KATJ + KMnO_4 (95 °C)$	204,545	3,100

4. Pengaruh pH terhadap deposisi MnO₂

Sampel	Panjang gelombang (nm)	Absorbansi
KASP + KMnO ₄ (Netral)	194,7725	3,100
KASP + KMnO ₄ (Asam)	204,545	3,800
KASP + KMnO ₄ (Basa)	224,09	4,400