PENGARUH JUS UMBI BIT (BETA VULGARIS) TERHADAP KADAR HEMOGLOBIN DAN NILAI VO2MAX ATLET BULUTANGKIS

The Effect Of Beetroot Juice (Beta Vulgaris) On Hemoglobin Levels and VO2Max Badminton Athletes

SANREBAYU

PROGRAM PASCASARJANA UNIVERSITAS HASANUDDIN MAKASSAR 2020

PENGARUH JUS UMBI BIT (BETA VULGARIS) TERHADAP KADAR HEMOGLOBIN DAN NILAI VO2MAX ATLET BULUTANGKIS

Tesis

Sebagai Salah Satu Syarat untuk Mencapai Gelar Master

Program Studi Ilmu Kesehatan Masyarakat

Disusun dan diajukan oleh

SANREBAYU

PROGRAM PASCASARJANA UNIVERSITAS HASANUDDIN MAKASSAR 2020

TESIS

PENGARUH JUS UMBI BIT (BETA VULGARIS) TERHADAP KADAR HEMOGLOBIN DAN NILAI VO2MAX ATLET BULUTANGKIS

Disusun dan diajukan oleh

SANREBAYU Nomor Pokok K012172003

Telah dipertahankan di depan Panitia Ujian Tesis Pada tanggal 9 Maret 2020 dan dinyatakan telah memenuhi syarat

> Menyetujui Komisi Penasihat

Dr. Aminuddin Syam, SKM.,W.Kes.,M.Med.Ed

Ketua

Dr. Wahiduddin, SKM.,M.Kes

Anggota

Ketua Program Studi Magister Ilmu Kesehatan Masyarakat

Dr. Masni, Apt., MSPH

PERNYATAAN KEASLIAN TESIS

Yang bertanda tangan di bawah ini:

Nama : Sanrebayu

Nomor Mahasiswa : K012172003

Program Studi : Ilmu Kesehatan Masyarakat

Menyatakan dengan dengan sebenarnya bahwa tesis yang saya tulis ini merupakan hasil karya saya. Seluruh ide yang ada dalam tesis ini, kecuali yang saya nyatakan sebagai kutipan, merupakan ide yang saya susun sendiri. Selain itu, tidak ada bagian dari tesis ini yang telah saya gunakan sebelumnya untuk memperoleh gelar atau sertifikat akademik.

Apabila dikemudian hari terbukti atau dapat dibuktikan bahwa sebagian atau keseluruhan tesis ini karya orang lain, saya bersedia menerima sanksi perbuatan tersebut.

Makassar, Mei 2020 Yang menyatakan

Sanrebayu

PRAKATA

Puji syukur penulis panjatkan kehadirat Allah SWT, atas segala limpahan kasih karunia, berkat dan tuntunan-Nya yang telah diberikan kepada penulis sehingga penulis dapat menyelesaikan tesis dengan judul "Pengaruh Jus Umbi Bit (*Beta Vulgaris*) Terhadap Kadar Hemoglobin dan Nilai VO2Max Atlet Bulutangkis".

Tesis ini disusun untuk memenuhi persyaratan dalam menyelesaikan studi di Program Studi Pascasarjana Ilmu Kesehatan Masyarakat Universitas Hasanuddin Makassar. Penyusunan tesis ini tidak akan terselesaikan tanpa bantuan dan kerjasama dari berbagai pihak. Oleh karena itu dengan penuh rasa hormat, penulis ucapkan terima kasih kepada Bapak Dr. Aminuddin Syam, SKM., M.Kes., M.Med.Ed selaku Pembimbing I dan Bapak Dr. Wahiduddin, SKM., M.Kes selaku pembimbing II, yang telah meluangkan waktunya dalam membimbing, memberikan arahan dan masukan ide yang sangat bermanfaat sejak proses awal hingga akhir penyusunan tesis ini kepada penulis. Melalui pemikiran-pemikirannya yang segar, konsisten dan kritis penulis mendapatkan masukan yang sangat berharga. Ucapan terima kasih juga diucapkan penulis kepada Bapak Prof. dr. Veni Hadju, M.Sc., Ph.D selaku Penguji I, Bapak Prof. Dr. Saifuddin Sirajuddin, MS selaku Penguji II, Bapak Dr. rer.nat Zainal, STP., M.Food.Tech selaku Penguji III yang selama ini telah meluangkan waktu, perhatian, dan banyak memberikan saran dalam perbaikan tesis ini.

Secara khusus juga penulis ucapkan terima kasih yang sebesarbesarnya kepada orang tua tercinta Ayahanda **Drs. Masnun Basri, S.Sos** dan Ibunda **Hj. Andi Ratnawaty** yang selalu mendoakan, mendidik dan membesarkan penulis dengan penuh kasih sayang, dukungan moril dan materil serta bimbingan yang tak pernah berhenti diberikan selama ini kepada penulis. Dengan selesainya tesis ini, penulis juga mengucapkan terima kasih serta penghargaan setinggi-tingginya kepada:

- Ibu Rektor Universitas Hasanuddin Prof. Dr. Dwia A. Palubuhu, M.A, yang telah memberikan kesempatan kapada penulis untuk melanjutkan pendidikan di Program Pascasarjana Universitas Hasanuddin.
- Bapak dekan Dr. Aminuddin Syam, SKM., M.Kes., M.Med.Ed yang telah memberikan kesempatan dan memberikan arahan selama penulis menempuh pendidikan di Program Pascasarjana Fakultas Kesehatan Masyarakat.
- 3. Ketua Program Studi Ilmu Kesehatan Masyarakat, Ibu Dr. Masni, Apt., MSPH yang telah memberikan kesempatan dan memberikan arahan selama penulis menempuh pendidikan di Program Pascasarjana Fakultas Kesehatan Masyarakat.
- 4. Seluruh dosen dann staf pengajar di Fakultas Kesehatan Masyarakat Universitas Hasanuddin yang telah memberikan ilmu yang luar biasa sangat bermanfaat kepada penulis selama menempuh pendidikan.
- Staf akademik S2 Fakultas Kesehatan Masyarakat Universitas Hasanuddin, Pak Rahman dan Staf akademik S2 Prodi Gizi Kak Sri yang telah memberikan kritik, saran dan arahan selama proses penyusunan tesis ini.
- 6. Atlet bulutangkis BKMF FIK UNM yang telah membantu dan meluangkan waktunya untuk ikut serta dalam pelaksanaan penelitian ini.
- Keluarga dan saudara saya yang selalu memberikan semangat, motivasi maupun dukungan secara moril dan materil selama penulis menempuh pendidikan di Program Pascasarjana Universitas Hasanuddin.
- Teman-teman seperjuangan di Program Pascasarjana Prodi Gizi Angkatan 2017 yang telah banyak membantu selama perkuliahan dengan memberikan dukungan, motivasi, bimbingan, serta kebersamaan selama ini.

9. Semua pihak yang tidak dapat penulis sebutkan satu persatu, yang turut membantu dalam penyusunan tesis ini. Penulis menyadari bahwa tesis ini masih jauh dari kata sempurna oleh karena itu, penulis berharap saran dan kritik yang membangun demi penyempurnaan tesis ini. Akhir kata semoga Allah SWT senantiasa melimpahkan rahmat-Nya kepada kita semua dan apa yang disajikan dalam tesis ini dapat bermanfaat bagi kita semua.

Makassar, Mei 2020

Penyusun

ABSTRAK

SANREBAYU, Pengaruh Jus Umbi Bit (Beta Vulgaris) Tehadap Kadar Hemoglobin dan Nilai VO2Max Atlet Bulutangkis. (Dibimbing oleh **Aminuddin Syam** dan **Wahiduddin**).

Salah satu sumber pangan yang dapat dijadikan makanan atau minuman khusus atlet sebagai penambah daya tahan adalah umbi bit. Umbi bit tinggi kandungan nitrat dan zat besi yang mempengaruhi Kadar Hemoglobin dan nilai VO2Max yang penting bagi stamina atlet. Penelitian bertujuan menganalisis pengaruh jus umbi bit terhadap kadar Hemoglobin dan nilai VO2Max atlet bulutangkis.

Jenis penelitian *true eksperiment* dengan pendekatan *pretest-postest control group design.* Subjek penelitian 36 atlet bulutangkis, dibagi menjadi tiga kelompok yaitu kelompok 300 ml, kelompok 200 ml dan kelompok kontrol. Kadar Hemoglobin diperiksa menggunakan Hemoglobin meter dan nilai VO2Max diukur dengan metode *Multistage Fitness Test* (MFT). Analisis data menggunakan uji *paired t-test*, *independent sample t-test*, *repeated ANOVA* dan *one way ANOVA*.

Hasil uji *repeated ANOVA* kadar Hb setelah intervensi pada kelompok kontrol (p=0,001), kelompok 200 ml (p=0,001), dan kelompok 300 ml (p=0,002). Hasil uji *one-way ANOVA* pada kadar Hb setelah intervensi (p=0,003<0,05). Hasil uji *paired t-test* pada nilai VO2Max setelah intervensi pada kelompok kontrol (p=0,007), kelompok 200 ml (p=0,007), kelompok 300 ml (p=0,001). Hasil uji *one-way ANOVA* nilai VO2Max setelah intervensi adalah (p=0,008<0,05). Dapat disimpulkan bahwa jus umbi bit berpengaruh terhadap kadar Hb dan Nilai VO2Max Atlet, namun lebih tinggi peningkatan kadar Hb pada kelompok 200 ml dan lebih tinggi peningkatan Nilai VO2Max Pada Kelompok 300 ml. Pada penelitian lanjutan perlu adanya pengaturan asupan makan atlet.

Kata kunci: Jus, Umbi Bit, Atlet, Hemoglobin, VO2Max

ABSTRACT

SANREBAYU, The Effect of Beetroot Juice (Beta Vulgaris) on Hemoglobin Levels and VO2Max Badminton Athletes. (Supervised by **Aminuddin Syam** and **Wahiduddin**).

One food source that can be used as food or drink for athletes as an added endurance is the beetroot. Beetroot high in nitrate and iron content which affect Hemoglobin levels and VO2Max values which are important for athlete's stamina. The study to analyze effect of beetroot juice on hemoglobin levels and the VO2Max value of badminton athletes.

This research true experiment with pretest-posttest control group design. Research subjects 36 badminton athletes, divided into three groups namely 300 ml group, 200 ml group and control group. Hemoglobin levels examined using a Hemoglobin meter and VO2Max values measured by the Multistage Fitness Test (MFT) method. Data analysis used paired t-test, independent sample t-test, repeated ANOVA and one-way ANOVA.

Results of repeated ANOVA Hb levels after intervention control group (p = 0.001), 200 ml group (p = 0.001), and 300 ml group (p = 0.002). One-way ANOVA test results on Hb levels after intervention (p = 0.003 <0.05). Paired t-test results on VO2Max values after intervention in control group (p = 0.007), 200 ml group (p = 0.007), 300 ml group (p = 0.001). Results one-way ANOVA VO2Max value after intervention (p = 0.008 <0.05). The conclusion beetroot juice had an effect on Hb levels and VO2Max value athletes, but higher increase in Hb levels in 200 ml group and a higher increase in VO2Max values in 300 ml group. Further research there needs to be an athlete's dietary intake.

Keywords: Juice, Beetroot, Athletes, Hemoglobin, VO2Max

DAFTAR ISI

HALAMAN JUDUL	i
HALAMAN PENGAJUAN	ii
LEMBAR PENGESAHAN	iii
PERNYATAAN KEASLIAN TESIS	iv
PRAKATA	v
ABSTRAK	ix
ABSTRACT	x
DAFTAR ISI	viii
DAFTAR TABEL	xii
DAFTAR GAMBAR	xiii
DAFTAR LAMPIRAN	xiv
DAFTAR SINGKATAN	χv
BAB I PENDAHULUAN A. Latar Belakang B. Rumusan Masalah C. Tujuan Penelitian D. Manfaat Penelitian	1 1 7 7 8
BAB II TINJAUAN PUSTAKA A. Pengertian dan Fungsi Hemoglobin (Hb) B. Tinjauan Umum Kardiorespirasi C. Pengukuran Daya Tahan VO2Max D. Tinjauan Umum Jus Umbi Bit (<i>Beta Vulgaris</i>) E. Pentingnya Daya Tahan Pada Atlet F. Penelitian Terkait Jus Umbi Bit G. Kerangka Teori H. Kerangka Konsep I. Hipotesis Penelitian J. Definisi Operasional	9 9 11 21 24 30 32 36 37 38 38
BAB III METODE PENELITIAN A. Jenis dan Desain Penelitian B. Lokasi dan Waktu Penelitian C. Populasi dan Sampel	40 40 42

D. Alat dan Bahan PenelitianE. Prosedur PenelitianF. Alur PenelitianG. Teknik Analisis DataH. Etika Penelitian	44 45 49 50 51
BAB IV HASIL DAN PEMBAHASAN A. Hasil Penelitian B. Pembahasan	52 52 62
BAB V PENUTUP A. Kesimpulan B. Saran	72 72 73
DAFTAR PUSTAKA LAMPIRAN	74 80

DAFTAR TABEL

Tabel		Hal
Tabel 2.1	Klasifikasi Nilai Kadar Hemoglobin	11
Tabel 2.2	Rata-rata Volume dan Kapasitas Paru (Usia 20-30 th)	16
Tabel 2.3	Norma Multistage Fitness Test/Tes Bleep	22
Tabel 2.4	Klasifikasi Kadar VO2Max (ml/kg/menit)	24
Tabel 2.5	Kandungan Umbi Bit	27
Tabel 2.6	Kandungan Gizi Umbi Bit / 100 g	29
Tabel 2.7	Rentang Kadar Nitrat dari Berbagai Sayuran	29
Tabel 2.8	Komponen Fisik Dasar Cabang Olahraga Bulutangkis	32
Table 2.9	Sintesa Penelitian	33
Tabel 4.1	Karakteristik Subjek Penelitian Pada Ketiga Kelompok	53
Tabel 4.2	Hasil Analisis Kadar Hemoglobin Pada Atlet Bulutangkis Sebelum dan Setelah Perlakuan Pada Kelompok Perlakuan dan Kelompok Kontrol	54
Tabel 4.3	Hasil Uji Analisis Kadar Hemoglobin Post Hoc Test LSD	56
Tabel 4.4	Hasil Analisis Kadar Hemoglobin Pada Kelompok 300 ml dan Kelompok 200 ml	56
Tabel 4.5	Hasil Analisis Nilai VO2Max Atlet Bulutangkis Sebelum dan Setelah Perlakuan Pada Kelompok Perlakuan dan kelompok Kontrol	58
Tabel 4.6	Hasil Analisis Nilai VO2Max Pada Kelompok 300 ml dan Kelompok 200 ml	59
Table 4.7	Gambaran Variabel Perancu Selama Intervensi Pada Kelompok Kontrol dan Perlakuan	61

DAFTAR GAMBAR

Gambar		Hal
Gambar 2.1	Sstem Sirkulasi Jantung dan Paru	13
Gambar 2.2	Umbi Bit (Beta Vulgaris)	25
Gambar 2.3	Kerangka Teori	37
Gambar 2.4	Kerangka Konsep	37
Gambar 3.1	Desain Penelitian	41
Gambar 3.2	Prosedur Penelitian	45
Gambar 3.3	Alur Penelitian	49
Gambar 4.1	Rerata Perubahan Kadar Hb Sebelum dan Setelah Perlakuan	57
Gambar 4.2	Rerata Perubahan Nilai VO2Max Sebelum dan Setelah Perlakuan	60

DAFTAR LAMPIRAN

Lampiran	Hal
Lampiran 1 : Jadwal Kegiatan Penelitian	80
Lampiran 2 : Lembar Penjelasan Penelitian	81
Lampiran 3 : Lembar Persetujuan	84
Lampiran 4 : Blangko Kriteria Responden	86
Lampiran 5 : Blangko Pencatatan MFT	87
Lampiran 6 : Formulir Food Recall	88
Lampiran 7 : Etik Penelitian	91
Lampiran 8 : Surat Izin Penelitian	92
Lampiran 9 : Surat Keterangan Telah Menyelesaikan Penelitian	93
Lampiran 10 : Master Tabel Penelitian	94
Lampiran 11: Output SPSS Penelitian	100
Lampiran 12 : Dokumentasi Penelitian	121
Lampiran 13: Riwayat Hidup	127

DAFTAR SINGKATAN

BB : Berat Badan

BKMF : Biro Kegiatan Mahasiswa Fakultas

Cm : Sentimeter

CO : Karbon Monoksida

COPD : Chronic Obstuctive Pulmonary Disease

CD : Compact Disk

dl : Desiliter

GOR : Gedung Olahraga

Hb : Hemoglobin

IMT : Indeks Massa Tubuh

kkal : Kilokalori

LDL : Low Density Lipoprotein

MFT : Multistage Fitness Test

Mmol : Milimol

Mg : Miligram

NO : Nitrogen Monoksida

NO₂ : Nitrogen Dioksida

O₂ : Oksigen

SPSS : Statistical Package for The Social Sciences

TB : Tinggi Badan

UNM : Universitas Negeri Makassar

μg : Mikrogram

VO2Max : Konsumsi Oksigen Maksimal

VO2 : Ambilan Oksigen Paru

WHO : World Health Organization

BAB I PENDAHULUAN

A. Latar Belakang

Keinginan kuat untuk memenangkan suatu pertandingan olahraga yang di tekuni oleh atlet, baik itu untuk kebanggaan diri sendiri, keluarga, maupun Negara, menyebabkan seorang atlet, pelatih atau orang tua atlet itu sendiri menghalalkan segala cara untuk dapat memenangkan pertandingan.

Seorang atlet dituntut untuk selalu memiliki stamina yang tidak cepat lelah. Namun pada kenyataannya tak sedikit atlet yang mengalami penurunan stamina selama bertanding dalam waktu yang cukup singkat sehingga hal ini dapat menurunkan prestasi seorang atlet. Indikator penurunan prestasi dapat dilihat dari tingkat kebugaran jasmani atlet saat bertanding. Secara kuantitatif kebugaran jasmani atlet dapat diukur melalui ketahanan kardiorespirasi selama aktivitas olahraga dilakukan (Hasan S, 2008).

Ketahanan kardiorespirasi adalah kemampuan jantung, paru, dan pembuluh darah untuk berfungsi secara optimal pada waktu kerja mengambil oksigen secara maksimal (VO2Max) dan menyalurkannya keseluruh tubuh terutama pada jaringan aktif sehingga dapat digunakan untuk proses metabolisme tubuh. Untuk mengukur daya tahan kardioresprasi dapat dilakukan dengan cara mengukur konsumsi oksigen maksimal. VO2Max adalah jumlah maksimal oksigen yang dapat

dikonsumsi selama aktivitas fisik yang intens sampai terjadi kelelahan. Pengukuran VO2Max dapat digunakan untuk menganalisis tingkat stamina seorang atlet (Maqsalmina, 2007, Irawan, 2007, Dieny et al, 2017).

Ketahanan kardiorespirasi pada laki-laki mencapai puncaknya pada umur 18-25 tahun bersamaan dengan puncak pertumbuhan massa otot (Jelalian et al, 2008). Ketahanan kardiorespirasi pada seorang laki-laki dikatakan baik jika memperoleh nilai VO2Max 44-52,9 ml/kg/menit (Haqberg et al, 2001). Beberapa penelitian menunjukkan bahwa daya tahan kardiorespirasi seorang atlet remaja di Indonesia belum cukup baik. Penelitian yang dilakukan oleh Permadi, 2017, survey daya tahan VO2Max pada atlet bulutangkis menunjukkan hasil yang dikategorikan sedang dengan rata-rata nilai VO2Max sebesar 38,49 ml/kg/menit. Persentase daya tahan masing-masing atlet yaitu, 20% kategori baik, 30% kategori sedang, 20% kategori kurang, dan 30% dengan kategori sangat kurang.

Selain daya tahan kardiorespirasi, faktor lain yang dapat memengaruhi performa seorang atlet adalah keadaan anemia pada atlet. Anemia adalah suatu kondisi dengan kadar Hemoglobin (Hb) dalam darah kurang dari normal atau dibawah angka normal. Anemia yang berhubungan dengan penurunan kapasitas aerobik adalah anemia karena kekurangan zat besi. Zat besi berperan penting dalam produksi energi secara oksidatif. Salah satu zat besi yang digunakan untuk

produksi energi adalah Hemoglobin (Hb). Hemoglobin berfungsi sebagai transport dan penggunaan oksigen. Defisiensi zat besi memengaruhi kapasitas bawaan oksigen (VO2Max) terutama pada defisiensi besi yang parah dimana kadar Hemoglobin sangat rendah. Penurunan daya tahan kardiorespirasi (VO2Max) ini akan meyebabkan gangguan kapasitas aerobik terutama pada saat aktivitas fisik atau latihan yang dengan durasi lama sehingga akan mudah lelah yang diakibatkan berkurangnya suplai oksigen dalam otot dan terbentuknya asam laktat yang dapat menyababkan atau menimbulkan kelelahan pada otot (Haas, 2001).

Salah satu faktor yang dapat memengaruhi tingkat kesegaran jasmani seseorang adalah kadar Hb. Untuk meningkatkan kadar Hb, diperlukan lebih banyak konsumsi zat besi sebagai pembentuk Hb darah. Ada beberapa faktor yang mendukung pembentukan Hb oleh zat besi, salah satunya adalah seng yang memiliki peran membentuk transferrin sebagai alat transportasi zat besi ke tempat yang membutuhkan (Putri et al., 2012). Rendahnya kadar Hb seseorang memiliki dampak yang buruk bagi kesegaran jasmani seseorang, karena untuk beraktivitas diperlukan cukup Hb untuk mengikat O2 di udara. Oleh karena itu, zat besi dan seng merupakan zat gizi yang penting untuk Hb dan kesegaran jasmani.

Hemoglobin memiliki peran penting dalam daya tahan kardiorespirasi yaitu sebagai pembawa oksigen dari paru-paru kemudian disalurkan keseluruh jaringan tubuh. Hemoglobin memiliki peran sebagai pengirim oksigen ke seluruh jaringan sehingga memengaruhi nilai VO2Max

(Gibson, 2005, Beard dan tobin, 2000). Penelitian yang dilakukan oleh Huldani menyebutkan bahwa pada kelompok yang memiliki Hb normal rata-rata memiliki nilai VO2Max sebesar 47,59 ml/kg/menit, lebih tinggi dibandingkan dengan rata-rata nilai VO2Max pada kelompok yang memiliki kadar Hemoglobin rendah yaitu 37,84 ml/kg/menit (Huldani, 2010).

Selain kadar Hemoglobin (Hb) ada berbagai faktor lain yang dapat memengaruhi menurunnya VO2Max, antara lain yaitu latihan terprogram, gizi atlet, cuaca saat pertandingan, dan kondisi kesehatan atlet itu sendiri. Faktor gizi pada seorang atlet sangat memengaruhi dalam mencapai prestasi. Pemberian makanan atau minuman khusus juga penting untuk meningkatkan VO2Max bagi seorang atlet. Salah satu zat yang dapat mengoptimalkan kadar VO2Max adalah kandungan nitrat yang terdapat pada bahan makanan. Umbi Bit adalah salah satu sumber pangan yang memiliki kandungan nitrat yang tinggi (Dieny et al., 2017).

Pemanfaatan umbi bit (Beta vulgaris) dalam bidang olahraga masih sedikit bahkan sangat jarang seorang atlet mengetahui tentang manfaat umbi bit. Salah satu potensi atau manfaat umbi bit yang belum dimanfaatkan dalam bidang gizi olahraga adalah umbi bit mampu meningkatkan stamina seorang atlet dengan indikasi bahwa umbi bit mampu meningkatkan VO2Max seorang atlet dengan kandungan nitrat yang secara biologis memengaruhi regulator pemanfaatan O2 oleh

kontraktor otot sehingga distribusi O2 sesuai dengan kebutuhan otot (Dieny et al., 2017).

Umbi bit merupakan salah satu bahan makanan yang banyak mengandung nitrat. Umbi yang berasal dari tanaman bit (Beta vulgaris) mempunyai warna merah keunguan yang khas karena adanya pigmen betalain. Beberapa penelitian telah membuktikan pengaruh umbi bit terhadap ambilan oksigen paru (VO2). Penelitian yang dilakukan pada tahun 2010 di Inggris yang menyatakan bahwa konsumsi nitrat inorganic (5,1 mmol nitrat/hari) dalam bentuk 500 ml sari umbi bit selama 6 hari dapat menurunkan ambilan oksigen paru (VO2) pada olahraga intensitas berat sehingga dapat menunda waktu kelelahan pada seorang atlet (Safitri., 2015).

Penelitian yang dilakukan oleh Bailey et al menyatakan bahwa umbi bit mampu meningkatkan VO2Max pada subjek 8 laki-laki sehat (bukan atlet) berusia 19-38 tahun setelah mengonsumsi 500 ml umbi bit/hari selama 6 hari (Bailey et al, 2019). Penelitian yang dilakukan oleh Fillah Fithra Dieny et al menyatakan bahwa tidak ada pengaruh yang cukup signifikan terhadap pemberian sari umbi bit terhadap VO2Max dan kadar Hb, namun peningkatan VO2Max pada kelompok yang mengonsumsi umbi bit 300 ml lebih besar dibandingkan kelompok yang mengonsumsi umbi bit 200 ml (Dieny et al, 2017). selain kandungan nitrat yang terdapat pada umbi bit, umbi bit juga mengandung vitamin dan mineral yaitu zat besi, asam folat dan vitamin C yang dapat meningkatkan kadar Hb

seorang atlet (Cermak et al, 2012, Christensen et al, 2013). Penelitian yang dilakukan A.M Jones mengatakan suplementasi nitrat atau jus umbi bit dapat meningkatkan kinerja olahraga pada atlet caliber moderate dan individu diantara populasi elit (Jones, 2014).

Berdasarkan uraian latar belakang tersebut, peneliti tertarik untuk meneliti pengaruh jus umbi bit terhadap kadar Hemoglobin dan nilai VO2Max seorang atlet. Penelitian ini dilakukan pada atlet bulutangkis. Peneliti mengambil atlet bulutangkis sebagai sampel karena di Indonesia olahraga bulutangkis banyak digemari dari berbagai kalangan baik dari anak-anak hingga orang tua, dan merupakan salah satu olahraga yang seringkali membawa nama Indonesia sebagai juara adalah olahraga bulutangkis, dan untuk di Kota Makassar sendiri saat ini sangat banyak atlet bulutangkis mulai dari anak-anak, remaja, hingga dewasa namun tidak semua dari atlet tersebut menjaga staminanya dengan baik sehingga banyak atlet bulutangkis khususnya di Kota Makassar yang sulit meraih prestasi atau juara saat bertanding. Kemampuan bermain atlet yang bagus tidak akan bertahan lama jika daya tahan yang dimilikinya buruk, yang salah satu penyebabnya adalah zat gizi yang tidak cukup menunjang aktivitas berlatih atlet. Hal ini menunjukkan bahwa kemampuan teknik dan taktik yang baik tidak akan sempurna jika tidak diimbangi dengan kecukupan zat gizi penunjang yang secara langsung berperan pada performa daya tahan, sehingga atlet tidak hanya baik dalam daya tahannya namun juga terjaga kesehatannya.

B. Rumusan Masalah

- 1. Apakah terdapat perbedaan kadar Hemoglobin (Hb) atlet bulutangkis sebelum dan setelah konsumsi jus umbi bit ?
- 2. Apakah terdapat perbedaan kadar Hemoglobin (Hb) atlet bulutangkis mengonsumsi 200 ml dan 300 ml jus umbi bit ?
- 3. Apakah terdapat perbedaan nilai VO2Max atlet bulutangkis sebelum dan setelah konsumsi jus umbi bit ?
- 4. Apakah terdapat perbedaan nilai VO2Max atlet bulutangkis mengonsumsi 200 ml dan 300 ml jus umbi bit ?

C. Tujuan Penelitian

1. Tujuan Umum

Menganalisis pengaruh jus umbi bit (Beta Vulgaris) terhadap kadar Hemoglobin (Hb) dan nilai VO2Max atlet bulutangkis BKMF FIK UNM.

2. Tujuan Khusus

- a. Menganalisis perbedaan kadar Hemoglobin (Hb) atlet bulutangkis sebelum dan setelah perlakuan pemberian jus umbi bit.
- b. Menganalisis perbedaan kadar Hemoglobin (Hb) kelompok konsumsi200 ml dan 300 ml jus umbi bit.
- Menganalisis perbedaan nilai VO2Max atlet bulutangkis sebelum dan setelah perlakuan pemberian jus umbi bit.
- d. Menganalisis perbedaan nilai VO2Max kelompok konsumsi 200 ml
 dan 300 ml jus umbi bit.

D. Manfaat Penelitian

1. Manfaat Ilmiah

Penelitian ini dapat memberikan informasi tentang manfaat jus umbi bit sebagai salah satu pangan fungsional yang dapat dikonsumsi sebagai minuman yang dapat menjaga stamina dan meningkatkan daya tahan kardiorespirasi.

2. Manfaat Praktis

Melalui pemanfaatan jus umbi bit atlet bulutangkis dapat meningkatkan stamina ditandai dengan kadar Hemoglobin dan VO2Max yang optimal.

BAB II TINJAUAN PUSTAKA

A. Pengertian Dan Fungsi Hemoglobin (Hb)

Hemoglobin merupakan suatu protein yang kompleks, yang tersusun dari protein globin dan suatu senyawa bukan protein yang dinamai hem (Sadikin, 2001). Sedangkan menurut (Supariasa et al, 2001) menyatakan bahwa Hemoglobin adalah indikator yang digunakan secara luas untuk menetapkan prevalensi anemia. Hemoglobin merupakan senyawa pembawa oksigen pada sel darah merah. Hemoglobin dapat diukur secara kimia dan jumlah Hb/100 ml darah dapat digunakan sebagai indeks kapasitas pembawa oksigen pada darah. Kandungan Hemoglobin yang rendah dengan demikian mengindikasikan anemia. Hemoglobin adalah protein yang kaya akan zat besi, memiliki afinitas (daya gabung) terhadap oksigen dan dengan oksigen itu membentuk oxiHemoglobin di dalam sel darah merah. Dengan melalui fungsi ini maka oksigen di bawa dari paruparu ke jaringan-jaringan (Evelyn, 2000).

Dalam sel darah merah Hemoglobin berfungsi untuk mengikat oksigen (O2). Dengan banyaknya oksigen yang dapat diikat dan dibawa oleh darah, dengan adanya Hb dalam sel darah merah, pasokan oksigen ke berbagai tempat di seluruh tubuh, bahkan yang paling terpencil dan terisolasi sekalipun akan tercapai (Sadikin, 2001). Sedangkan menurut Sunita (2001), Hemoglobin di dalam darah membawa oksigen dari paruparu ke seluruh jaringan tubuh dan membawa kembali karbondioksida dari

seluruh sel ke paru-paru untuk di keluarkan dari tubuh. Mioglobin berperan sebagai reservoir oksigen menerima, menyimpan, dan melepas oksigen di dalam selsel otot. Sebanyak kurang lebih 80% besi tubuh berada di dalam Hemoglobin (Sunita, 2001).

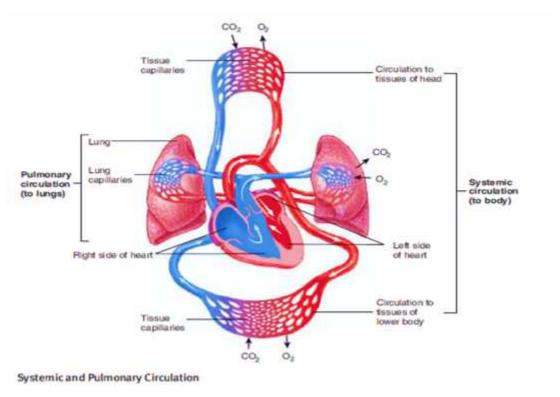
Menurut Arthur C. Guyton dan John E. Hall (1997), sintesis Hemoglobin dimulai dalam proeritoblas dan kemudian dilanjutkan sampai tingkat retikulosit, karena ketika retikulosit meninggalkan sumsum tulang dan masuk ke dalam aliran darah, maka retikulosit tetap membentuk Hemoglobin selama beberapa hari berikutnya. Tahap dasar kimiawi pembentukan Hemoglobin adalah yang pertama, suksinil-KoA, yang dibentuk dalam siklus krebs berikatan dengan klisin untuk membentuk molekul pirol. Selanjutnya, empat senyawa pirol bersatu membentuk senyawa protoporfirin, yang kemudian berikatan dengan besi membentuk molekul hem. Akhirnya empat molekul hem berikatan dengan satu molekul globin, suatu globulin yang disintesis dalam ribosom reticulum endoplasma, membentuk Hemoglobin.

Nilai normal yang paling sering dinyatakan adalah untuk pria 14-18 gm/100 ml dan untuk wanita 12-16 gm/100 ml (gram/100 ml sering disingkat dengan gm% atau gr/dl). Beberapa literatur lain menunjukkan nilai yang lebih rendah, terutama pada wanita, sehingga mungkin pasien sering tidak dianggap menderita anemia sampai Hb kurang dari 13 gr/100 ml pada pria dan 11 gr/100 ml untuk wanita (Supariasa et al., 2001). Kadar Hemoglobin seseorang memang sangat sulit ditentukan karena

dipengaruhi oleh ras suku bangsa, jenis kelamin dan umur, namun badan WHO telah menetapkan kadar Hemoglobin normal dapat dilihat pada Tabel 2.1:

Tabel 2.1 Klasifikasi Nilai Kadar Hemoglobin

Kelompok Umur / Jenis Kelamin	Konsentrasi Hemoglobin (gr/dl)
6 bulan – 5 tahun	11,0
5 tahun – 11 tahun	11,5
12 tahun – 13 tahun	12,0
Pria Dewasa	13,0
Ibu Hamil	11,0
Wanita Dewasa	12,0


Sumber: WHO/UNICEF/UNU, 1997

B. Tinjauan Umum Kardiorespirasi

Daya tahan kardiorespirasi adalah kesanggupan sistem jantung, paru, dan pembuluh darah untuk berfungsi secara optimal pada keadaan istirahat dan kerja dalam mengambil oksigen dan menyalurkannya ke jaringan yang aktif sehingga dapat digunakan pada proses metabolisme tubuh (Departemen Kesehatan Republik Indonesia Direktorat Jenderal Pembinaan Kesehatan Masyarakat Bina Upaya Kesehatan Puskesmas, 1994). Daya tahan kardiorespirasi merupakan komponen terpenting dari kesegaran jasmani (Len Kravitz, 1997). Blain berpendapat daya tahan kardiorespirasi yang tinggi menunjukkan kemampuan untuk bekerja yang tinggi, yang berarti kemampuan untuk mengeluarkan sejumlah energi yang cukup besar dalam periode waktu yang lama (Pradono, 1999). Daya

tahan kardiorespirasi disebut juga aerobik capacity. Dalam laboratorium pengukuran yang paling objektif dilakukan dengan menghitung ambilan maksimal O2 (VO2Max) (Effendi, 1983).

Daya tahan adalah kemampuan peralatan tubuh seseorang untuk melawan kelelahan selama aktifitas berlangsung. Latihan ketahanan memiliki pengaruh terhadap kualitas sistem cardiovasculer, pernafasan, dan sistem peredaran darah sehingga proses pemenuhan energi selama aktifitas dapat berlangsung dengan lancar. Atlet yang memiliki daya tahan baik mampu bekerja lebih lama dan tidak cepat merasa lelah. Faktor yang memengaruhi daya tahan adalah cardiovascular dan otot-otot jantung, paru-paru dalam melaksanakan latihan atau pertandingan (Agung Nugroho, 2001). Dengan demikian latihan daya tahan akan memberikan pengaruh positif terhadap kualitas cardiovascular, pernafasan dan sistem peredaran darah seorang atlet. Atlet yang memiliki komponen ketahanan yang baik, selain mampu bekerja lebih lama dan tidak mudah mengalami kelelahan juga dapat lebih cepat dalam merecovery dirinya (K.Adina, 2012).

Gambar 2.1 Sistem sirkulasi jantung dan paru Sumber : labspace.open.ac.uk

Menurut (Arthur C. Guyton, 1989), ada 4 macam volume dan 4 macam kapasitas, yaitu;

a) Macam-macam volume paru-paru:

- (1) Tidal volume adalah volume udara yang diinspirasikan dan diekspirasikan dengan setiap pernafasan normal, dan jumlahnya kirakira 500 ml pada pria dewasa muda yang normal.
- (2) Volume cadangan inspirasi adalah volume tambahan udara yang dapat di inspirasikan diatas tidal volume normal, dan biasanya sama dengan kira-kira 3000 ml pada pria dewasa muda.

- (3) Volume cadangan ekspirasi adalah jumlah udara yang masih dapat dikeluarkan dengan ekspirasi kuat setelah akhir suatu ekspirasi tidal yang normal: jumlahnya kira-kira 1100 ml pada pria dewasa muda.
- (4) Volume residual adalah volume udara yang masih tersisa didalam paru-paru setelah ekspirasi kuat. Volume ini rata-rata sekitar 1200 ml pada pria dewasa muda.

b) Macam-macam kapasitas paru-paru:

- (1) Kapasitas inspirasi adalah tidal volume ditambah dengan volume cadangann spirasi. Ini adalah jumlah udara (kira-kira 3500 ml) yang dapat dihirup oleh seseorang mulai pada tingkat ekspirasi normal dan mengembangkan paru-parunya sampai jumlah maksimum.
- (2) Kapasitas residual fungsional adalah volume cadangan ekspirasi ditambah volume residual. Ini adalah jumlah udara yang tersisa didalam paru-paru pada akhir ekspirasi normal (kira-kira 2300 ml).
- (3) Kapasitas vital adalah volume cadangan ekspirasi ditambah tidal volume dan volume cadangan ekspirasi. Ini adalah jumlah udara maksimum yang dapat dikeluarkan dari paru-paru seseorang setelah mengisinya sampai batas maksimum dan kemudian mengeluarkan sebanyak-banyaknya (kira-kira 4600 ml).
- (4) Kapasitas total paru-paru adalah volume maksimum pengembangan paruparu dengan usaha inspirasi yang sebesar-besarnya (kira-kira 5800 ml). Semua volume dan kapasitas paru-paru wanita kira-kira 20 sampai 25 persen dibawah pria, dan pasti lebih besar pada orang

yang bertubuh besar dan atlet daripada orang yang bertubuh kecil dan astenik. Ventilasi paru-paru normal hampir sepenuhnya dilakukan oleh otot-otot inspirasi. Pada waktu otot inspirasi berelaksasi, sifat elastik paru-paru dan toraks menyebabkan paru-paru mengempis secara pasif. Apabila semua otot inspirasi sama sekali berelaksasi, paru-paru kembali keadaan relaksasi yang disebut tingkat ekspirasi istirahat. Volume udara didalam paru-paru pada tingkat ini sama dengan kapasitas residual fungsional, atau kira-kira 2300 ml pada pria dewasa muda. Pada orang normal, volume udara didalam paru-paru terutama tergantung kepada ukuran dan bentuk tubuh. Berbagai volume dan kapasitas berubah dengan posisi tubuh, kebanyakan berkurang bila orang tersebut berbaring dan bertambah ia berdiri. Perubahan dengan posisi ini disebabkan oleh dua faktor utama: pertama, suatu kecenderungan isi perut untukva menekan ke atas pada diafragma dalam posisi berbaring dan kedua, peningkatan volume darah paruparu dalam posisi berbaring, yang pada saat bersamaan menurunkan ruangan yang tersedia untuk udara paru-paru.

Volume residual merupakan udara yang tidak dikeluarkan dari paru-paru bahkan dengan ekspirasi kuat, Ini penting karena menyediakan udara didalam alveolus untuk mengalirkan darah walaupun diantara dua siklus pernafasan. Seandainya tidak ada udara residu, konsentrasi oksigen dan karbondioksida didalam darah akan naik dan turun secara jelas dengan setiap pernafasan yang tentu akan

merugikan proses pernafasan. Besar daya muat udara oleh paru-paru adalah 4.500 ml sampai 5000 ml atau 4 ½ sampai 5 liter udara (Evelyn, 2006). Hanya sebagian kecil dari udara ini, kira-kira 1/10 nya atau 500 ml adalah pasangsurut (tidal air), yaitu yang dihirup masuk dan di hembuskan keluar pada pernafasan biasa dengan tenang.

Tabel 2.2 Rata-rata Volume dan Kapasitas Paru (usia 20-30 th)

Variabel	Jenis Kelamin		
	Laki-laki (ml)	Perempuan (ml)	
Tidal volume	600	500	
Volume cadangan	3000	1900	
inspirasi	3333		
Volume cadangan	1200	800	
ekspirasi			
Volume residu	1200	1000	
Kapasitas total paru	6000	4200	
Kapasitas vital	4800	3200	
Kapasitas inspirasi	3600	2400	
Kapasitas fungsi residu	2400	3400	

Sumber: Junusul Hairy, (1989)

Daya tahan kardiorespirasi dipengaruhi beberapa faktor yakni genetik, umur dan jenis kelamin, aktivitas fisik, komposisi lemak tubuh dan kebiasaan merokok.

a. Genetik

Daya tahan kardiovaskuler dipengaruhi oleh faktor genetik yakni sifat-sifat spesifik yang ada dalam tubuh seseorang sejak lahir. Penelitian dari Kanada telah meneliti perbedaan kebugaran aerobik

(dizygotic) diantara saudara kandung dan kembar identik (monozygotic), dan mendapati bahwa perbedaannya lebih besar pada saudara kandung dari pada kembar identik. Baru-baru ini, Manila dan Bouchard (1991) telah memperkirakan bahwa herediter bertanggung jawab atas 25 - 40% dari perbedaan nilai VO2Max dan Sundet, Magnus Tambs (1994) berpendapat bahwa lebih dari setengah perbedaan kekuatan maksimal aerobik dikarenakan oleh perbedaan genotype, dan faktor lingkungan (zat gizi) sebagai penyebab lainnya. Ini mendukung pendapat bahwa cara untuk menjadi atlet berdaya tahan tinggi adalah dengan memilih orang tua dengan teliti. Kita mewarisi banyak faktor yang memberikan konstribusi pada kebugaran aerobik, termasuk kapasitas maksimal sistem respiratory dan kardiovaskuler, jantung yang lebih besar, sel darah merah dan Hemoglobin yang lebih banyak (Sharley, 2003).

Pengaruh genetik pada kekuatan otot dan daya tahan otot pada umumnya berhubungan dengan komposisi serabut otot yang terdiri dari serat merah dan serat putih. Seseorang yang memiliki lebih banyak lebih tepat untuk melakukan kegitan bersifat aerobik, sedangkan yang lebih banyak memiliki serat otot rangka putih, lebih mampu melakukan kegiatan yang bersifat anaerobik, demikian pula pengaruh keturunan terhadap komposisi tubuh, sering dihubungkan dengan tipe tubuh. Seseorang yang mempunyai tipe endomorf (bentuk tubuh bulat dan pendek) cenderung memiliki jaringan lemak yang lebih

banyak bila dibandingkan dengan tipe otot ektomorf (bentuk tubuh kurus dan tinggi) (DepKes,1994).

b. Umur

Umur memengaruhi hampir semua komponen kesegaran jasmani. Daya tahan *cardiovasculer* menunjukkan suatu tendensi meningkat pada masa anak-anak sampai sekitar dua puluh tahun dan mencapai maksimal di usia 20 sampai 30 tahun. Daya tahan tersebut akan makin menurun sejalan dengan bertambahnya usia, dengan penurunan 8-10% per dekade untuk individu yang tidak aktif, sedangkan untuk individu yang aktif penurunan tersebut 4-5% perdekade.

Peningkatan kekuatan otot pria dan wanita sama sampai usia 12 tahun, selanjutnya setelah usia pubertas pria lebih banyak peningkatan kekuatan otot, maksimal dicapai pada usia 25 tahun yang secara berangsur-angsur menurun dan pada usia 65 tahun kekuatan otot hanya tinggal 65-70% dari kekuatan otot sewaktu berusia 20 sampai 25 tahun. Pengaruh umur terhadap kelenturan dan komposisi tubuh pada umumnya terjadi karena proses menua yang disebabkan oleh menurunnya elastisitas otot karena berkurangnya aktivitas dan timbulnya obes pada usia tua.

c. Jenis Kelamin

Kesegaran jasmani antara pria dan wanita berbeda karena adanya perbedaan ukuran tubuh yang terjadi setelah masa pubertas. Daya tahan *cardiovasculer* pada masa pubertas terdapat perbedaan, karena wanita memiliki jaringan lemak yang lebihbanyak di bandingkanpria. Hal yang sama juga terjadi pada kekuatan otot, karena perbedaan kekuatan otot antara pria dan wanita disebabkan oleh perbedaan ukuran otot baik besar maupun proposinya dalam tubuh.

d. Kegiatan Fisik

Kegiatan yang memengaruhi semua komponen kesegaran jasmani.Dengan melakukan latihan olahraga atau kegiatan fisik yang baik dan benar berarti seluruh organ dipicu untuk menjalankan fungsinya sehingga mampu beradaptasi terhadap setiap beban yang diberikan.

Latihan fisik akan menyebabkan otot menjadi kuat. Perbaikan fungsi otot, terutama otot pernapasan menyebabkan pernapasan lebih efisien pada saat istirahat. Ventilasi paru pada orang yang terlatih dan tidak terlatih relative sama besar, tetapi orang yang berlatih bernapas lebih lambat dan lebih dalam. Hal ini menyebabkan oksigen yang diperlukan untuk kerja otot pada proses ventilasi berkurang, sehingga dengan jumlah oksigen sama, otot yang terlatih akan lebih efektif kerjanya.

Pada orang yang dilatih selam beberapa bulan terjadi perbaikan pengaturan pernapasan. Perbaikan ini terjadi karena menurunnya kadar asam laktat darah, yang seimbang dengan pengurangan penggunaan oksigen oleh jaringan tubuh. Latihan fisikakan memengaruhi organ sedemikian rupa sehingga kerja organ lebih efisien dan kapasitas kerja maksimum yang dicapai lebih besar. Faktor yang paling penting dalam perbaikan kemampuan pernapasan untuk mencapai tingkat optimal adalah kesanggupan untuk meningkatkan *capillary bed* yang aktif, sehingga jumlah darah yang mengalir di paru lebih banyak, dan darah yang berikatan dengan oksigen per unit waktu juga akan meningkat. Peningkatan ini digunakan untuk memenuhi kebutuhan jaringan terhadap oksigen.

Penurunan fungsi paru orang yang tidak berolahraga atau usia tua terutama disebabkan oleh hilangnya elastisitas paru-paru dan otot dinding dada. Hal inimenyebabkan penurunan nilai kapasitas vital dan nila *forced expiratory volume*, serta meningkatkan volume residual paru.

e. Kebiasaan Merokok

Sudah lama diketahui efek jelek rokok terhadap paru-paru, antara lain adalah penyakit paru obstruktif menahun yang dikenal dengan COPD.

Pada asap tembakau terdapat 4% karbon monoksida (CO). Afinitas CO pada Hemoglobin 200-300 kali lebih kuat dari pada

oksigen, ini berarti CO tersebut lebih cepat mengikat Hemoglobin dari pada oksigen. Hemoglobin dalam tubuh berfungsi sebagai alat pengangkutan oksigen untuk diedarkan ke jaringan tubuh yang memerlukannya. Bila seseorang merokok 10-20 batang sehari di dalam Hemoglobin mengandung 4,9% CO maka kadar oksigen yang diedarkan ke jaringan akan menurun sekitar 5% (DepKes, 2004).

Selain itu dalam rokok mengandung NO dan NO₂, merupakan substansia yang dapat memicu terbentuknya radikal bebas yang berlebihan yang menyebabkan terbentuknya lipid peroksida yang lebih lanjut merusak dinding sel. Beberapa sel tubuh telah terbukti mengalami proses degeneratif antara lain membran sel endotel, pembuluh darah, epitel paru, lensa mata dan neuron.

C. Pengukuran Daya Tahan VO2Max

1. Multistage Fitness Tes

Multistage fitness tes (MFT) atau biasa disebut dengan bleep tes, merupakan tes yang dilakukan dilapangan, tes ini cukup sederhana namun dapat menghasilkan suatu perkiraan yang cukup akurat tentang konsumsi oksigen maksimal (VO2Max) untuk berbagai kegunaan dan tujuan. Pada dasarnya tes MFT ini bersifat langsung, testi berlari secara bolak-balik sepanjang jalur atau lintasan yang telah di ukur sebelumnya, sambil mendengar serangkaian tanda yang berupa bunyi "tut" yang terekam dalam dalam kaset. Tanda suara "tut" tersebut awalnya sangat

lambat, tetapi secara bertahap kecepatannya semakin meningkat sehingga semakin lama testi semakin sulit untuk menyamakan kecepatan langkahnya dengan kecepatan yang diberikan oleh tanda tersebut. Tersti dapat berhenti kapan saja apabila ia tidak sudah tidak mampu lagi mempertahankan langkahnya, dan tahap ini menunjukkan tingkat konsumsi oksigen maksimal testi tersebut (Fenanlampir dan Faruq, 2015).

Tabel 2.3 Norma Multistage Fitness Test / Tes Bleep

Tingkat	Bolak-	Prediksi	Tingkat	Bolak-	Prediksi
(Level)	balik	VO2Max	(Level)	Balik	VO2Max
	1	23,2		1	26,4
	2	23,6		2	26,8
	3	24,0		3	27,2
	4	24,4		4	27,2
3	5	24,8	4	5	27,6
	6	25,2		6	28,0
	7	25,6		7	28,7
	8	26,0		8	29,1
				9	29,5
Tingkat	Bolak-	Prediksi	Tingkat	Bolak-	Prediksi
(Level)	balik	VO2Max	(Level)	Balik	VO2Max
	1	29,8		1	33,2
	2	30,2		2	33,6
	3	30,6		3	33,9
	4	31,0		4	34,3
_	5	31,4	•	5	34,7
5	6	31,8	6	6	35,0
	7	32,4		7	35,4
	8	32,6		8	35,7
	9	32,9		9	36,0
				10	36,4

Tingkat (Level)	Bolak- balik	Prediksi VO2Max	Tingkat (Level)	Bolak- Balik	Prediksi VO2Max
(LOVOI)	1	36,8	(2010)	1	40,2
	2	37,1		2	40,5
	3	37,5		3	40,8
	4	37,5		4	41,1
	5	38,2		5	41,5
7	6	38,5	8	6	41,8
-	7	38,9		7	42,0
	8	39,2		8	42,2
	9	39,6		9	42,6
	10	39,9		10	42,9
		,		11	43,3
Tingkat	Bolak-	Prediksi	Tingkat	Bolak-	Prediksi
(Level)	balik 1	VO2Max 43,6	(Level)	Balik 1	VO2Max 47,1
	2	43,0		2	47,1
	3	44,2		3	47,4
	4	44,5		4	48,0
	5	44,9		5	48,4
9	6	45,2	10	6	48,7
9	7	45,5	10	7	49,0
	8	45,8		8	49,3
	9	46,2		9	49,6
	10	46,5		10	49,9
	11	46,8		11	50,2
Tingkat	Bolak-	Prediksi	Tingkat	Bolak-	Prediksi
(Level)	balik	VO2Max	(Level)	Balik	VO2Max
	1	50,5	,	1	54,0
	2	50,5		2	54,3
	3	51,1		3	54,5
	4	51,4		4	54,8
	5	51,6		5	55,1
11	6	51,9	12	6	55,4
11	7	52,2	12	7	55,7
	8	52,5		8	56,0
	9	52,8		9	56,3
	10	53,1		10	56,5
	11	53,4		11	56,8
	12	53,7		12	57,1

Sumber: Perkembangan Olahraga Terkini, Jakarta, (2003)

Tabel 2.4 Klasifikasi Kadar VO2Max (ml/kg/menit)

			Laki - laki			
Umur	29	30-39	40-49	50-59	60-69	70
Omai	Tahun	Tahun	Tahun	Tahun	Tahun	Tahun
Poor						
(Sangat	< 24,9	< 22,9	< 19,9	< 17,9	<15,9	12,9
Kurang)						
Fair	25-33,9	23-30,9	20-26,9	18-24,9	16-22,9	13-20,9
(Kurang)	20 00,0	20 00,0	20 20,3	10 24,5	10 22,3	10 20,0
Average	34-43,9	31-41,9	27-38,9	25-37,9	23-35,9	21-32,9
(Cukup)	04 40,0	01 41,5	27 00,0	20 01,0	20 00,0	21 02,0
Good	44-52,9	42-49,9	39-44,9	38-42,9	36-40,9	33-37,9
(Baik)	77 02,0	72 75,5	00 44,0	30 42,3	JU 40,J	33 37,3
Excellent						
(Baik	>53	>50	>45	>43	>41	38
Sekali)						

Sumber: Werner, (2006)

D. Tinjauan Umum Jus Umbi Bit (Beta Vulgaris)

1. Gambaran umum umbi bit (Beta vulgaris)

Umbi Bit (Beta vulgaris) merupakan termasuk famili Chenopodiaceace merupakan tanaman semusim yang berbentuk rumput. Batangnya sangat pendek sehingga hampir tidak kelihatan. Bagian tanaman yang dimakan adalah umbi yang berbentuk bulat menyerupai gasing (Anonim, 1993).

Umbi bit yang sudah matang dan siap dipanen berdiameter 4,5 – 6,5 cm. warna daging umbi bit dipengaruhi oleh cuaca atau musim penanaman, tahap pematangan dan varietas. Warna merah umbi bit berasal dari pigmen betasianin yang merupakan pigmen yang mempunyai gugus nitrogen dengan susunan kimia yang mirip dengan antosianin.

Umbi bit juga mengandung pigmen yang berwarna kuning atau betaxantin.

Rasio antara kedua pigmen tersebut tergantung cuaca/musim penanaman, tahap pematangan dan varietas (Nurianty, 1985).

Dalam taksonomi tumbuhan, *Beta vulgaris* diklarifikasikan sebagai berikut (Splittstoesser, 1984):

Kingdom : Plantae

Subkingdom: Tracheobionta
Super Divisi: Spermatophyta
Divisi: Magnoliophyta
Kelas: Magnoliopsida
Sub Kelas: Hamamelidae

Famili : Chenopodiaceace

: Caryophyllales

Genus : Beta

Ordo

Spesies : Beta vulgaris L.

Gambar 2.2 Umbi Bit (Beta Vulgaris)

Umbi bit merupakan sumber yang potensial akan serat pangan, serta berbagai vitamin dan mineral. Vitamin yang potensial adalah asam folat

dan vitamin C, sedangkan mineral merupakan mangan, kalium, magnesium, besi, tembaga, dan fosfor. Kandungan vitamin C yang cukup tinggi yang terdapat dalam umbi bit membuatnya dapat digunakan sebagai sumber antioksidan yang potensial. Kandungan pigmen pada umbi bit, yaitu betasianin yang dipercaya dapat sangat bermanfaat untuk mencegah pengakit kanker, terutama kanker kolon (Santiago, 2008).

2. Kandungan umbi bit (Beta Vulgaris)

Menurut Wirakusuma (2007) beberapa zat gizi yang terkandung dalam umbi bit yaitu, Vitamin A, B, dan C dengan kadar air yang cukup tinggi. Selain vitamin, dalam umbi bit juga mengandung karbohidrat, protein, dan lemak yang berguna untuk kesehatan tubuh. Di dalam umbi bit juga mengadung beberapa mineral seperti zat besi, kalsium, dan fosfor.

Setiap 100 gram umbi bit (Beta Vulgaris) mengandung 250 mg senyawa NO3, dimana senyawa NO3 akan dipecah dalam tubuh menjadi bentuk NO2, kemudian direduksi membentuk senyawa asam. Senyawa asam yang terbentuk akan berperan melindungi pembuluh darah dan jantung sehingga konsumsi jus umbi bit berpotensi menjaga kestabilan tekanan darah (Coles dan Clifton, 2012). Dosis 300 ml jus umbi bit mengandung 8,4 – 16,8 mmol nitrat yang mampu menurunkan VO2 secara signifikan (Bailey et al, 2019).

Tabel 2.5 Kandungan Umbi Bit

Kandungan	Berdasarkan	Jumlah
Kadar air		76,6%
Kadar protein		1,1%
Kadar minyak		0,1%
Kadar serat larut	Berat basah	20,4%
Kadar serat kasar		1,1%
Kadar abu		0,7%
Kalori		339 kkal
Protein		12,6-14,3%
Lemak		0,8-1,6%
Karbohidrat		77,9-79,4%
Serat		6,3-9%
Abu		6,0-8,7%
Ca		115-182 mg
Р	Berat kering	259-323 mg
Fe		5,5-8,7 mg
Na		287-472 mg
K		2619-2638 mg
Thiamin		0,08-0,24 mg
Riboflavin		0,32-0,39 mg
Niasin		1,64-3,15 mg
Beta karoten		0,0-9,4 mg
Asam askorbat		23-79 mg

Sumber : Duke dan Alchley (1984) dalam Duke (1983)

Umbi bit banyak mengandung zat gizi sebagai berikut (Putri dan Tjiptaningrum, 2016):

 Vitamin: umbi bit adalah sumber asam folat dan vitamin C yang baik.
 Selain itu umbi bit juga mengandung sejumlah kecil vitamin lainnya seperti vitamin B1, B2, B3 dan vitamin A dalam bentuk beta karoten.

- Mineral: umbi bit kaya akan kalsium, magnesium, fosfor, potasium, dan sodium. Selain itu juga mengandung sejumlah kecil zat besi, zink, tembaga, mangan, dan selenium.
- Asam amino: selain mengandung air dan karbohidrat dalam jumlah besar, umbi bit juga mengandung sejumlah kecil asam amino (protein).
- 4. Kalori: umbi bit dengan ukuran 5 cm mengandung 35 kalori.
- Antioksidan: kandungan karotenoid dan flavonoid dapat membantu menurunkan oksidasi kolesterol LDL yang mengakibatkan kerusakan dinding arteri, serangan jantung dan stroke.
- 6. Anti karsinogenik: warna merah tua dari umbi bit mengandung betasianin yang dapat mencegah kanker kolon.
- 7. Silica: kandugan kaya silica didalamnya membuat kulit, rambut, kuku dan tulang menjadi sehat.

Tabel 2.6 Kandungan Gizi Umbi Bit / 100 g

Komponen	Jumlah	Komponen	Jumlah
Air	87,58 g	Energi	43 kkal
Karbohidrat	9,56 g	Folat (vit. B9)	109 µg
Gula	6,76 g	Vitamin C	4,9 mg
Serat	2,8 g	Kalsium	16 mg
Lemak	0,17 g	Besi	0,8 mg
NO ₃	250 mg	Magnesium	23 mg
Protein	1,61 g	Fosfor	40 mg
Vitamin A	2 μg	Potasium	325 mg
Tiamin (vit. B1)	0,031 mg	Zink	0,35 mg
Riboflavin (vit. B2)	0,04 mg	Sodium	78 mg
Niasin (vit. B3)	0,34 mg	Vitamin E	0,04 mg
Vitamin B6	0,07 mg	Asam lemak jenuh	0,027 mg
Vitamin K	0,2 μg		

Sumber: USDA, (2014)

Tabel 2.7 Rentang Kadar Nitrat dari berbagai Sayuran

Jenis Sayuran	Rentang Kadar Nitrat (mg/kg)	Rentang Kadar Nitrit (mg/kg)
Asparagus	3 – 700	0,2 - 0,9
Umbi Bit	100 – 4500	0 – 4,5
Kubis	0 – 2700	0,16 - 0,4
Wortel	0 – 2800	0 – 0,6
Kembang kol	53 – 4500	0 – 1,1
Seledri	50 – 5300	0,4 - 0,5
Selada	90 – 13000	0,16 – 1,4
Kentang	57 – 1000	0 – 2,1
Bayam	2 – 6700	0 – 162
Tomat	0 – 170	0,16 – 1,6

Sumber: Walters, (1996) dan Keeton, et al, (2009)

E. Pentingnya Daya Tahan Pada Atlet

Daya tahan merupakan kemampuan pembuluh, paru-paru, jantung, dan otot untuk melawan kelelahan yang timbul akibat beban latihan atau untuk memenuhi aktifitas fisik berkepanjangan. Daya tahan dapat diartikan dengan kemampuan mengatasi kelelahan. Kelelahan yang dimaksud adalah kelelahan dalam aktifitas olahraga. Sering kita temukan bahkan anda sendiri menemukan kelelahan disaat mengikuti pertandingan dan juga disaat latihan, namun daya tahan yang kita bicarakan ini dapat secara sederhana di definisikan daya tahan merupakan kemampuan organisme (koordinasi dalam tubuh) tubuh untuk mengatasi kelelahan yang disebabkan oleh pembebanan (latihan) yang berlangsung relatif lama.

Hal yang paling menentukan seorang atlet menang atau kalah yaitu daya tahan yang dimiliki atlet tersebut. Jika dalam latihan atau pertandingan berlangsung atlet tersebut daya tahannya turun atau melemah, teknik dan taktik yang dimilikinya tidak berkembang bahkan tidak mampu dipertunjukkan sama sekali. Salah satu cabang olahraga yang mengandalkan daya tahan kardiorespirasi yaitu bulutangkis karena bulutangkis memiliki beberapa aspek yang harus dimiliki yaitu daya tahan (endurance), kekuatan otot (muscle strenght), kecepatan (speed), daya ledak otot (muscle explosive power), dan ketangkasan (agility). Maka dari itu atlet harus lebih ditekankan untuk meningkatkan daya tahan karena daya tahan merupakan bekal awal untuk menjadi atlet yang berkualitas.

Salah satu unsur yang paling berpengaruh dalam olahraga bulutangkis yaitu daya tahan karena dalam cabang olahraga ini tidak hanya melakukan satu gerakan, tetapi kombinasi dinamis dari gerakan lompat, berlari kedepan dan kebelakang, mengambil langkah panjang ke samping kiri dan kanan dan sebagainya, maka atlet yang memiliki daya tahan buruk akan sulit mengembangkan kemampuan dan menunjukkan performa terbaiknya, sebab keadaan tersebut tentu yang sangat menguras stamina para atlet. Kemampuan atlet yang bagus tidak akan bertahan lama jika daya tahan yang dimilikinya buruk. Hal ini menunjukkan bahwa kemampuan yang baik tidak akan sempurna jika tidak diimbangi daya tahan yang bagus, oleh karena itu para pelatih melakukan latihan pada atletnya untuk melatih daya tahan. Ada banyak latihan daya tahan, yaitu daya tahan lari, salah satunya adalah lari multi tahap (bleep test).

Bulutangkis adalah olahraga yang membutuhkan daya tahan keseluruhan. Jika disimak dari aspek pelaksanaan stroke satu persatu, maka memerlukan kemampuan anaerobik, namun rangkaian kegiatan keseluruhan yang dilaksanakan dalam satu permainan, menunjukkan sifat sebagai cabang anaerobik-aerobik dominan. Olahraga bulutangkis memerlukan kecepatan dan mobilitas gerakan dikombinasikan dengan agilitas yang biasanya dimanfaatkan untuk menutup lapangan, atau untuk megejar shuttlecock ke segala arah, sehingga seorang atlet bulutangkis harus memiliki daya tahan yang baik (Poole, 2007).

Tabel 2.8 Komponen Fisik Dasar Cabang Olahraga Bulutangkis dan Teknik Pengukurannya Serta Kategori Kemampuan Setiap Komponen (Putra)

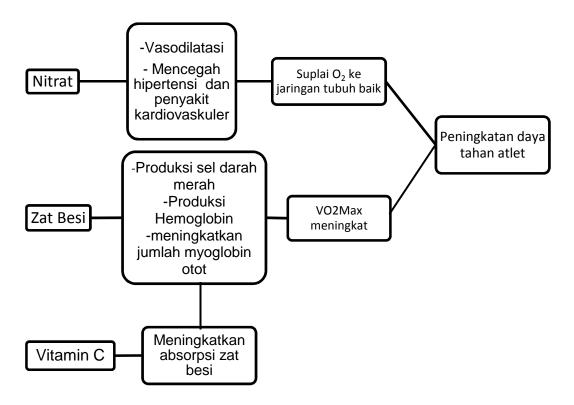
		· · · · · · · · · · · · · · · · · · ·			
Komponen	Teknik	3			
·	pengukuran	Kurang	cukup	baik	
Kekuatan:					
 Otot lengan dan bahu 	Hand dynamometer	23-29	30-36	37-43	
- Otot tungkai	Leg dynamometer	77-145	146-214	215-282	
- Otot punggung	Back dynamometer	59-74,5	80-100,5	105-125	
Daya tahan otot:					
Otot lenganOtot perutOtot tungkai	Push-up Sit-up Squat jump	4-11 10-29 4-24	12-19 30-49 25-45	20-28 50-69 46-66	
Kecepatan	Lari 50 meter	9-8	7,9-6,9	6,8-5,8	
Kelenturan	Flexometer	1-5	6-11	12-17	
Power: - Otot lengan - Otot tungkai	Medicine ball Vertical	2,63-3,67	3,68-4,52	4,53-5,37	
	jumps	38-45	46-52	53-61	
Daya tahan umum (cardiovascular)	Lari 15 menit (VO2Max)	< 49	50-52	53-55	

Sumber: KONI Pusat, (1999)

F. Penelitian Terkait Jus Umbi Bit

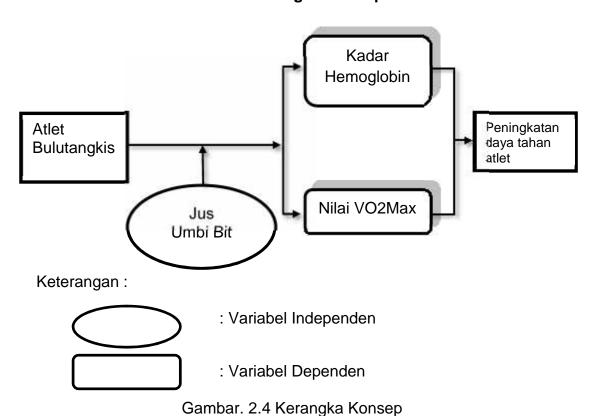
Dalam mendukung teori yang dijelaskan di atas, peneltian-penelitian yang telah dilakukan oleh beberapa orang atau peneliti baik dari gambaran deskriptif dari manfaat konsumsi jus umbi bit terhadap peningkatan kadar Hb serta pemanfaatannya dalam bidang olahraga sebagai penambah stamina seorang atlet. Beberapa penelitian yang telah dilakukan diantaranya;

Tabel 2.9 Sintesa Penelitian


NO	Peneliti	Judul	Tujuan Penelitian	Metode Penelitian	Kesimpulan	Keterangan
1	Meriska Cesia Putri, Agustyas Tjiptanigru	Efek Anti Anemia Buah Bit (Beta Vulgaris L)	Menganalisis Efek Anti Anemia Dari Buah Bit (Beta Vulgaris)	Review artikel yang berfokus pada pengaruh buah bit sebagai anti anemia	Buah bit dapat diberikan sebagai alternative pengobatan anemia dan sebagai terapi pencegahan anemia	MAJORITY Volume 5, Nomor 4, 2016
2	Nora M. Al-Aboud	Effect Of Red Beetroot (<i>Beta</i> Vulgaris L.) Intake On The Level Of Some Hematological Tests In A Group Of Female Volunteers	Menganalisis pengaruh buah bit terhadap kadar Hemoglobin.	Subjek: Relawan Perempuan yang sehat Desain: Quasi Eksperiment Sampel: 7 orang	Menunjukkan peningkatan ringan terhadap kadar Hemoglobin, penurunan total kapasitatas pengikata zat besi dan peningkatan kadar zat besi.	ISABB Journal Of Food And Agriculture Science Volume 8, Nomor 2, 2018
3	Fillah Fithra Dieny, Deny Yudi Fitranti, Binar Panunggal, Iqlima Safitri	Pengaruh Pemberian Sari Umbi Bit (Beta Vulgaris) Terhadap Kadar Hemoglobin Dan Perfoma Atlet Sepak Bola	Menganalisis pengaruh pemberian sari umbi bit (beta vulgaris) terhadap kadar Hb dan performa atlet sepak bola.	Subjek: Atlet sepak bola Desain: Quasi eksperiment Sampel: 18 orang	Tidak ada pengaruh signifikan pemberian sari umbi bit terhadap VO2Max dan kadar Hb (p <0,05). Namun peningkatan VO2Max pada P 300 lebih besar dibandingkan kelompok P 200 dan kelompok kontrol	Jurnal Gizi Indonesia Volume 5, Nomor 2, 2017
4	Stephen J. Bailey,	Dietary Nitrate Supplementation	Untuk menjelaskan basis mekanistik	Subjek: Atlet laki-laki Desain: Doubleblind,	Suplementasi nitrat secara efektif meningkatkan plasma	J Appl Physiol Volume 109, 2010

	Jonathan Fulford, Anni Vanhatalo, Paul G. Winyard, Jamie R. Blackwell, Fred J. DiMenna, Daryl P. Wilkerson, Nigel Benjamin, and Andrew M. Jones	Enhances Muscle Contractile Efficiency During Knee-Extensor Exercise In Humans	pengurangan konsumsi O2 saat latihan setelah diet nitrat jangka pendek.	studi crossover Sampel: 7 orang	nitrit dan mengurangi tekanan darah sistolik dan diastolic, efek yang konsisten dengan peningkatan bioavabilitas NO. konsumsi O2 selama latihan intensitas rendah dan intensitas tinggi berkurang setelah suplementasi NO3.	
5	Andrew M. Jones	Dietary nitrate Supplementation and Exercise Performance.	Menganalisis pengaruh diet nitrat jus umbi bit terhadap VO2Max	Subjek: Atlet Desain: Quasi Eksperiment Sampel: 12 orang	Meningkatkan daya tahan maksimal dan meningkatkan tenaga yang dikeluarkan oleh atlet,	Sport Med Volume 44, 2014
6	Maryam Lotfi, Mohammad Azizi, Worya Tahmasbi and Parviz Bashiri	The Effects of Consuming 6 Weeks of Beetroot Juice (Beta vulgaris L.) on Hematological Parameters in Female Soccer Players	Untuk mengetahui efek konsumsi jus umbi bit selama 6 minggu pada parameter hematoogi pada pemain sepak bola wanita,	Subjek: atlet sepak bola wanita Desain: Eksperimental Sampel: 20 orang	Pada kelompok eksperimen mengalami peningkatan signifikan pada kadar Hb, Hct, RBC, besi, dan ferritin (<i>p</i> <0,05). tidak ada perbedaan signifikan pada level MCV (t=-1,10, p=0,29) dan ada penurunan signifikan pada TIBC (t=4,99, p=0,001). Pada kelompok kontrol ada perbedaan yang signifikan terhadap (Hct, besi, ferritin, dan TIBC)	J Kermanshah Univ Med Sci Volume 22, Nomor 3, 2018

					(p<0,05). Ada perbedaan yang signifikan pada (Hb, Hct, RBC, besi, ferritin, dan TIBC) antara kelompok eksperimen dan kontrol (<i>p</i> =<0,005), tetapi tidak ada perbedaan signifikan dalam MCV (t=1,11, <i>p</i> =0,28).	
7	D. Babarykin, G. Smirnova, I. Pundinsh, S. Vasiljeva, G. Krumina, V. Agejchenko	Red Beet (<i>Beta Vulgaris</i>) Impact On Human Health	Untuk membahas efek dan tren baru buah bit merah dalam studi, ditargetkan pada pengembangan produk makanan fungsional baru serta obat-obatan.	Review artikel terkait pada komposisi kimia dan nilai gizi dari bit merah serta pigmen efek biologis disajikan. Laporan dianalisis lebih banyak di antioksidan, anti inflamasi, anti iskemik, dampaknya pada system pencernaan dan kardiovaskular serta kinerja daya tahan.	Konsumsi jus bit memiliki efek zat gizi yang bermanfaat pada tubuh. jus bit paling efektif sebagai produk anti anemia, anti iskemik, anti inflamasi, antioksidan, dan anti kanker.	Journal of Biosciences and Medicines Volume 7, 2019


G. Kerangka Teori

Berdasarkan uraian yang telah dikemukakan pada tinjauan pustaka, maka Kerangka teori penelitian difokuskan pada konsep yang mendasar adalah kandungan-kandungan vitamin dan mineral alami dalam jus umbi bit. Kandungan nitrat yang tinggi dalam jus umbi bit mampu menaikkan VO2Max atlet yang secara biologis mempengaruhi regulator pemanfaatan O2 oleh kontraktor otot sehingga distribusi O2 sesuai dengan kebutuhan otot, selain kandungan nitrat, jus umbi bit mengandung vitamin dan mineral yaitu zat besi, asam folat dan vitamin C yang dapat meningkatkan kadar Hemoglobin atlet, defisiensi besi memengaruhi kapasitas bawaan oksigen (VO2Max) terutama pada defisiensi besi yang parah dimana kadar Hemoglobin sangat rendah. Penurunan VO2Max ini akan menyebabkan gangguan kapasitas aerobik terutama pada aktivitas fisik atau latihan yang berdurasi lama sehingga akan mudah lelah yang diakibatkan berkurangnya suplai oksigen dalam otot dan terbentuk asam laktat yang dapat menimbulkan kelelahan pada otot. Dalam penelitian akan menganalisis bagaimana pengaruh jus umbi bit jika diberikan pada atlet dalam jangka waktu tertentu terhadap perubahan kemampuan VO2Max dan nilai Hemoglobin atlet.

Gambar. 2.3 Kerangka Teori Dieny et al, 2017, Gibson, 2005, Beard dan Tobin, 2000, zarianis, 2006.

H. Kerangka Konsep

Jus umbi bit banyak dihubungkan terhadap pemulihan kondisi anemia, karena kaya kandungan zat besi dan kandungan nitrat yang tinggi dalam jus umbi bit mampu menaikkan VO2Max atlet yang berhubungan dengan pemanfaatan O2. Anemia sendiri adalah kondisi yang dapat terjadi saat tubuh kekurangan zat besi, dan kondisi anemia jika terjadi pada atlet akan memengaruhi secara langsung performa daya tahan mereka. Maka dalam penelitian ini akan melihat bagaimana pengaruh jus umbi bit terhadap kadar Hemoglobin dan nilai VO2Max atlet bulutangkis.

I. Hipotesis Penelitian

Hipotesis yang dirumuskan dalam penelitian ini adalah:

- Ada perbedaan kadar Hemoglobin (Hb) atlet bulutangkis setelah intervensi jus umbi bit.
- Ada perbedaan nilai VO2Max atlet bulutangkis setelah intervensi jus umbi bit.

J. Definisi Operasional

1. Jus Umbi Bit

Jus umbi bit yang digunakan dalam penelitian ini adalah 300 ml yang diperoleh dari 500 gram umbi bit dan 200 ml jus bit yang diperoleh dari 350 gram umbi bit.

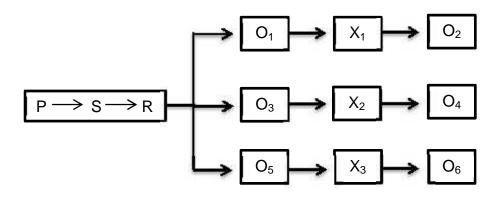
2. Kadar Hemoglobin

Kadar Hemoglobin yang dimaksud adalah nilai yang Hemoglobin dalam darah dengan satuan g/dl yang dilakukan dengan pengambilan sampel darah pada sampel dengan menggunakan alat Hemoglobin meter Family Dr dengan angka ketelitian 0,5%, dilakukan sebanyak 3 kali, yaitu sebelum pemberian intervensi, tujuh hari setelah pemberian intervensi dan setelah 15 hari pemberian intervensi. Hasil yang di analisa adalah perbandingan hasil tes awal dan tes akhir.

3. Nilai VO2Max

VO2Max yang dimaksud adalah pengukuran yang dilakukan dengan menghitung ambilan maksimal O₂, dalam penelitian ini akan dilakukan dengan tes MFT (*Multistage Fitness Test*). dilakukan sebanyak 2 kali, di awal penelitian dan setelah 15 hari pemberian intervensi. Nilai yang dianalisis adalah perbandingan hasil tes awal dan tes akhir.

BAB III METODE PENELITIAN


A. Jenis Dan Desain Penelitian

Penelitian ini merupakan penelitian eksperimental menggunakan rancangan true experimental dengan pendekatan pretest-postest control group design merupakan desain yang memberikan tes awal pada dua kelompok yang dipilih secara random, untuk mengetahui keadaan awal, guna melihat perbedaan antara kelompok eksperimen dan kelompok kontrol.

Penelitian ini dibagi ke dalam 3 kelompok penelitian yaitu kelompok perlakuan I, kelompok perlakukan II, dan kelompok kontrol. Kelompok perlakuan I diberikan jus umbi bit 300 ml, kelompok perlakuan II diberikan jus umbi bit 200 ml. Variabel bebas pada penelitian ini yaitu pemberian jus umbi bit dan variable terikat pada penelitian ini adalah kadar Hemoglobin dan nilai VO2Max. Daya tahan atlet diukur melalui pengukuran VO2Max dengan metode Multistage fitness test (MFT). Pengukuran kadar Hb di lakukan 3 kali yaitu sebelum pemberian intervensi kemudian tujuh hari setelah pemberian intervensi dan setelah 15 hari pemberian intervensi sedangkan pengukuran VO2Max dilakukan dua kali yaitu sebelum pemberian intervensi dan setelah 15 hari pemberian intervensi.

Data lain yang dikumpulkan meliputi durasi latihan dan kebiasaan merokok melalui pengisian formulir kriteria responden. Pengambilan data yang dilakukan bersamaan pretest yaitu pengukuran berat badan dan IMT

menggunakan Body Fat Monitor OMRON dengan angka ketelitian 0,1%. Pengukuran tinggi badan menggunakan microtoise dengan angka ketelitian 0,1 cm. Data asupan makan masing-masing atlet di ambil setiap hari selama intervensi dengan metode Food Recall 24 jam untuk mengetahui data asupan energy, karbohidrat, protein, lemak, zat besi, vitamin C, dan asupan nitrat selain dari umbi bit selama pemberian intervensi.

Gambar 3.1 Desain Penelitian

Randomise Pretest-postest control group design

Keterangan:

P: Populasi (Atlet Bulutangkis BKMF Bulutangkis FIK UNM)

S: Sampel (Atlet Bulutangkis BKMF Bulutangkis FIK UNM)

R: Randomise

O₁: Pengukuran awal kelompok perlakuan 300 ml

O₂: Pengukuran akhir kelompok perlakuan 300 ml

O₃: Pengukuran awal kelompok perlakuan 200 ml

O₄: Pengukuran akhir kelompok perlakuan 200 ml

O₅: Pengukuran awal kelompok kontrol

O₆: Pengukuran akhir kelompok kontrol

X₁: Pemberian intervensi jus umbi bit 300 ml

X₂: Pemberian intervensi jus umbi bit 200 ml

X₃: Pemberian intervensi placebo

B. Lokasi Dan Waktu Penelitian

Lokasi penelitian yang digunakan adalah gedung olahraga Bulutangkis Fakultas Ilmu Keolahragaan UNM. Peneliti memilih gedung olahraga Bulutangkis Fakultas Ilmu Keolahragaan UNM sebagai lokasi penelitian dengan alasan gedung olahraga Bulutangkis Fakultas Ilmu Keolahragaan UNM sebagai tempat peneliti biasanya latihan bulutangkis dan disana terdapat banyak mahasiswa yang aktif dan rutin latihan.

C. Populasi dan Sampel

1. Populasi

Populasi pada penelitian ini adalah seluruh mahasiswa atlet bulutangkis yang tergabung dalam Biro Kegiatan Mahasiswa Fakultas Bulutangkis Fakultas Ilmu Keolahragaan Universitas Negeri Makassar.

2. Sampel

Sampel yang digunakan dalam penelitian ini sebanyak 36 atlet, yang terbagi menjadi tiga kelompok yaitu kelompok perlakuan 300 ml, kelompok perlakuan 200 ml, dan kelompok kontrol.

Penentuan besar sampel dalam penelitian ini menggunakan rumus dari Sopiyuddin (2012). Formulasi rumus tersebut adalah:

$$n1 = n2 = \left(\frac{(Z\alpha + Z\beta)S}{x1 - x2}\right)^2$$

$$n1 = n2 = \left(\frac{(1,64+1,645)1,19}{1,28}\right)^2 = 10$$

- Kesalahan tipe I ditetapkan sebesar 5%, hipotesis satu arah sehingga
 Z = 1,64.
- Kesalahan tipe II ditetapkan sebesar 5%, maka Z = 1,645.
- Selisih minimal yang dianggap bermakna (x1-x2) = 1,28
- Standar deviasi dari kadar Hb atlet didapat 1,19 gr/dl dari penelitian terdahulu (Dieny et al, 2017).

Hasil dari perhitungan penentuan besar sampel diatas maka sampel diperoleh 10 orang untuk setiap kelompok sehingga penelitian ini menggunakan 30 orang atlet bulutangkis dari populasi yang ada. Adapun untuk mengantisipasi hilangnya eksperimen maka dilakukan koreksi dengan rumus :

$$N = n / (1-f)$$

Dimana N adalah besar sampel koreksi, n besar sampel awal, dan f adalah perkiraan proporsi drop out sebesar 10% sehingga.

$$N = 10 / (1-10 \%)$$

$$n = 10 / 0.9$$

$$n = 11.11$$

Jadi total sampel yang digunakan tiap kelompok adalah sebanyak 12 orang atlet bulutangkis (n = 11.11 dibulatkan). Oleh karena itu. Penelitian ini menggunakan 36 orang atlet bulutangkis yang dibagi ke dalam 3 kelompok.

Kriteria inklusi:

- a. Berjenis kelamin laki-laki.
- b. Atlet bulutangkis yang tergabung dalam BKMF Bulutangkis FIK
 UNM.
- c. Mengikuti latihan fisik minimal 3 kali seminggu.
- d. Tidak sedang cedera atau menjalani perawatan medis.
- e. Bersedia mengikuti penelitian melalui persetujuan *Informed*Consent dari awal penelitian hingga akhir.

Kriteria ekslusi:

- a. Sakit saat mengikuti penelitian.
- b. Mengalami cedera saat penelitian berlangsung.

D. Alat dan Bahan Penelitian

- 1. Pembuatan jus umbi bit:
 - a. Alat:

Timbangan digital, pisau, juicer, gelas.

b. Bahan:

Bahan yang digunakan adalah umbi bit 500 gram untuk menghasilkan 300 ml jus umbi bit dan umbi bit 350 gram untuk menghasilkan 200 ml jus umbi bit jumlah yang akan diberikan pada masing-masing sampel pada kelompok intervensi.

2. Alat untuk perlakuan pada sampel:

Timbangan BB Digital OMRON (0,1%), pengukur TB Microtoise (0,1%), Body Fat Monitor OMRON (0,1%), formulir biodata sampel.

- Alat untuk pelaksanaan Multistage Fitness Test (MFT):
 Meteran, sound system, CD audio MFT, formulir pencatatan
 MFT.
- Alat pemeriksaan Hemoglobin (Hb)
 Hemoglobin meter Family Dr (0,5%), lancet, kasa alkohol.

E. Prosedur Penelitian

Pre test Intervensi Post test Pengukuran Kelompok Pengukuran akhir awal nilai perlakuan nilai VO2Max dan VO2Max dan diberikan jus kadar Hb kelompok Kadar Hb pada umbi bit intervensi jus umbi bit kelompok selama 15 hari dan kelompok perlakuan dan sebanyak 300 kontrol, dilakukan kelompok ml untuk setelah 15 hari kontrol kelompok pemberian intervensi. perlakuan I dan sebanyak 200 ml untuk kelompok perlakuan II.

Gambar 3.2 Prosedur Penelitian

1. Pembuatan jus umbi bit

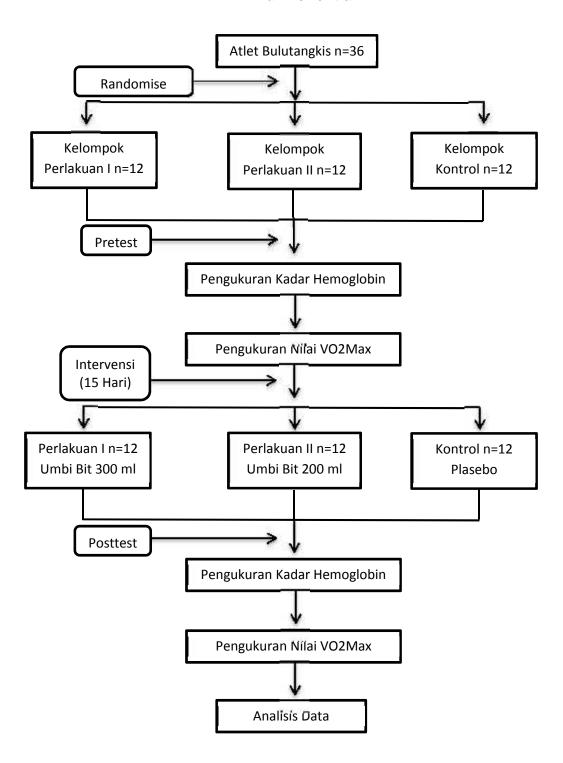
- a) Memilih kondisi umbi bit yang baik dengan tekstur buah sedang hingga besar yang di peroleh dari beberapa pasar di Makassar.
- b) Umbi bit kemudian di cuci bersih lalu di kupas kulitnya dan di potong dalam dalam ukuran lebih kecil untuk kemudian dimasukkan ke dalam juicer sehingga hanya didapatkan jusnya.
- c) Kemudian jus umbi bit yang keluar di takar menggunakan gelas takaran, dengan takaran masing-masing 300 ml dan 200 ml.

2. Pemberian jus umbi bit kepada sampel

- a) Pemberian jus umbi bit dilakukan setiap hari selama 15 hari.
- b) Pemberian jus umbi bit sebanyak 300 ml pada kelompok perlakuan I dan sebanyak 200 ml pada kelompok perlakuan II, jus umbi yang diberikan kepada kelompok perlakuan harus dipastikan habis dikonsumsi..

3. Pengukuran kadar Hemoglobin (Hb)

a) Pengukuran kadar Hb dilakukan sebanyak 3 kali yaitu sebelum intervensi, tujuh hari setelah intervensi, dan setelah 15 hari pemberian intervensi. Pengukuran kadar Hemoglobin menggunakan Hemoglobin meter dengan merek Family Dr dengan angka ketelitian 0,5%.


4. Pengukuran nilai VO2Max dengan metode MFT

- a) Pengukuran nilai VO2Max dilakukan sebanyak dua kali yaitu dihari pertama sebelum pemberian intervensi dan setelah 15 hari pemberian intervensi.
- b) Lakukan warming up sebelum melakukan tes.
- c) Ukuran jarak 20 meter dan diberi tanda.
- d) Putar CD player irama Bleep Test.
- e) Intruksikan pemain untuk ke batas garis *start* bersamaan dengan suara "*bleep*" berikut. Bila pemain tiba di batas garis sebelum suara "*bleep*", pemain harus berbalik dan menunggu suara sinyal tersebut, kemudian kembali ke garis berlawanan dan mencapainya bersamaan dengan sinyal berikut.
- f) Diakhir setiap satu menit, interval waktu di antara setiap "bleep" diperpendek atau dipersingkat, sehingga kecepatan lari harus meningkat/berangsur menjadi lebih cepat.
- g) Pastikan bahwa pemain setiap kali mencapai garis batas sebelum berbalik. Tekankan pada siswa untuk *pivot* (satu kaki digunakan sebagai tumpuan dan kaki yang lainya untuk berputar) dan berbalik bukannya berbalik dengan cara memutar terlebih dahulu (lebih banyak menyita waktu).
- h) Setiap pemain meneruskan larinya selama mungkin sampai dengan ia tidak dapat lagi mengikuti irama dari CD player.

Kriteria menghentikan lari peserta adalah apabila peserta dua kali berturut-turut gagal mencapai garis batas dalam jarak dua langkah disaat sinyal "bleep" berbunyi...

i) Kemudian semua data yang terkumpul dari hasil tes dikonversikan ke dalam tabel klasifikasi kadar VO2Max.

F. Alur Penelitian

Gambar 3.3 Alur Penelitian

G. Teknik Analisis Data

Analisis data menggunakan software program SPSS for windows untuk melihat pengaruh jus umbi bit terhadap kadar Hemoglobin dan nilai VO2Max atlet bulutangkis, terlebih dahulu dilakukan uji normalitas data menggunakan uji Shapiro-Wilk agar diketahui apakah data yang diperoleh berdistribusi normal atau tidak (Stang, 2014). Uji One Way ANOVA digunakan untuk menganalisis data yang berdistribusi normal baik variabel terikat kadar Hemoglobin dan nilai VO2Max pre dan post intervensi maupun variabel perancu, yaitu IMT dan pola makan sedangkan data yang berdistrubi tidak normal akan di analisis menggunakan uji Kruskal Wallis. Uji Repeated ANOVA digunakan untuk melihat perubahan kadar Hemoglobin sebelum dan setelah perlakuan pada kelompok perlakuan dan kelompok kontrol dan uji post hoc test dengan metode LSD untuk menghitung nilai kelompok yang berbeda. Uji Paired T-test digunakan untuk melihat perubahan nilai VO2Max sebelum dan setelah perlakuan pada kelompok perlakuan dan kelompok kontrol. Uji independent T-test digunakan untuk melihat apakah ada perbedaan kadar Hemoglobin dan nilai VO2Max antara kelompok perlakuan 300 ml dan kelompok perlakuan 200 ml.

H. Etika Penelitian

Penelitian ini telah mendapatkan persetujuan dari Komisi Etik Penelitian Kesehatan (KEPK) Fakultas Kesehatan Masyarakat Universitas Hasanuddin dengan No. Protokol 131219042175.

BAB IV

HASIL DAN PEMBAHASAN

A. Hasil Penelitian

1. Gambaran Umum Alur Penelitian

Penelitian ini bertujuan untuk menganalisis pengaruh jus umbi bit (*Beta* Vulgaris) terhadap kadar Hemoglobin dan nilai VO2Max atlet bulutangkis. Sampel dalam penelitian ini yaitu atlet bulutangkis BKMF FIK UNM. Penelitian ini dilaksanakan dari bulan Desember 2019 – Januari 2020.

Sampel di pilih secara acak dan memenuhi kriteria inklusi yang telah ditetapkan. Penelitian ini menggunakan 36 orang atlet bulutangkis BKMF FIK UNM, jumlah sampel dalam setiap kelompok masing-masing sebanyak 12 orang yang di bagi menjadi 3 kelompok yaitu kelompok kontrol dan 2 kelompok perlakuan. Pada kelompok perlakuan diberikan jus umbi bit dengan dosis yang berbeda dan pada kelompok kontrol diberikan sirup berwarna merah menyerupai jus umbi bit sebagi placebo. Dosis jus umbi bit yang dberikan pada kelompok perlakuan yaitu 200 ml dan 300 ml, jus umbi bit 200 ml di peroleh dari 350 gram umbi bit dan jus umbi bit 300 ml di peroleh dari 500 gram umbi bit.

Jus umbi bit diberikan selama 15 hari berturut-turut, dihari pertama sebelum pemberian perlakuan terlebih dahulu dilakukan pemeriksaan kadar Hemoglobin, nilai VO2Max, pengukuran TB, BB, Indeks Massa

Tubuh (IMT), kemudian diberikan jus umbi bit sesuai dosis. Sedang untuk tingkat konsumsi setiap responden di ukur setiap hari selama 15 hari selama pemberian intervensi. Setelah 1 minggu pemberian jus umbi bit kadar Hemoglobin sampel kembali di periksa untuk melihat perubahannya. Setelah 15 hari pemberian perlakuan jus umbi bit kemudian dilakukan tes akhir untuk kadar Hemoglobin dan nilai VO2Max.

2. Karakteristik Responden

Karakteristik responden yang di ukur sebelum pemberian perlakuan meliputi umur, berat badan, tinggi badan dan indeks massa tubuh (IMT).

Pada Tabel 4.1 menunjukkan untuk usia responden pada ketiga kelompok tidak terdapat perbedaan yang signifikan antara ketiga kelompok, dan untuk berat badan, tinggi badan dan IMT antara ketiga kelompok juga tidak ada perbedaan yang signifikan di antara ketiga kelompok (p > 0,05).

Tabel 4.1 Karakteristik Subjek Penelitian Pada Ketiga Kelompok.

Gambaran	, ,				Jus Umbi Bit 200 (n = 12) Kontrol (n = 12)					р			
subyek	Rerata	SD	Min	Max	Rerata	SD	Min	Max	Rerata	SD	Min	Max	
usia (tahun)	20,08	2,11	18	25	19,50	1,24	18	21	19,58	0,90	18	21	0.915**
Berat Badan	59,63	10,70	39	73,6	62,09	6,09	54	72,7	57,53	4,67	50	63,1	0.409**
Tinggi Badan	166,92	6,83	151	176	166,58	5,14	160	180	165,75	5,03	153	171	0.793**
IMT	21,21	2,64	17,1	25,9	22,42	2,63	19	26,7	20,93	2,43	18	27	0.331*

^{*}One Way ANOVA

^{**}Kruskal Wallis

3. Analisis Kadar Hemoglobin (Hb) Atlet Bulutangkis

Hasil analisis kadar Hemoglobin pada atlet bulutangkis BKMF FIK

UNM sebelum dan setelah perlakuan dapat dilihat pada tabel berikut ini:

Tabel 4.2 Hasil Analisis Kadar Hemoglobin Atlet Bulutangkis Sebelum dan Setelah Perlakuan pada Kelompok Perlakuan dan Kontrol.

	Kadar	Hemoglobin (g	=				
Kelompok	Pre Test	Hari Ke-7	Hari Ke-16	(1-7)	(pre- post)	P*	
-	Mean ± SD	Mean ± SD	Mean ± SD	Mean	Mean		
Jus Umbi Bit 300 ml (n=12)	12,71 ± 1,62	14,03 ± 1,54	14, 76 ± 1,12	1,32	2,05	0,002*	
Jus Umbi Bit 200 ml (n=12)	12,65 ± 1,21	13,65 ± 1,31	14,92 ± 1,22	1,0	2,26	0,001*	
Kontrol	$11,41 \pm 1,90$	$12,35 \pm 1,29$	13,14 ± 1,54	0,94	1,73	0,001*	
P**	0,096**	0,014**	0,003**				

^{*}Repeated ANOVA

Kelompok kontrol, kelompok perlakuan 200 ml dan kelompok perlakuan 300 ml masing-masing terdiri dari 12 responden. Perbedaan pengaruh pemberian jus umbi bit terhadap kadar Hb, maka dilakukan pengukuran kadar Hb sebanyak tiga kali, yaitu pada saat sebelum perlakuan, satu minggu setelah perlakuan dan di hari ke-16 setelah 15 hari perlakuan perlakuan. Sebelum perlakuan rata-rata kadar Hb kelompok kontrol 11,41 ± 1,90 gr/dl, kelompok perlakuan 200 ml 12,65 ± 1,21 gr/dl dan untuk kelompok perlakuan 300 ml 12,71 ± 1,62 gr/dl. Setelah perlakuan rata-rata kadar Hb pada ketiga kelompok mengalami peningkatan 13,14 ± 1,54 gr/dl pada kelompok kontrol, 14,92 ± 1,22 gr/dl pada kelompok perlakuan 200 ml dan 14,76 ± 1,12 gr/dl pada kelompok perlakuan 300 ml.

^{**}One-Way ANOVA

peningkatan kadar Hb setelah intervensi 7 hari lebih besar pada kelompok jus umbi bit 300 ml dengan peningkatan sebesar 91,6% dibandingkat dengan kelompok jus umbi bit 200 ml dengan peningkatan sebesar 66,6% dan pada kelompok kontrol sebesar 75% dan setelah 15 hari pemberian intervensi peningkatan kadar Hb pada kelompok jus umbi bit 300 ml dan jus umbi bit 200 menjadi sebesar 100% dan pada kelompok kontrol menjadi sebesar 91,67%.

Hasil uji statistik Repeated ANOVA (= 0,05) terdapat perbedaan yang signifikan peningkatan kadar Hb sebelum dan setelah perlakuan pada ketiga kelompok. Dapat di artikan bahwa baik kelompok perlakuan maupun kelompok kontrol sama-sama mengalami peningkatan kadar Hb sebelum dan setelah perlakuan yang signifikan (p<0,05). Namun rerata peningkatan Hb pada kelompok perlakuan 300 ml (14,74 \pm 1,12 gr/dl), kelompok 200 ml (14,76 \pm 1,22 gr/dl) lebih tinggi dibandingkan dengan kelompok kontrol (13,14 \pm 1,54 gr/dl). Hasil uji one-way ANOVA menunjukkan adanya perbedaan kadar Hemoglobin yang signifikan pada ketiga kelompok setelah intervensi selama 7 hari dengan nilai p = 0,014 < 0,05 begitu juga setelah 15 hari intervensi terdapat perbedaan kadar Hemoglobin yang signifikan pada ketiga kelompok di mana nilai p = 0,003 < 0,05. Analisis ANOVA dilanjutkan dengan analisis *post hoc test* LSD dapat dilihat pada tabel berikut ini.

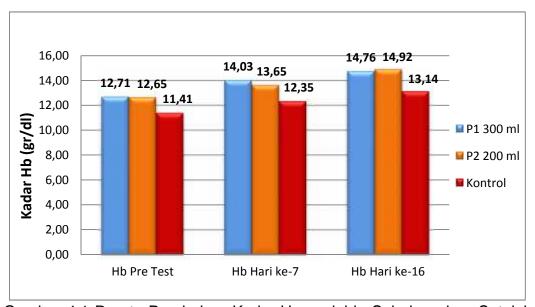
Tabel 4.3 Hasil Uji Analisis Kadar Hemoglobin Post Hoc Test LSD

Kelompok	Jus Umbi Bit 300 ml	Jus Umbi Bit200 ml	Kontrol
Jus Umbi Bit 300 ml	-	0,002*	0,000*
Jus Umbi Bit 200 ml	0,002*	-	0,079
Kontrol	0,000*	0,079	-

^{*}Signifikan (< 0,05)

Berdasarkan Tabel 4.3 hasil analisis menunjukkan ada perbedaan yang signifikan antara kelompok Jus umbi bit 300 ml dengan kelompok jus umbi bit 200 ml dan kelompok kontrol dengan nilai p=0,002 dan p=0,000 sedang antara kelompok jus umbi bit 200 ml dengan kelompok kontrol tidak terdapat perbedaan yang signifikan dengan nilai p=>0,05.

Tabel 4.4 Hasil Analisis Kadar Hemoglobin Atlet Bulutangkis Sebelum dan Setelah Perlakuan pada Kelompok 300 ml dan Kelompok 200 ml.


Kelompok		Jus Umbi Bit 300 (n = 12)		Jus Umbi Bit 200 (n = 12)		
		Rerata	SD	Rerata	SD	Р
Hb	Pre Test	12,708	1,6155	12,65	1,2072	0.921*
	Hari Ke-7	14,033	1,5412	13,65	1,3063	0.518*
	Hari Ke-16	14,758	1,1212	14,917	1,2187	0.744*

^{*} Uji Independent Samples T-test

Berdasarkan Tabel 4.4 hasil analisis menunjukkan bahwa tidak ada perbedaan signifikan kadar Hb pre test antara kelompok 200 ml dan kelompok 300 ml dengan nilai p = 0.921 > 0.05. Di hari ke tujuh pemberian perlakuan juga tidak terdapat perbedaan kadar Hb yang signifikan antara kedua kelompok perlakuan dengan nilai p = 0.518 > 0.005. Pada hari ke-15 setelah perlakuan juga tidak terdapat perbedaan yang signifikan antara

kelompok perlakuan 200 ml dan kelompok perlakuan 300 ml dimana nilai p = 0.744 > 0.05.

Untuk melihat lebih jelas perbedaan antara rerata kadar Hb sebelum dan setelah perlakuan pada masing-masing kelompok perlakuan dan kelompok kontrol dapat dilihat pada Gambar 4.1.

Gambar 4.1 Rerata Perubahan Kadar Hemoglobin Sebelum dan Setelah Perlakuan pada Kelompok Perlakuan dan Kontrol.

4. Analisis Nilai VO2Max Atlet Bulutangkis

Hasil analisis nilai VO2Max pada atlet bulutangkis BKMF FIK UNM sebelum dan setelah perlakuan dapat dilihat pada tabel berikut ini :

Tabel 4.5 Hasil Analisis Nilai VO2Max Atlet Bulutangkis Sebelum dan Setelah Perlakuan Pada Kelompok Perlakuan dan Kelompok Kontrol.

	Nilai VC	Nilai VO2Max							
Kelompok	Pre Test	Post test	_	P *					
	Mean ± SD	Mean ± SD	Mean						
Jus Umbi Bit 300 ml (n=12)	12,71 ± 1,62	14,03 ± 1,54	5,7	0,000*					
Jus Umbi Bit 200 ml (n=12)	12,65 ± 1,21	13,65 ± 1,31	3,71	0,007*					
Kontrol	11,41 ± 1,90	$12,35 \pm 1,29$	2,72	0,007*					
P**	0,164**	0,008**							

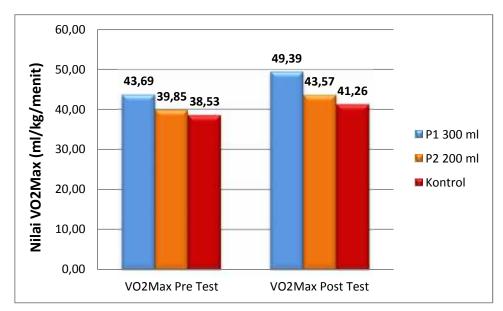
^{*}Paired T-test

Berdasarkan Tabel 4.5 menunjukkan nilai VO2Max sebelum perlakuan pada kelompok kontrol yaitu 38,53 ± 7,21 ml/kg/menit, kelompok 200 ml yaitu 39,85 ± 6,94 ml/kg/menit dan pada kelompok 300 ml yaitu 43,69 ± 5,92 ml/kg/menit. Setelah perlakuan masing-masing kelompok mengalami peningkatan nilai VO2Max menjadi 41,26 ± 5,90 ml/kg/menit pada kelompok kontrol, 43,57 ± 6,26 ml/kg/menit pada kelompok 200 ml dan pada kelompok 300 ml nilai VO2Max nya meningkat menjadi 49,39 ± 6,17 ml/kg/menit. Peningkatan nilai VO2Max lebih besar terjadi pada kelompok jus umbi bit 300 ml dengan peningkatan 100%di bandingkan dengan kelompok jus umbi bit 200 ml dengan peningkatan 83,3% dan pada kelompok kontrol dengan peningkatan sebesar 91,6%.

Berdasarkan Tabel 4.5 hasil uji T berpasangan menunjukkan bahwa tidak terjadi peningkatan nilai VO2Max yang signifikan pada kelompok

^{**} One-Way ANOVA

kontrol dan pada kelompok 200 ml di mana nilai p = 0,007 > 0,05. Namun pada kelompok 300 ml mengalami peningkatan nilai VO2Max yang signifikan dengan nilai p = 0,000 < 0,05. Hasil uji *one-way ANOVA* menunjukkan tidak ada perbedaan nilai VO2Max yang signifikan pada ketiga kelompok setelah konsumsi jus umbi bit di mana nilai p = 0,008 > 0,05.


Tabel 4.6 Hasil Analisis Nilai VO2Max Atlet Bulutangkis Sebelum dan Setelah Perlakuan pada Kelompok 300 ml dan Kelompok 200 ml.

	Kelompok	Jus Umbi Bit	300 (n = 12)	Jus Umbi B	it 200 (n = 12)
		Rerata	SD	Rerata	SD p
VO2Max	Pre Test	43,692	5,918	39,85	6,9426 0,159*
	Post Test	49,392	6,1654	43,567	6,2564 0,031*

^{*} Uji Independent Samples T Test

Berdasarkan Tabel 4.6 hasil analisis menunjukkan bahwa tidak ada perbedaan nilai VO2Max yang signifikan antara kelompok 200 ml dan kelompok 300 ml sebelum perlakuan dimana nilai p = 0,159 > 0,05. Namun setelah pemberian perlakuan terjadi perbedaan yang signifikan antara kedua kelompok dengan nilai p = 0,031 < 0,05.

Untuk melihat lebih jelas perbedaan rerata nilai VO2Max sebelum dan setelah perlakuan pada masing-masing kelompok pada dilihat pada Gambar 4.2.

Gambar 4.2 Rerata Perubahan Nilai VO2Max Sebelum dan Setelah Perlakuan.

Pada Gambar 4.2 menunjukkan bahwa setelah perlakuan rerata nilai VO2Max atlet bulutangkis mengalami peningkatan pada ketiga kelompok, namun peningkatan tertinggi terjadi pada kelompok yang mengonsumsi 300 ml jus umbi bit yang nilai VO2Max pre test nya 43,69 ± 6,17 ml/kg/menit meningkat menjadi 49,39 ± 6,17 ml/kg/menit dan rerata peningkatan nilai VO2Max yang paling rendah terjadi pada kelompok kontrol yaitu pada VO2Max pre test sebesar 38,53 ± 7,21 ml/kg/menit dan pada post test meningkat menjadi 41,26 ± 5,90 ml/kg/menit.

Tabel 4.7 Gambaran Variabel Perancu Selama Intervensi Pada Kelompok Kontrol dan Perlakuan.

Gambaran	Jus Umb	i Bit 300	(n = 12)		Jus Umb	i Bit 200	(n = 12)		Kontrol	(n = 12)	p		
subyek	Rerata	SD	Min	Max	Rerata	SD	Min	Max	Rerata	SD	Min	Max	
energi	2104,17	610,09	1171	3372	1860,83	367,22	1293	2594	2047,92	295,07	1271	2420	0.184**
karbohidrat	263,16	79,09	161,1	459,08	225,48	46,97	149,2	281,6	2535,09	8116,41	115,89	28308	0.089**
protein	85,44	36,26	33,5	149,93	85,01	25,51	33,59	124,4	174,38	285,07	41,27	1075	0.490**
lemak	84,90	30,30	43,4	155,02	75,88	27,12	44,7	125,5	93,15	26,15	30,37	126,27	0.329*
zat besi	11,14	4,69	0,8	18,6	13,00	7,59	0,8	27,9	12,22	7,02	2,1	24,4	0.785*
vit C	64,67	111,05	0	364	14,75	36,67	0	118	9,83	34,06	0	118	0.128**
nitrat	0,08	0,29	0	1	0,00	0,00	0	0	0,00	0,00	0	0	0.368**
total kalori	2581,08	753,78	1551,32	4136,73	2274,96	440,20	1581,96	3101,9	2459,89	334,58	1554,73	2916,4	0.351**

^{*}One Way ANOVA

^{**}Kruskal Wallis

Berdasarkan hasil analisis menggunakan uji One Way ANOVA dan uji Kruskal Wallis dari semua variabel perancu tidak terdapat perbedaan yang signifikan dari ketiga kelompok (*p*>0,05). Dari hasil analisis Tabel 4.6 dari ketiga kelompok menunjukkan asupan nitrat, Vit C, dan zat besi yang kurang, hal tersebut dipengaruhi dengan pola konsumsi yang kurang mengonsumsi sayuran atau buah-buahan, selain itu kebiasan untuk makan makanan cepat saji yang lebih banyak diminati oleh atlet karena mudah dalam proses pembuatannya, sehingga asupan nitrat, Vit C sangat kurang. Sehingga asupan nitrat, Vit C dan juga zat besi sebagian besar hanya didapatkan dari konsumsi jus umbi bit selama pemberian intervensi.

B. Pembahasan

Penelitian ini bertujuan untuk mengetahui pengaruh jus umbi bit (Beta Vulgaris) terhadap kadar Hemoglobin (Hb) dan nilai VO2Max atlet bulutangkis, penelitian dilakukan di gedung olahraga bulutangkis Fakultas Ilmu Keolahragaan Universitas Negeri Makassar, dengan melibatkan total 36 orang sampel yang merupakan pemain bulutangkis yang bergabung dan aktif dalam BKMF bulutangkis dengan usia 18-25 tahun, dibagi secara acak menjadi 3 (tiga) kelompok penelitian yaitu kelompok dengan pemberian 300 ml jus umbi bit, kelompok 200 ml jus umbi bit dan 1 (satu) kelompok kontrol yang diberi pengganti jus bit dengan sirup sebagai plasebo. Penelitian dilakukan selama 15 hari dalam rentang waktu tersebut sampel diberi intervensi jus bit setiap sore sebelum memulai

latihannya, begitu juga terhadap kelompok kontrol, diberi sirup setiap sore sebelum latihan.

Data lain yang diduga akan turut berkontribusi terhadap hasil penelitian juga dikumpulkan dalam penelitian ini yaitu usia, berat badan, tinggi badan, nilai indeks massa tubuh, serta pendataan rekam jejak makan (food recall 24) yang cukup memberi gambaran tentang kecukupan kalori, energi, karbohidrat, protein, lemak, zat besi, vitamin C dan nitrat yang mungkin mereka peroleh selain dari pemberian jus umbi bit selama masa intervensi. Pengukuran berat badan dan indeks massa tubuh menggunakan karada body fat analyzer omron. Pengukuran tinggi badan menggunakan microtoise dengan batas ukur 200 cm dan ketelitian 0,1 cm.

1. Pengaruh jus umbi bit tehadap kadar hemoglobin (Hb)

Pengukuran Post test atau tes akhir kadar Hemoglobin dan dilakukan pada hari ke-16 setelah intervensi selama 15 hari berturut-turut. Pengukuran kadar Hemoglobin dilakukan 3 (tiga) kali, yakni pada awal sebelum intervensi, pada hari ke-7 dan pada hari ke-16 setelah pemberian intervensi jus umbi bit selama 15 hari. Hasil pengukuran Hemoglobin yang diperoleh pada hari ke-7 intervensi adalah adanya peningkatan kadar Hemoglobin pada setiap kelompok, tetapi nilai peningkatan yang signifikan terlihat pada kelompok sampel dengan pemberian 300 ml jus umbi bit dengan nilai awal rata-rata 12,71 gr/dl menjadi rata-rata 14,03gr/dl, kelompok 200 ml dengan nilai awal rata-rata 12,65 gr/dl

menjadi rata-rata 13,65 gr/dl dan kelompok kontrol dengan nilai awal menjadi rata-rata 12,35 gr/dl. Kemudian pada rata-rata 11,41 gr/dl pengukuran akhir di hari ke-16 setelah intervensi peningkatan nilai Hemoglobin yang paling signifikan terjadi pada kelompok dengan pemberian 200 ml jus umbi bit dengan nilai rata-rata menjadi 14,92 gr/dl, kelompok dengan pemberian 300 ml jus umbi bit dengan nilai rata-rata 14,76 gr/dl dan kelompok kontrol dengan nilai rata-rata 13,14 gr/dl, dengan nilai delta dapat terlihat perubahan kadar hemoglobin pada masing-masing kelompok yakni, 2,05 gr/dl pada kelompok dengan pemberian 300 ml, 2,267 gr/dl pada kelompok dengan pemberian 200 ml, dan 1,733 gr/dl pada kelompok kontrol, dari hasil tersebut terlihat bahwa kelompok dengan pemberian 200 ml mengalami peningkatan kadar hemoglobin yang lebih tinggi dibanding kelompok lain, hal tersebut dapat terjadi karena pola konsumsi harian kelompok 200 ml yang khususnya untuk sumber makanan yang mengandung zat besi selain dari pemberian jus umbi bit lebih tinggi dari kelompok lain. Hal ini tergambar dalam data recall 24, konsumsi harian zat besi selain jus umbi bit pada kelompok 300 ml rata-rata sebesar 11,14 mg/hari, kelompok 200 ml rata-rata sebesar 13 mg/hari dan pada kelompok kontrol rata-rata sebesar 12,22 mg/hari. Kebiasaan makan utamanya bahan makanan yang mengandung zat besi selain dari jus umbi bit yang diberikan selama masa intervensi mempengaruhi peningkatan kadar hemoglobin atlet, sedangkan zat besi dari jus umbi bit sendiri berkontribusi masing-masing yakni sebesar 84,3%

pada kelompok pemberian 300 ml dan pada kelompok 200 ml sebesar 76.3%. Kadar Hemoglobin awal ketiga kelompok berada pada nilai batas terendah kadar Hemoglobin, meskipun subyek penelitian adalah atlet yang terlatih secara fisik dan teknik tetapi memiliki kebiasaan makan yang tidak seimbang antara intake dan outputnya hal ini dapat terjadi karena tidak adanya pengaturan makan yang seharusnya diterapkan secara personal bagi masing-masing atlet, berakibat pada kurangnya asupan zat gizi yang seharusnya dikonsumsi atlet, hal ini tergambar dari data recall 24. Zat gizi yang tepat merupakan dasar utama bagi penampilan prima seorang atlet saat bertanding, zat gizi juga dibutuhkan untuk memperbaiki atau mengganti sel tubuh yang rusak (Arimbi, et al, 2018). Bahan makanan yang paling sering mereka konsumsi adalah mie instan dan daging olahan seperti bakso, bahan makanan yang tinggi kalori tetapi minim nilai qizinya, sedangkan performa optimal atlet tentu harus memenuhi kecukupan zat gizi makro dan mikro, sehingga selama intervensi dapat dikatakan zat gizi mikro utamanya zat besi, asam folat dan vitamin C yang secara teori diketahui dapat meningkatkan kadar hemoglobin sebagian besar hanya diperoleh dari umbi bit dan tentu paling berkontribusi dalam peningkatan kadar hemoglobin atlet. Hasil penelitian ini memberi gambaran yang berbeda dari hasil penelitian yang dilakukan Dieny, et al (2017) yang dilakukan pada 18 atlet Klub Sepak Bola UNNES berusia 18-22 tahun, pemberian sari umbi bit diberikan selama 7 hari dan memberi kesimpulan tidak ada pengaruh signifikan dari pemberian jus

umbi bit yang dilakukan terhadap peningkatan nilai Hemoglobin, tetapi hal tersebut dapat terjadi sebab lama intervensi yang hanya 7 hari dan jumlah sampel yang relatif lebih kecil, sebab dalam beberapa penelitian lain membuktikan bahwa umbi bit berkontribusi untuk memperbaiki kadar Hemoglobin dalam darah, seperti hasil penelitian yang dilakukan Anggraini et al (2019) dengan memberikan terapi jus buah bit pada remaja dengan anemia selama 7 hari, diperoleh hasil signifikan terhadap peningkatan kadar Hemoglobin setelah terapi jus buah bit, dan penelitian Anggraini. & Saragita (2019) dengan pemberian terapi jus buah bit pada ibu hamil memperoleh hasil peningkatan kadar Hemoglobin setelah terapi. Bit secara signifikan mengandung berbagai vitamin, asam folat dan zat besi yang membantu proses pembentukan sel darah merah dan Hemoglobin.

2. Pengaruh jus umbi bit terhadap VO2Max

Pengukuran post test nilai VO2Max dilakukan pada hari ke-16 setelah intervensi selama 15 hari berturut-turut. Tes pengukuran VO2Max dilakukan sebanyak dua kali yaitu dilakukan pada awal sebelum pemberian intervensi dan pada hari ke-16 setelah pemberian intervensi selama 15 hari. Nilai pengukuran daya tahan kardiovaskular (VO2Max) pada 3 kelompok masing-masing mengalami peningkatan yang signifikan, tetapi peningkatan nilai VO2Max yang paling tinggi berada pada kelompok yang diberi intervensi 300ml jus umbi bit. Nilai yang diperoleh yakni pada

kelompok dengan intervensi 300ml jus umbi bit rata-rata nilai VO2Max sebelum intervensi adalah 43,69 ml/kg/menit dan setelah intervensi menjadi rata-rata 49,39 ml/kg/menit. Pada kelompok 200ml nilai VO2Max rata-rata sebelum 39,85 ml/kg/menit dan setelah intervensi menjadi ratarata 43,57 ml/kg/menit. Kelompok kontrol nilai awal VO2Max rata-rata 38,53 ml/kg/menit dan setelah menjadi rata-rata 41,26 ml/kg/menit. Dengan nilai delta dapat terlihat perubahan terhadap peningkatan nilai VO2max pada masing-masing kelompok yakni 5,7 ml/kg/menit pada kelompok dengan pemberian 300 ml, 3,717 ml/kg/menit pada kelompok dengan pemberian 200 ml, dan peningkatan terendah pada kelompok kontrol yakni sebesar 2,725 ml/kg/menit. Peningkatan nilai VO2Max terjadi oleh karena adanya peningkatan kadar hemoglobin serta kandungan nitrat yang tinggi dalam umbi bit yang diberikan selama intervensi. Sayuran memberi lebih dari 80 persen asupan nitrat, sedang berdasarkan recall 24 yang diperoleh hampir semua atlet dalam ketiga kelompok yang diteliti tidak memiliki kebiasaan mengonsumsi sayuran, nilai nitrat diperoleh hanya pada kelompok dengan pemberian 300 ml yang selama masa intervensi tercatat mengonsumsi rata-rata 0,1 mg dengan konsumsi sayuran sekali selama dua minggu, selain karena tidak adanya pengaturan makan, makanan cepat saji yang lebih banyak dimininati atlet karena mudah dalam proses pembuatannya, sehingga nitrat dan efek positif yang terjadi selama intervensi hanya diperoleh dari jus umbi bit yang diberikan.

Nitrat dalam tubuh akan diubah menjadi nitrogen monoksida (NO), yakni zat kimia yang dapat mengaktiyasi zat kimia lainnya dalam proses terjadinya vasodilatasi pembuluh darah yang disebabkan oleh relaksasi sel otot polos di dalam dinding pembuluh darah arteri dan vena. Ketika pembuluh darah membesar sirkulasi darah akan meningkat dan peningkatan curah iantung. Vasodilatasi pembuluh darah turut menentukan distribusi oksigen dalam darah dapat disalurkan keseluruh tubuh dengan optimal hal ini mencegah kelelahan dan kram otot serta berbagai risiko cedera olahraga lainnya, dengan kata lain kandungan nitrat yang tinggi dalam sari umbi bit adalah mampu menaikkan VO2Max atlet yang secara biologis mempengaruhi regulator pemanfaatan O2 oleh kontraktor otot sehingga distribusi O2 sesuai dengan kebutuhan otot dan suplementasi nitrat hingga hari ke-15 dapat meningkatkan massa mitokondria sehingga juga meningkatkan penggunaan NO (Nitrit oksida) pada mitokondria dalam menghasilkan energi (Vanhatalo et al, 2010), oleh karena itu, rekomendasi durasi pemberian sari umbi bit yaitu lebih dari 15 hari bagi atlet endurance seperti atlet bulutangkis.

Peningkatan kadar hemoglobin juga berperan terhadap peningkatan nilai VO2Max, kecukupan protein dalam darah yang berfungsi sebagai pengangkut oksigen ke seluruh jaringan tubuh memungkinkan peningkatan kapasitas VO2Max atlet. Besi yang berada di dalam setiap molekul hemoglobin sangat penting dalam menjalankan fungsinya dalam mengikat dan melepaskan oksigen. Tujuan pengikatan oksigen yang

dilakukan hemoglobin yang terkandung dalam sel darah merah adalah tersalurkannya oksigen dalam jumlah besar (Sadikin, 2001), dengan begitu atlet akan memiliki nilai VO2Max yang baik dan dapat optimal melakukan aktivitas olahraga tanpa rasa lelah yang berarti sebab proses oksidasi dapat dilakukan lebih sempurna.

Hasil penelitian ini sejalan dengan penelitian yang dilakukan Bailey et al (2009) menyatakan bahwa umbi bit mampu menaikkan VO2Max pada subjek 8 lelaki sehat (bukan atlet) berusia 19-38 tahun setelah mengonsumsi 500 ml umbi bit/hari selama 6 hari, juga relevan dengan dari hasil penelitian penelitian Vanhatalo et al (2010) setelah intervensi sari umbi bit 500 ml/hari pada 8 atlet yang diteruskan dari 5 hari hingga 15 hari, VO2Max kelompok perlakuan meningkat signifikan dibandingkan kelompok kontrol, maka dapat disimpulkan bahwa jus umbi bit memberi pengaruh yang besar pada daya tahan yang terukur dengan adanya peningkatan yang signifikan pada pengukuran nilai VO2Max dan menurut hasil penelitian sebelumnya hal ini tidak hanya berlaku pada atlet tetapi juga pada bukan atlet yang rutin mengonsumsi jus umbi bit.

Telah diuraikan dalam beberapa teori sebelumnya bahwa semakin baik nilai ambilan oksigen maksimal atlet akan memungkinkan atlet tersebut untuk dapat melakukan aktivitas olahraganya lebih lama. Terutama pada cabang olahraga aerobik kondisi VO2Max yang prima tentu akan menghasilkan daya tahan atau endurance yang prima pula kondisi ini tentu akan memberi keuntungan pada atlet. Penelitian Puype et

al (2014) yang dilakukan pada 11 orang atlet, menyatakan dosis optimal nitrat yang terindikasi dapat meningkatkan nitrit plasma adalah antara 5 - 8 mmol nitrat yang terkandung dalam 500 ml sari umbi bit. Dosis tersebut diberikan lebih dari tiga kali sehari yaitu masing-masing 1.7 mmol nitrat saat sarapan, makan siang dan saat makan malam, serta diberikan 2-3 jam sebelum latihan. Dosis ini dapat mengoptimalkan jalur nitrat – nitrit – NO melalui peningkatan plasma nitrit sehingga akan dapat meningkatkan efisiensi penggunaan oksigen selama latihan serta meningkatkan toleransi terhadap kelelahan saat latihan pada kondisi kekurangan oksigen, meskipun dalam penelitian ini atlet hanya diberikan dosis 300 ml dan 200 ml dalam sekali konsumsi sebelum latihan selama 15 hari, ternyata sudah cukup memberi peningkatan signifikan pada kadar Hemoglobin, terutama pada nilai VO2Max atlet.

Kontribusi berbagai variabel perancu selain zat besi diantaranya asupan kalori, energi, karbohidrat, protein, lemak, vitamin C dan nitrat selain dari umbi bit dalam penelitian secara statistik tidak ada yang memberi pengaruh terhadap perubahan kadar Hemoglobin maupun nilai VO2Max atlet bulutangkis pada ketiga kelompok, dan berdasarkan hasil analisis tidak ada perbedaan signifikan variabel perancu pada ketiga kelompok, sedangkan untuk asupan zat besi selain jus umbi bit cukup memberi perbedaan terhadap peningkatan kadar hemoglobin yang terlihat dengan membandingkan antara dua kelompok intervensi yakni kelompok

dengan pemberian 300 ml dan kelompok pemberian 200 ml seperti yang telah diuraikan sebelumnya.

BAB V

PENUTUP

A. Kesimpulan

- Terdapat perbedaan yang signifikan kadar Hemoglobin pada atlet bulutangkis setelah konsumsi jus umbi bit, baik itu pada kelompok 300 ml jus umbi bit, kelompok 200 ml jus umbi bit maupun pada kelompok kontrol.
- Tidak terdapat perbedaan kadar Hemoglobin atlet bulutangkis setelah perlakuan antara kelompok perlakuan jus umbi bit 300 ml dengan kelompok perlakuan jus umbi bit 200 ml.
- Terdapat perbedaan yang signifikan nilai VO2Max pada atlet bulutangkis setelah konsumsi jus umbi bit, baik itu pada kelompok 300 ml jus umbi bit, kelompok 200 ml jus umbi bit maupun pada kelompok kontrol.
- Terdapat perbedaan yang signifikan nilai VO2Max atlet bulutangkis setelah perlakuan antara kelompok perlakuan jus umbi bit 300 ml dengan kelompok perlakuan jus umbi bit 200 ml.

B. Saran

- Pemberian jus umbi bit perlu mempertimbangkan dosis, lama pemberian intervensi dan waktu pemberian untuk memperoleh hasil yang lebih baik.
- 2. Jus umbi bit sangat dapat direkomendasikan bagi atlet untuk menjaga stamina tetap dalam kondisi optimal.
- 3. Untuk penelitian selanjutnya untuk melihat pengaruh jus umbi bit terhadap kadar Hemoglobin dan nilai VO2Max pada atlet, sebaiknya di fokuskan pada dosis 200 ml dengan intervensi lebih lama di sertai dengan pengaturan asupan makan sesuai dengan jenis olahraga atlet atau jenis aktivitas atlet.

DAFTAR PUSTAKA

- Arthur C. Guyton. 1983. Fisiologi Kedokteran. Jakarta: Buku Kedokteran
- Arthur C. Guyton. 1997. Fisiologi Kedokteran. Jakarta: Buku Kedokteran
- Anonim, 1993.Dasar-dasar Pemeriksaan Mikrobiologi. Yogyakarata: Gadjah Mada University Press.
- Arikunto, Suharsimi. 2006. *Prosedur Penelitian Suatu Pendekatan Praktik.*Jakarta: Rineka Cipta.
- Anggraini, D.D. and Saragita, N. 2019. Pengaruh Pemberian Jus Buah Bit Terhadap Kenaikan Kadar Hb Pada Ibu Hamil Trimester III. *Jurnal Darul Azhar Vol. 8 No. 1*.
- Arimbi, A., Rahman, A., & Saharullah, S. 2018. Pengaturan zat gizi tepat bagi atlet. In *Seminar Nasional Pengabdian Kepada Masyarakat*, Vol. 2018, No. 6.
- Anggraini, W., Maulida, L.F. and Yuliaswati, E., 2019. Pemberian Jus Buah Bit Terhadap Kenaikan Kadar Hemoglobin Pada Remaja Putri Dengan Anemia di Stikes 'Aisyiyah Surakarta.
- Al-aboud, N.M., 2018. Effect of red beetroot (Beta vulgaris L.) intake on the level of some hematological tests in a group of female volunteers. *ISABB Journal of Food and Agricultural Sciences*, 8, pp.10-7.
- Anggraini, W., Maulida, L.F. and Yuliaswati, E., 2019. Pemberian Jus Buah Bit Terhadap Kenaikan Kadar Hemoglobin Pada Remaja Putri Dengan Anemia di Stikes 'Aisyiyah Surakarta.
- Bailey, S.J., Winyard, P., Vanhatalo, A., Blackwell, J.R., DiMenna, F.J., Wilkerson, D.P., Tarr, J., Benjamin, N. and Jones, A.M., 2009. Dietary nitrate supplementation reduces the O2 cost of low-intensity exercise and enhances tolerance to high-intensity exercise in humans. *Journal of applied physiology*, 107(4), pp.1144-1155.

- Bailey, S.J., Fulford, J., Vanhatalo, A., Winyard, P.G., Blackwell, J.R., DiMenna, F.J., Wilkerson, D.P., Benjamin, N. and Jones, A.M., 2010. Dietary nitrate supplementation enhances muscle contractile efficiency during knee-extensor exercise in humans. *Journal of applied physiology*, 109(1), pp.135-148.
- Beard, J. and Tobin, B., 2000. Iron status and exercise. *The American journal of clinical nutrition*, 72(2), pp.594S-597S.
- Babarykin, D., Smirnova, G., Pundinsh, I., Vasiljeva, S., Krumina, G. and Agejchenko, V., 2019. Red Beet (Beta vulgaris) Impact on Human Health. *Journal of Biosciences and Medicines*, 7(3), pp.61-79.
- Coles, L.T. and Clifton, P.M., 2012. Effect of beetroot juice on lowering blood pressure in free-living, disease-free adults: a randomized, placebo-controlled trial. *Nutrition journal*, 11(1), p.106.
- Cermak, N.M., Gibala, M.J. and Van Loon, L.J., 2012. Nitrate supplementation's improvement of 10-km time-trial performance in trained cyclists. *International journal of sport nutrition and exercise metabolism*, 22(1), pp.64-71.
- Christensen, P.M., Nyberg, M. and Bangsbo, J., 2013. Influence of nitrate supplementation on VO2 kinetics and endurance of elite cyclists. *Scandinavian journal of medicine* & science in sports, 23(1), pp.e21-e31.
- Direktorat Gizi Depkes RI., 2005. Daftar Komposisi Bahan Makanan. Jakarta: Departemen Kesehatan.
- Dahlan, Sopiyuddin. 2012. Langkah-Langkah Membuat Proposal PenelitianBidang Kedokteran Dan Kesehatan. Jakarta : Sagung Seto
- Dieny, F.F., Fitranti, D.Y., Panunggal, B. and Safitri, I., 2017. Pengaruh pemberian jus umbi bit (beta vulgaris) terhadap kadar Hemoglobin dan performa atlet sepak bola. *Jurnal Gizi Indonesia (The Indonesian Journal of Nutrition)*, *5*(2), pp.119-126.

- Gibson, R.S., 2005. *Principles of nutritional assessment*. Oxford university press, USA.
- Hasan, S., 2008. Kesegaran Jasmani Atlet Sepak Bola Pra-Pubertas. Jurnal Iptek Olahraga, 10(3), pp.188-202.
- Haas, J.D. and Brownlie IV, T., 2001. Iron deficiency and reduced work capacity: a critical review of the research to determine a causal relationship. *The Journal of nutrition*, 131(2), pp.676S-690S.
- Hagberg, J.M., Moore, G.E. and Ferrell, R.E., 2001. Specific Genetic Markers of Endurance Performance and VO2Max. *Exercise and sport sciences reviews*, 29(1), pp.15-19.
- Huldani, 2010. Pengaruh Kadar Hemoglobin dan Jenis Kelamin Terhadap Konsumsi Oksigen Maksimum Siswa-siswi Pesantren darul Hijrah, 509-511.
- Indonesia, D.K.R., 2004. Sistem kesehatan nasional. *DepKes RI, Jakarta*.
- Irawan, M.A., 2007. Metabolisme Energi Tubuh & Olahragawan. *Sport Science Brief*, 1(7).
- Jelalian, E. and Steele, G., 2008. *Childhood and Adolescent Obesity*. Springer.
- Jones, A.M., 2014. Dietary nitrate supplementation and exercise performance. *Sports medicine*, *44*(1), pp.35-45.
- Kravitz, L., Robergs, R.A., Heyward, V.H., Wagner, D.R. and Powers, K., 1997. Exercise mode and gender comparisons of energi expenditure at self-selected intensities. *Medicine and science in sports and exercise*, 29(8), pp.1028-1035.
- Kesehatan, D., 1994. Pedoman Pengukuran Kesegaran Jasmani. *Jakarta: Depkes RI*.
- Keeton JT, Osburn WN, Hardin MD, Bryan NS, 2009. A National Survey of the Nitrite/Nitrate Concentrations in Cured Meat Products and Non-

- meat Foods Available at Retail NPB. Research Report Human Nutrition. 08: 63.
- Lotfi, M., Azizi, M., Tahmasbi, W. and Bashiri, P., 2018. The Effects of Consuming 6 Weeks of Beetroot Juice (Beta vulgaris L.) on Hematological Parameters in Female Soccer Players. *Journal of Kermanshah University of Medical Sciences*, 22(3).
- Maqsalmina, M., 2007. Pengaruh Latihan Aerobik Terhadap Perubahan Vo2 Max Pada Siswa Sekolah Sepak Bola Tugu Muda Semarang Usia 12-14 tahun (Doctoral dissertation, Faculty of Medicine).
- Nugroho, A., 2001. Diktat pedoman latihan pencak silat. *Yogyakarta: FIK UNY*.
- Nurianty, S., 1985. Karakteristik Buah Somba (Bixa orellana i.) Sebagai Penghasil Zat Warna Pangan. *Skripsi S-1, Fakultas Teknologi Pertanian IPB, Bogor*.
- Pearce, Evelyn C.. 2006. *Anatomi dan Fisiologi untuk Paramedic*. Jakarta: PT. Gramedia Pustaka Utama.
- Pearce, Evelyn C. 2009. *Anatomi dan Fisiologi untuk Paramedis.* Jakarta: PT. Gramedia Pustaka Utama.
- Puype, J., Ramaekers, M., Van Thienen, R., Deldicque, L. and Hespel, P., 2015. No effect of dietary nitrate supplementation on endurance training in hypoxia. *Scandinavian journal of medicine & science in sports*, 25(2), pp.234-241.
- Poole James, 2007. Belajar Bulutangkis. Bandung: CV. Pionir Jaya.
- Putri MC, Tjiptaningrum A. 2016. Efek antianemia buah bit (Beta vulgaris L.). Majority. 5(4): 96-100.
- Permadi, A.G., 2017. Survey Tingkat Kondisi Fisik Atlet Bulutangkis PB. Pahlawan Sumenep. *Jurnal Ilmiah Mandala Education (JIME)*, *3*(2), pp.71-80.

- Putri, E.B.A., Wirjatmadi, R.B. and Adriani, M., 2012. Pengaruh Suplementasi Besi Dan Zinc Terhadap Kadar Hb Dan Kesegaran Jasmani Remaja Putri Yang Anemia Defisiensi Besi. *The Indonesian Journal of Public Health*, *9*(1), pp.67-76.
- Puype, J., Ramaekers, M., Van Thienen, R., Deldicque, L. and Hespel, P., 2015. No effect of dietary nitrate supplementation on endurance training in hypoxia. *Scandinavian journal of medicine & science in sports*, 25(2), pp.234-241.
- Stang 2014. Cara Praktis Penentuan Uji Statistik Dalam Penelitian Kesehatan dan Kedokteran. Jakarta: Mitra Wacana Media.
- Safitri, I. and Dieny, F.F., 2015. *Pengaruh Jus Umbi Bit (Beta Vulagaris) Terhadap VO2Max Atlet Sepak Bola* (Doctoral dissertation, Diponegoro University).
- Sadikin, M, 2001. Biokimia Darah. Jakarta : Widya Medika.
- Splittstoesser, W. E., 1984. Vegetable Growing Handbook. Van Nostrand Reinhold Company, New York.
- Sadikin, Mohammad.H., 2001. *Biokimia Darah*, Penerbit Widya Midika, Jakarta
- Sugiyono. 2009. *Metode penelitian kuantitatif kualitatif.* Cetakan ke-8. Bandung: Alfabeta.
- Sugiyono. 2011. Metode penelitian pendidikan. Pendekatan kuantitatif, kualitatif, dan R & D. Bandung : Alfabeta
- Sastroasmoro, S. & Ismael, S. 2010. *Dasar-dasar metodologi penelitian klinis*. Edisi ke-3. Jakarta: Sagung Seto.
- Sugiyono. 2012. Memahami Penelitian Kualitatif. Bandung: ALFABETA.
- Supriasa, I.D.N., 2001. Penentuan Status Gizi.
- Santiago, E.C. and E.M. Yahlia. 2008. Identification and Quantification ofBetalains from the Fruits of 10Mexian Prickly Pear Cultivars by

- High-Performance Liquid Chromatography and Electrospray Ionization MassSpectrometry. J. Agric. Food Chem.
- USDA. National Nutrient Data Base for Standard. 2014. Basic Report 11457, Beetroot. The national Agriculutural Library.
- Vanhatalo, A., Bailey, S.J., Blackwell, J.R., DiMenna, F.J., Pavey, T.G., Wilkerson, D.P., Benjamin, N., Winyard, P.G. and Jones, A.M., 2010. Acute and chronic effects of dietary nitrate supplementation on blood pressure and the physiological responses to moderate-intensity and incremental exercise. *American Journal of Physiology-Regulatory, Integrative and Comparative Physiology*, 299(4), pp.R1121-R1131.
- Walters CL, 1996. *Nitrate and Nitrite In Foods*. In: Hill, M. (2000). *Nitrates and Nitrites On Foods and Water*. Cambridge: Woodhead Publishing Limited. 93- 102.
- Zarianis, 2006. Efek Suplementasi Besi-Vitamin C dan Vitamin C Terhadap Kadar Hemoglobin Anak Sekolah Dasar yang Anemia di kecamatan Sayung Kaupaten Demak. Universitas Diponegoro. Semarang.

LAMPIRAN 1. Jadwal Kegiatan Penelitian

No									Wa	ktu P	eneli	tian							
	Kegiatan		Dese	mber	2019)		Januari 2020											
•		27	28	29	30	31	1	2	3	4	5	6	7	8	9	10	11	12	13
1	Pengukuran TB, BB, IMT																		
2	Pemeriksaan Kadar Hemoglobin (Pre test)																		
3	Pengukuran Nilai VO2Max (Pre test)																		
4	Pengambilan Data <i>Food Recall</i> 24 jam																		
4	Pemberian Intervensi																		
5	Pemeriksaan Kadar Hemoglobin Ke-2																		
6	Pemeriksaan Kadar Hemoglobin (Post test)																		
7	Pengukuran Nilai VO2Max (Post test)																		
8	Analisis dan Pengolahan Data																		

LAMPIRAN 2. Lembar Penjelasan Penelitian

KEMENTERIAN RISET, TEKNOLOGI DAN PENDIDIKAN TINGGI UNIVERSITAS HASANUDDIN

FAKULTAS KESEHATAN MASYARAKAT

Jl.Perintis Kemerdekaan Km. 10, Makassar, 90245, Tlp. (0411) 585658, 516-005, Fax (0411) 586031

Email: dekanfkmuh@gmail.com, website: www. fkmunhas.com

LEMBAR PENJELASAN PENELITIAN BAGI RESPONDEN PENELITIAN

1. Judul Penelitian

Pengaruh Jus Umbi Bit (*Beta Vulgaris*) Terhadap Kadar Hemoglobin dan Nilai VO2Max Atlet Bulutangkis.

2. Tujuan Penelitian

a. Tujuan Umum

Menganalisis pengaruh jus umbi bit (Beta Vulgaris) terhadap kadar Hemoglobin (Hb) dan nilai VO2Max atlet bulutangkis.

b. Tujuan Khusus

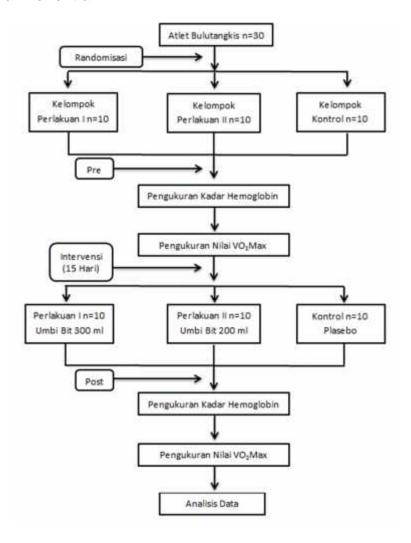
- Menganalisis perbedaan kadar Hemoglobin (Hb) atlet bulutangkis sebelum dan setelah perlakuan.
- Menganalisis perbedaan nilai VO2Max atlet bulutangkis sebelum dan setelah perlakuan.

3. Perlakuan Yang Diterapkan Pada Subjek

Penelitian ini merupakan penelitian eksperimental menggunakan rancangan true experimental dengan pendekatan pretest-postest control group design. Penelitian ini dibagi dalam 3 kelompok penelitian

yaitu kelompok perlakuan I yang akan diberikan jus umbi 300 ml, kelompok perlakuan II akan diberikan jus umbi bit 200 ml, dan kelompok control akan diberikan placebo, pemberian intervensi jus umbi bit ini akan berlangsung selama 15 hari. Dalam penelitian ini daya tahan atlet akan diukur melalui pengukuran VO2Max dengan metode *Multistage Fitness Test* (MFT) dan pengukuran kadar Hemoglobin akan diukur dengan menggunakan Hemoglobin meter. Pengukuran nilai VO2Max dilakukan dua kali yaitu satu hari sebelum intervensi dan pada hari ke-15 intervensi sedangkan untuk pengukuran kadar Hb dilakukan 3 kali yaitu satu hari sebelum intervensi, minggu pertama intervensi, dan pada minggu kedua intervensi atau hari ke-15 intervensi.

4. Manfaat Penelitian Bagi Subyek Penelitian


Subyek yang terlibat dalam penellitian ini akan memperoleh pengetahuan tentang manfaat jus umbi bit. Melalui penelitian ini diharapkan atlet bulutangkis dapat meningkatkan stamina ditandai dengan kadar Hemoglobin dan VO2Max yang optimal melalui pemanfaatan jus umbi bit.

5. Hak Untuk Undur Diri

Bila selama penelitian ini berlangsung responden ingin mengundurkan diri karena sesuatu hal (misalnya: sakit, atau ada keperluan lain yang mendesak) maka responden dapat mengungkapkan langsung kepada

peneliti. Hal-hal yang tidak jelas dapat menghubungi saya (Sanrebayu / 081241044558)

6. Alur Penelitian

Makassar, Desember 2019 Peneliti

Sanrebayu

LAMPIRAN 3. Lembar Persetujuan

KEMENTERIAN RISET, TEKNOLOGI DAN PENDIDIKAN TINGGI UNIVERSITAS HASANUDDIN

FAKULTAS KESEHATAN MASYARAKAT

Jl.Perintis Kemerdekaan Km. 10, Makassar, 90245, Tlp. (0411) 585658, 516-005, Fax (0411) 586031

Email: dekanfkmuh@gmail.com, website: www. fkmunhas.com

FORMULIR PERSETUJUAN

Yang bertanda tangan dibawah ini:
Nama :
Tanggal lahir/umur :

Alamat:

No. Hp:

Setelah mendengar/membaca dan mengerti penjelasan yang diberikan mengenai apa yang dilakukan pada penelitian dengan judul "Pengaruh Jus Umbi Bit (Beta Vulgaris) Terhadap Kadar Hemoglobin dan Nilai VO2Max Atlet Bulutangkis", maka saya bersedia berpartisipasi dalam penelitian ini dan bersedia berperan serta dengan mematuhi ketentuan yang berlaku dalam penelitian ini.

Saya menjadi responden bukan karena adanya paksaan dari pihak lain, tetapi karena keinginan saya sendiri dan tidak ada biaya yang akan ditanggungkan kepada saya sesuai dengan penjelasan yang sudah dijelaskan oleh peneliti.

Saya percaya bahwa keamanan dan kerahasiaan data yang diperoleh dari saya sebagai responden akan terjamin dan saya dengan ini menyetujui semua informasi dari saya yang dihasilkan pada penelitian ini dapat dipublikasikan dalam bentuk lisan maupun

tulisan dengan tidak mencantumkan nama. Bila terjadi perbedaan pendapat dikemudian hari, kami akan menyelesaikannya secara kekeluargaan.

Makassar, 2019

Responden

(_____)

Penanggung Jawab Penelitian:

Nama: Sanrebayu, S.Or

Alamat : Jl. Perumnas Antang, Blok I, No/57, Makassar

Tlp/HP: 081241044558

Email: Sanrebayu2995@yahoo.co.id

LAMPIRAN 4. Blangko Kriteria Responden

KEMENTERIAN RISET, TEKNOLOGI DAN PENDIDIKAN TINGGI UNIVERSITAS HASANUDDIN

FAKULTAS KESEHATAN MASYARAKAT

Jl.Perintis Kemerdekaan Km. 10, Makassar, 90245, Tlp. (0411) 585658, 516-005, Fax (0411) 586031

Email: dekanfkmuh@gmail.com, website: www. fkmunhas.com

KRITERIA RESPONDEN

1.	Nama	:
2.	Umur	:
3.	Status perkawinan	: Menikah / Belum menikah
4.	Pendidikan	:
5.	Tinggi badan	:
6.	Berat badan	:
7.	IMT	:
8.	Kebiasaan merokok Jika "ya" berapa jur	: Ya / Tidak mlah rokok yang dihisap perhari :
9.	Kadar Hemoglobin	:
10.	. Nilai VO2Max	:

LAMPIRAN 5.

Blangko Pencatatan Multistage FT

Nama : Umur :

Berat Badan

1	1	2	3	4	5	6	7							
1	-	-	3		5	-	7		1					
2	1	2	3	4	5	6	/	8	1					
_	+-	2	3		-		7		1					
3	1	2	3	4	5	6	-	8		ĺ				
	1	2	3	4	5	6	7	8	9					
4														
5100	1	2	3	4	5	6	7	8	9					
5				-	_									
•	1	2	3	4	5	6	7	8	9	10				
6	-	_			-	_	_		_	40				
7	1	2	3	4	5	6	7	8	9	10				
•	1	2	3	4	5	6	7	8	9	10	11	1		
8		-	_		-	_		Ť	Ŭ	10		1		
	1	2	3	4	5	6	7	8	9	10	11	1		
9]		
22/20	1	2	3	4	5	6	7	8	9	10	11			
10													e e	
44	1	2	3	4	5	6	7	8	9	10	11	12		
11	-	_	_		-		_	_	_	46				
12	1	2	3	4	5	6	7	8	9	10	11	12		
-	1	2	3	4	5	6	7	8	9	10	11	12	13	1
13		-	Ť	-	Ť	Ť		Ŭ	Ŭ	10			10	
	1	2	3	4	5	6	7	8	9	10	11	12	13	
14														
	1	2	3	4	5	6	7	8	9	10	11	12	13	
15														L
16	1	2	3	4	5	6	7	8	9	10	11	12	13	L

LAMPIRAN 6. Formulir Food Recall

FORMULIR IDENTITAS RESPONDEN

FOOD RECALL

A. Identitas Responden

- Nama:
- Alamat:
- Tempat, Tanggal Lahir:
- Umur:
- Telepon/Hp:
- Berat Badan:
- Tinggi Badan:

B. Petunjuk Pengisian Angket

- 1. Isilah formulir identitas responden dengan lengkap
- Isilah formulir Food Recall 24 Hours selama 7 hari (seminggu) dengan menulis semua jenis makanan dan banyaknya makanan sesuai dengan makanan yang anda makan
- 3. Partisipasi anda dalam mengisi formulir penelitian ini dengan sejujurjujurnya akan sangat membantu saya dalam penyusunan tesis.

Demikian atas kesediaannya dalam pengisian instrumen ini, maka saya sampaikan terima kasih.

FORMULIR FOOD RECALL 24 JAM

Tanggal:

		Banyaknya				
Waktu Makan	Menu Makanan	URT	*Bera			
Pagi/Jam:						
Selingan Pagi/Jam						
Siang/Jam:						

Selingan Siang/Jam		
Malam/Jam		
Selingan		
Malam/Jam		

Keterangan:

URT : Urutan Rumah Tangga

*Berat (gr) : tidak perlu diisi oleh responden

LAMPIRAN 7. Etik Penelitian

KEMENTERIAN PENDIDIKAN DAN KEBUDAYAAN UNIVERSITAS HASANUDDIN FAKULTAS KESEHATAN MASYARAKAT KOMITE ETIK PENELITIAN KESEHATAN

Schretariat:

Jl. Perintis Komerdekaan Km. 10 Makassar 90243, Telp. (0411) 585658, 516-905,
Fax (0411) 586013E-mail: hepkfkmak@gmail.com, website: www.fkm.ushas.ac.id

REKOMENDASI PERSETUJUAN ETIK Nomor: 11219/44-14.7/1901-02/29

Tanggal: 16 Desember 2019

Dengan ini Menyatakan bahwa Protokol dan Dokumen yang Berhabungan dengan Protokol berikut ini telah mendapatkan Persetujuan Etik :

No.Protokol	131219042175	No. Sponsor Protokol	
Peneliti Utama	Sanrebayu		
Judul Peneliti	Pengaruh Jus Umbi Bit (Beta Nilai VO2Max Atlet Bulutang		p Kadar Hemoglobin dan
No. Versi Protokol	1	Tanggal Versi	13 April 2018
No.Versi PSP	1	Tanggal Versi	13 April 2018
Tempat Penelitian	Gedung Olahraga Bulutangkis F	IK UNM	
Judul Review	Exempted x Expedited Fullboard	Masa Berlaku 16 Desember 2019 sampai 16 Desember 2020	Frekuensi review lunjutan
Ketua Komisi Etik Penelitian	Nama : Prof.dr.Veni Hadju,M.Sc,Ph.D	Tanda rangan	In Ocember 2019
Sekretaris komisi Etik Penelitian	Nama : Nur Arifah,SKM,MA	Tanda ingan	Ur Disember 2019

Kewajiban Peneliti Utama :

- Menyerahkan Amandemen Protokol umuk persetujuan sebeliam di implementasikan
 Menyerahkan Laporan SAE ke Komisi Etik dalam 24 Jam dan dilengkapi dalam 7 hari dan Lapor SUSAR
- dalam 72 Jam setelah Peneliti Utama menerima laporan

 3. Menyerahkan Laporan Kemajuan (progress report) setiap 6 bulan untuk penelitian resiko tinggi dan setiap setahun untuk penelitian resiko rendah
- Menyurahkan laporan akhir setelah Penelitian berakhir
 Melaporakn penyimpungan dari peotocol yang disetujui (protocol deviation/violation)
 Mematuhi semua peraturan yang ditentukan

LAMPIRAN 8. Surat Izin Penelitian

DINAS PENANAMAN MODAL DAN PELAYANAN TERPADU SATU PINTU BIDANG PENYELENGGARAAN PELAYANAN PERIZINAN

Nomor : 27117/S.01/PTSP/2019

Lampiran :

KepadaYth. Rektor Univ. Negeri Makassar

Penhal : Izin Penelitian

di-

Tempat

Berdasarkan surat Dekan Fak. Kesehatan Masyarakat UNHAS Makassar Nomor : 11600/UN4.14/PT.01.04/2019 tanggal 26 Desember 2019 perihal tersebut diatas, mahasiswa/peneliti dibawah ini:

N a m a Nomor Pokok SANREBAYU

Program Studi

: K012172003 : Gizi

Pekerjaan/Lembaga

: Mahasiswa(S2)

Alamat

JI. P. Kemerdekaan Km. 10, Makassar

Bermaksud untuk melaku<mark>kan penelitian di</mark> daerah/kantor saudara dalam rangka penyusunan Tesis, dengan judul

" PENGARUH JUS UMBI BIT (BETA VULGARIS) TERHADAP KADAR HEMOGLOBIN DAN NILAI VO2 MAX

Yang akan diaksanakan dari : Tgl. 02 Januari s/d 02 Februari 2020

Sehubungan dengan hal tersebut diatas, peda prinsipnya kamil menyetujul kegistan dimaksud dengan ketentuan yang tertera di belakang surat izin penelitian.

Demikian Surat Keterangan ini diberikan agar dipergunakan sebagaimana mestinya.

Diterbitkan di Makassar Pada tanggal : 30 Desember 2019

A.n. GUBERNUR SULAWESI SELATAN
KEPALA DINAS PENANAMAN MODAL DAN PELAYANAN TERPADU SATU
PINTU PROVINSI SULAWESI SELATAN

Selaku Administrator Polayanan Penzinan Terpadu

A. M. YAMIN, SE. MS. Pangkat : Pembina Utama Madya Nip : 19610513 199002 1 002

Tembusan YO

1. Delan Fak, Kesehatan Masyerakat URBAS Makassar di Makassar;

SMAP PTSP 30-12-2019

LAMPIRAN 9. Surat Keterangan Telah Menyelesaikan Penelitian

BIRO KEGIATAN MAHASISWA FAKULTAS BULUTANGKIS FAKULTAS ILMU KEOLAHRAGAAN UNIVERSITAS NEGERI MAKASSAR Alamat : Jl. Wijaya Kusuma Raya No. 48 kampus FIK UNM

Banta-Bantaeng Tip.(0411)872 602.Kode Pos 90222 Makassar

SURAT KETERANGAN TELAH MENYELESAIKAN PENELITIAN Nomor: 007/B/PP/BKMF-Bulutangkis/BEM-FIK-UNM/XI/2020

Yang bertanda tangan dibawah ini Ketua Umum Biro Kegiatan Mahasiswa Fakultas (BKMF) Bulutangkis FIK UNM menerangkan Bahwa:

Nama

; Sanrebayu

Nim

: K012172003

Program Studi

: Ilmu Gizi

Fakultas

: Fakultas Kesehatan Masyarakat

Instansi

: Universitas Hasanuddin

Waktu Penelitian : 27 Desember 2019 s/d 11 Januari 2020

Telah menyelesaikan penelitian dalam rangka penulisan penelitian dengan judul :

"Pengaruh Jus Umbi Bit (Beta Vulgaris) Terhadap Kadar Hemoglobin dan Nilai VO2MAX Atlet Bulutangkis"

Demikian surat keterangan ini dibuat dengan sesungguhnya dan dipergunakan sebagaimana mestinya.

risat, 13 Januari 2020

Abil Almarizi Raden

LAMPIRAN 10. Master Tabel Penelitian

			ВВ	ТВ	Pre	Tes	Hari Ke-7	Pos	st Tes	IMT	Kebutuhan
No.	Nama	Umur	(kg)	(cm)	Hb (gr/dl)	VO2Max (ml/kg/mnt)	Hb (gr/dl)	Hb (gr/dl)	VO2Max (ml/kg/mnt)	(BB/TB)	Kalori (Kkal)
			ŀ	KELOMPO	K PERLAKUA	N I (Jus Umbi	Bit 300 MI)				
1	ASJ	2	68,7	176	11,6	45,2	12,5	13,4	53,7	22,2	1642
2	RP	18 th	53,0	163	13,3	47,1	13,9	14,1	53,4	19,9	1289
3	МН	23 th	70,9	172	13,5	38,9	15,0	13,8	46,8	23,8	1647
4	AL	19 th	63	168	10,3	39,6	13,5	15,0	44,2	22,2	1640
5	II	18 th	52,0	165	11,9	34,3	14,3	16,5	43,6	19,1	1371
6	IS	18 th	39,0	151	13,6	36,8	13,7	14,9	38,2	17,1	1143
7	RZ	20 th	56,3	161	14,0	43,9	14,0	15,2	51,1	21,7	1432
8	GR	19 th	70,0	176	15,2	47,1	16,2	16,8	54,3	22,6	1665
9	MT	20 th	66,8	169	14,2	54,8	14,8	15,3	56,5	23,3	1608
10	MA	20 th	52,0	169	12,8	49,6	14,1	14,8	55,7	18,2	1358
11	FR	20 th	50,3	165	12,4	39,9	16,0	14,1	41,8	18,5	1339
12	AK	25 th	73,6	168	9,7	47,1	10,4	13,2	53,4	25,9	1697

			ВВ	ТВ	Pro	e Tes	Hari Ke-7	Pos	t Tes	IMT	Kebutuhan
No.	Nama	Umur	(kg)	(cm)	Hb (gr/dl)	VO2Max (ml/kg/mnt)	Hb (gr/dl)	Hb (gr/dl)	VO2Max (ml/kg/mnt)	(BB/TB)	Kalori (Kkal)
1	FL	20 th	54	168	14,4	35,0	14,8	15,6	40,2	19,1	1510
2	AR	19 th	72,7	165	13,7	38,5	13,2	14,2	42,6	26,7	1668
3	MRA	18 th	56,4	170	10,2	33,9	12,3	15,5	45,2	19,5	1439
4	AR	21 th	60,1	165	11,8	37,1	12,2	12,3	44,5	22,1	1444
5	MRAN	19 th	61,7	166	12,0	43,6	15,5	16,3	45,8	22,3	1493
6	MA	18 th	56	162	13,8	38,2	14,3	15,9	43,3	20,6	1521
7	AS	18 th	56,6	160	11,4	43,9	15,0	16,4	50,2	22,1	1433
8	SPO	21 th	70,6	164	12,8	29,1	12,7	13,3	34,3	26,1	1633
9	MI	19 th	66,9	164	13,0	42,0	13,2	15,2	41,8	24,9	1583
10	NVL	19 th	61,6	180	11,9	56,8	15,4	15,0	57,1	19,0	1547
11	NAH	21 th	61,0	165	13,4	36,8	11,8	14,3	33,9	22,4	1475
12	MSS	21 th	67,5	170	13,4	43,3	13,4	15,0	43,9	24,2	1585

			ВВ	ТВ	Pre	Tes	Hari Ke-7	Pos	t Tes	IMT	Kebutuhan		
No.	Nama	Umur	(kg)	(cm)	Hb (gr/dl)	VO2Max (ml/kg/mnt)	Hb (gr/dl)	Hb (gr/dl)	VO2Max (ml/kg/mnt)	(BB/TB)	Kalori (Kkal)		
	KELOMPOK KONTROL (PLASEBO)												
1	AAR	20 th	50,0	166	15,5	26,4	14,1	15,2	33,9	18,0	1325		
2	MHS	19 th	58,4	171	10,0	51,9	11,2	13,7	52,2	20,0	1456		
3	NHQ	19 th	60,8	166	13,2	51,9	14,2	15,2	52,5	22,1	1493		
4	MZ	20 th	56,9	161	8,1	38,9	10,7	9,8	42,2	21,8	1435		
5	IWN	21 th	63,1	153	10,8	34,3	12,2	12,6	36,4	27,0	1499		
6	RIN	18 th	61,0	165	12,7	40,2	12,1	13,8	41,8	19,0	1547		
7	IW	19 th	61,6	164	11,0	35,0	12,8	13,2	39,2	22,8	1600		
8	IM	20 th	56,6	171	10,8	37,1	11,7	12,8	40,2	19,4	1560		
9	NYI	20 th	50,0	165	12,8	34,3	14,5	14,5	39,9	20,5	1395		
10	FTR	21 th	52,3	169	11,3	35,4	11,0	11,4	35,0	18,6	1485		
11	AFT	19 th	62,7	170	10,0	39,9	12,2	12,4	43,3	21,7	1646		
12	IS	19 th	57,0	168	10,7	37,1	11,5	13,1	38,5	20,2	1557		

DATA FOOD RECALL 24 JAM RESPONDEN KELOMPOK 300 ML

NO.	NAMA	UMUR	IMT	KEBUTUHAN	ASUPAN RATA-RATA ZAT GIZI SELAIN JUS BIT							
				KALORI	ENERGI	KARBO	PROTEIN	LEMAK	ZAT BESI	VIT. C	NITRAT	TOTAL ASUPAN KALORI
1	ASJ	21 th	22,2	1642	1.946	274,06	53,83	66,1	10,6	5,3	0,1	2.355,99
2	RP	18 th	19,9	1289	1.738	233	64,8	68,32	9,9	-	-	2.114,02
3	MH	23 th	23,8	1647	3.117	319,3	140,77	155,02	6,03	1,82	_	3.920,22
4	AL	19 th	22,2	1640	1.873	207,9	85,4	74,2	10,8	-	-	2.251,3
5	II	18 th	19,1	1371	1.501	247,9	42,08	43,4	13,2	-	-	1.848,3
6	IS	18 th	17,1	1143	2.153	295,22	85,87	94,71	16,8	-	-	2.645,6
7	RZ	20 th	21,7	1432	2.145	216,19	115,44	85,6	12,2	118	-	2.692,43
8	GR	19 th	22,6	1665	2.150	203,7	98,8	73,6	14,3	5,9	-	2.585,2
9	MT	21 th	23,3	1608	3.372	459,08	149,93	108,06	11,26	36,4	-	4.136,73
10	MA	18 th	18,2	1358	2.049	323,48	33,5	68,21	0,8	-	-	2.474.99
11	FR	23 th	18,5	1339	1.171	161,1	81,5	119,12	18,6	-	-	1.551,32
12	AK	19 th	25,9	1697	2.035	217	73,3	62,4	9,2	_	-	2.396,9

DATA FOOD RECALL 24 JAM RESPONDEN KELOMPOK 200 ML

NO. NAMA UMUR IMT KEBUTUHAN ASUPAN RAT							N RATA-RA	TA ZAT GIZI	SELAIN JU	JS BIT		
				KALORI	ENERGI	KARBO	PROTEIN	LEMAK	ZAT BESI	VIT. C	NITRAT	TOTAL ASUPAN KALORI
1	FL	20 th	19,1	1510	2.073	281,6	92,5	70,8	0,8	-	-	2.518,7
2	AR	19 th	26,7	1668	1.497	197,48	63,26	48,72	13	-	-	1.819,48
3	MRA	18 th	19,5	1439	1.615	149,2	74,8	44,7	4,4	-	_	1.888,1
4	AR	21 th	22,1	1444	2.594	244,1	124,4	125,5	13,9	-	-	3.101,9
5	MRAN	19 th	22,3	1493	1.293	168,82	33,59	73,15	13,4	-	-	1.581,96
6	MA	18 th	20,6	1521	1.821	273,1	112,4	60,2	12,3	59	-	2.338
7	AS	18 th	22,1	1433	1.961	252,7	94,4	111,9	24,5	-	-	2.444,5
8	SPO	21 th	26,1	1633	2.385	222,3	101,4	100,6	15,7	_	_	2.825
9	MI	19 th	24,9	1583	1.587	198,6	61,7	58,4	7,3	-	-	1.913
10	NVL	19 th	19,0	1547	1.932	280,39	84,84	58,7	13,7	118	-	2.487,63
11	NAH	21 th	22,4	1475	1.723	173,4	70,3	102,5	9,1	-	-	2.078,3
12	MSS	21 th	24,2	1585	1.849	264,1	106,5	55,4	27,9	-	-	2.302,9

DATA FOOD RECALL 24 JAM RESPONDEN KELOMPOK KONTROL

NO.	N	NAMA UMUR	IMT	KEBUTUHAN	N ASUPAN RATA-RATA ZAT GIZI SELAIN JUS BIT							
				KALORI	ENERGI	KARBO	PROTEIN	LEMAK	ZAT BESI	VIT. C	NITRAT	TOTAL ASUPAN KALORI
1	AAR	20 th	18,0	1325	2.210	208,7	107,5	107,5	15	-	-	2.648,7
2	MHS	19 th	20,0	1456	2.154	168,2	89,7	125,7	2,1	-	-	2.539,7
3	NHQ	19 th	22,1	1493	2.420	283,08	87,4	104,82	21,1	-	-	2.916,4
4	MZ	20 th	21,8	1435	1.982	225,25	54,02	98,47	4,4	-	-	2.364,14
5	IWN	21 th	27,0	1499	1.956	115,89	93,07	126,27	8,3	-	-	2.339,53
6	RIN	18 th	19,0	1547	1.271	205,09	41,27	30,37	7	-	-	1.554,73
7	IW	19 th	22,8	1600	1.817	173,4	88,16	102,7	16,8	118	-	2.316,06
8	IM	20 th	19,4	1560	2.307	216,2	101,7	97,14	6,03	-	-	2.728,07
9	NYI	20 th	20,5	1395	2.116	194,9	130,8	75,5	18,01	-	-	2.535,21
10	FTR	21 th	18,6	1485	1.986	189,2	142,3	94,7	9,7	-	-	2.421,9
11	AFT	19 th	21,7	1646	2,214	211,7	115,21	85,3	24,4	-	-	2.650,61
12	IS	19 th	20,2	1557	2.142	204,6	73,9	69,3	13,8	-	-	2.503,6

LAMPIRAN 11. Output SPSS Penelitian

A. Karaekteristik Responden

Descriptives

						95% Cor Interval f			
		N	Mean	Std. Deviation	Std. Error	Lower Bound	Upper Bound	Minim um	Maxim um
umur	PI (JUS UMBI BIT 300 ml)	12	20.08	2.109	.609	18.74	21.42	18	25
	PII (JUS UMBI BIT 200 ml)	12	19.50	1.243	.359	18.71	20.29	18	21
	PIII (PLACEBO)	12	19.58	.900	.260	19.01	20.16	18	21
	Total	36	19.72	1.485	.248	19.22	20.22	18	25
ВВ	PI (JUS UMBI BIT 300 ml)	12	59.633	10.6978	3.0882	52.836	66.430	39.0	73.6
	PII (JUS UMBI BIT 200 ml)	12	62.092	6.0901	1.7581	58.222	65.961	54.0	72.7
	PIII (PLACEBO)	12	57.533	4.6720	1.3487	54.565	60.502	50.0	63.1
	Total	36	59.753	7.6193	1.2699	57.175	62.331	39.0	73.6
ТВ	PI (JUS UMBI BIT 300 ml)	12	166.92	6.829	1.971	162.58	171.26	151	176
	PII (JUS UMBI BIT 200 ml)	12	166.58	5.143	1.485	163.32	169.85	160	180
	PIII (PLACEBO)	12	165.75	5.029	1.452	162.55	168.95	153	171
	Total	36	166.42	5.582	.930	164.53	168.31	151	180

Descriptives

							nfidence for Mean		
		N	Mean	Std. Deviation	Std. Error	Lower Bound	Upper Bound	Minim um	Maxi mum
IMT	PI (JUS UMBI BIT 300 ml)	12	21.208	2.6401	.7621	19.531	22.886	17.1	25.9
	PII (JUS UMBI BIT 200 ml)	12	22.417	2.6278	.7586	20.747	24.086	19.0	26.7
	PIII (Plasebo)	12	20.925	2.4257	.7002	19.384	22.466	18.0	27.0
	Total	36	21.517	2.5769	.4295	20.645	22.389	17.1	27.0
Kalori	PI (JUS UMBI BIT 300 ml)	12	1485.92	184.886	53.372	1368.45	1603.39	1143	1697
	PII (JUS UMBI BIT 200 ml)	12	1527.58	77.264	22.304	1478.49	1576.67	1433	1668
	PIII (Plasebo)	12	1499.83	89.676	25.887	1442.86	1556.81	1325	1646
	Total	36	1504.44	124.320	20.720	1462.38	1546.51	1143	1697

Kruskal-Wallis Test

Ranks

	KELOMPOK	N	Mean Rank
umur	I (JUS UMBI BIT 300 ml)	12	19.33
	II (JUS UMBI BIT 200 ml)	12	17.58
	III (Plasebo)	12	18.58
	Total	36	
ВВ	I (JUS UMBI BIT 300 ml)	12	18.50
	II (JUS UMBI BIT 200 ml)	12	21.38
	III (Plasebo)	12	15.63
	Total	36	
ТВ	I (JUS UMBI BIT 300 ml)	12	19.96
	II (JUS UMBI BIT 200 ml)	12	17.04
	III (Plasebo)	12	18.50
	Total	36	

Test Statistics^{a,b}

	umur	ВВ	ТВ
Chi-Square	.177	1.788	.465
df	2	2	2
Asymp. Sig.	.915	.409	.793

a. Kruskal Wallis Test

b. Grouping Variable: KELOMPOK

Oneway Anova

Descriptives

 IMT

					95% Confidence Interval for Mean			
	N	Mean	Std. Deviation	Std. Error	Lower Bound	Upper Bound	Minimum	Maximum
I (JUS UMBI BIT 300 ml)	12	21.208	2.6401	.7621	19.531	22.886	17.1	25.9
II (JUS UMBI BIT 200 ml)	12	22.417	2.6278	.7586	20.747	24.086	19.0	26.7
III (Plasebo)	12	20.925	2.4257	.7002	19.384	22.466	18.0	27.0
Total	36	21.517	2.5769	.4295	20.645	22.389	17.1	27.0

ANOVA

 IMT

	Sum of Squares	df	Mean Square	F	Sig.
Between Groups	15.062	2	7.531	1.143	.331
Within Groups	217.348	33	6.586		
Total	232.410	35			

B. Kadar Hemoglobin

Descriptive Statistics

	Mean	Std. Deviation	N			
Hb_Pre test	12.256	1.6696	36			
Hb_ Hari ke-7	13.344	1.5307	36			
Hb_Hari ke-16	14.272	1.5076	36			

Multivariate Tests^a

Effect		Value	F	Hypothesis df	Error df	Sig.
waktu	Pillai's Trace	.680	36.181 ^b	2.000	34.000	<mark>.000</mark>
	Wilks' Lambda	.320	36.181 ^b	2.000	34.000	<mark>.000</mark>
	Hotelling's Trace	2.128	36.181 ^b	2.000	34.000	.000
	Roy's Largest Root	2.128	36.181 ^b	2.000	34.000	.000

a. Design: Intercept

Within Subjects Design: waktu

b. Exact statistic

Pairwise Comparisons

Measure: MEASURE_1

		Mean				nce Interval for rence ^b
(I) factor1	(J) factor1	Difference (I-J)	Std. Error	Sig. ^b	Lower Bound	Upper Bound
1	2	-1.325 [*]	.336	<mark>.002</mark>	-2.064	586
	3	-2.050 [*]	.416	.000	-2.965	-1.135
2	1	1.325*	.336	<mark>.002</mark>	.586	2.064
	3	725	.374	<mark>.079</mark>	-1.549	.099
3	1	2.050*	.416	.000	1.135	2.965
	2	.725	.374	.079	099	1.549

Based on estimated marginal means

- *. The mean difference is significant at the .05 level.
- b. Adjustment for multiple comparisons: Least Significant Difference (equivalent to no adjustments).

Kelompok I

Multivariate Tests^a

Effect		Value	F	Hypothesis df	Error df	Sig.
factor1	Pillai's Trace	.710	12.235 ^b	2.000	10.000	<mark>.002</mark>
	Wilks' Lambda	.290	12.235 ^b	2.000	10.000	<mark>.002</mark>
	Hotelling's Trace	2.447	12.235 ^b	2.000	10.000	<mark>.002</mark>
	Roy's Largest Root	2.447	12.235 ^b	2.000	10.000	<mark>.002</mark>

a. Design: Intercept

Within Subjects Design: factor1

b. Exact statistic

Estimates

Measure: MEASURE_1

			95% Confide	ence Interval
factor1	Mean	Std. Error	Lower Bound	Upper Bound
1	12.708	.466	11.682	13.735
2	14.033	.445	13.054	15.013
3	14.758	.324	14.046	15.471

Pairwise Comparisons

Measure: MEASURE_1

		Mean				nce Interval for rence ^b
(I) waktu	(J) waktu	Difference (I-J)	Std. Error	Sig. ^b	Lower Bound	Upper Bound
1	2	-1.089 [*]	.226	<mark>.000</mark>	-1.548	629
	3	-2.017 [*]	.238	<mark>.000</mark>	-2.499	-1.534
2	1	1.089 [*]	.226	<mark>.000</mark>	.629	1.548
	3	928 [*]	.180	.000	-1.292	563
3	1	2.017 [*]	.238	.000	1.534	2.499
	2	.928*	.180	.000	.563	1.292

Based on estimated marginal means

- *. The mean difference is significant at the .05 level.
- b. Adjustment for multiple comparisons: Least Significant Difference (equivalent to no adjustments).

Pairwise Comparisons

Measure: MEASURE_1

	_	Mean				nce Interval for rence ^b
(I) factor1	(J) factor1	Difference (I-J)	Std. Error	Sig. ^b	Lower Bound	Upper Bound
1	2	-1.325 [*]	.336	.002	-2.064	586
	3	-2.050 [*]	.416	<mark>.000</mark>	-2.965	-1.135
2	1	1.325*	.336	<mark>.002</mark>	.586	2.064
	3	725	.374	<mark>.079</mark>	-1.549	.099
3	1	2.050 [*]	.416	.000	1.135	2.965
	2	.725	.374	.079	099	1.549

Based on estimated marginal means

- *. The mean difference is significant at the .05 level.
- b. Adjustment for multiple comparisons: Least Significant Difference (equivalent to no adjustments).

Statistics

Delta_HB umbi 300

N	Valid	12
	Missing	0
Mean	l	<mark>2.050</mark>
Std. [Deviation	<mark>1.4406</mark>

Kelompok II

Multivariate Tests^a

			<u> </u>			
Effect		Value	F	Hypothesis df	Error df	Sig.
waktu	Pillai's Trace	.729	13.443 ^b	2.000	10.000	<mark>.001</mark>
	Wilks' Lambda	.271	13.443 ^b	2.000	10.000	<mark>.001</mark>
	Hotelling's Trace	2.689	13.443 ^b	2.000	10.000	<mark>.001</mark>
	Roy's Largest Root	2.689	13.443 ^b	2.000	10.000	<mark>.001</mark>

a. Design: Intercept

Within Subjects Design: waktu

b. Exact statistic

Estimates

Measure: MEASURE_1

			95% Confidence Interval		
waktu	Mean	Std. Error	Lower Bound	Upper Bound	
1	12.650	.348	11.883	13.417	
2	13.650	.377	12.820	14.480	
3	14.917	.352	14.142	15.691	

Pairwise Comparisons

Measure: MEASURE 1

Measure.	MEASURE_I					
		Mean			95% Confidence Interval for Difference ^b	
(I) waktu	(J) waktu	Difference (I-J)	Std. Error	Sig. ^b	Lower Bound	Upper Bound
1	2	-1.000	.502	<mark>.072</mark>	-2.105	.105
	3	-2.267 [*]	.510	<mark>.001</mark>	-3.389	-1.144
2	1	1.000	.502	<mark>.072</mark>	105	2.105
	3	-1.267 [*]	.290	<mark>.001</mark>	-1.906	628
3	1	2.267*	.510	.001	1.144	3.389
	2	1.267 [*]	.290	.001	.628	1.906

Based on estimated marginal means

- *. The mean difference is significant at the .05 level.
- b. Adjustment for multiple comparisons: Least Significant Difference (equivalent to no adjustments).

Statistics

Delta_HB_ umbi 200

N	Valid	12
	Missing	0
Mean		<mark>2.267</mark>
Std. D	eviation	<mark>1.7670</mark>

Kelompok III

Descriptive Statistics

	Mean	Std. Deviation	N					
Hb_Pre test	11.408	1.9043	12					
Hb_Hari ke-7	12.350	1.2944	12					
Hb_Hari ke-16	13.142	1.5442	12					

Multivariate Tests^a

Effect		Value	F	Hypothesis df	Error df	Sig.
waktu	Pillai's Trace	.758	15.658 ^b	2.000	10.000	<mark>.001</mark>
	Wilks' Lambda	.242	15.658 ^b	2.000	10.000	<mark>.001</mark>
	Hotelling's Trace	3.132	15.658 ^b	2.000	10.000	<mark>.001</mark>
	Roy's Largest Root	3.132	15.658 ^b	2.000	10.000	<mark>.001</mark>

a. Design: Intercept

Within Subjects Design: waktu

b. Exact statistic

Pairwise Comparisons

Measure: MEASURE_1

Measure.	MEASURE_I							
		Mean	Std.		95% Confidence Interval for Difference ^b			
(I) waktu	(J) waktu	Difference (I-J) Error Sig. ^b Lower Bound				Upper Bound		
1	2	942 [*]	.341	<mark>.019</mark>	-1.692	191		
	3	-1.733 [*]	.306	<mark>.000</mark>	-2.406	-1.061		
2	1	.942 [*]	.341	<mark>.019</mark>	.191	1.692		
	3	792 [*]	.260	<mark>.011</mark>	-1.364	219		
3	1	1.733 [*]	.306	.000	1.061	2.406		
	2	.792 [*]	.260	.011	.219	1.364		

Based on estimated marginal means

*. The mean difference is significant at the .05 level.

b. Adjustment for multiple comparisons: Least Significant Difference (equivalent to no adjustments).

Statistics

Delta_HB_suplemen

N	Valid	12
	Missing	0
Mean		<mark>1.733</mark>
Std. D	Deviation	<mark>1.0586</mark>

ANOVA

		Sum of Squares	df	Mean Square	F	Sig.
Hb_Pre test	Between Groups	12.941	2	6.470	2.523	.096
	Within Groups	84.628	33	2.564		
	Total	97.569	35			
Hb_Hari ke-7	Between Groups	18.682	2	9.341	4.868	.014
	Within Groups	63.327	33	1.919		
	Total	82.009	35			
Hb_Hari ke-16	Between Groups	23.157	2	11.579	6.775	.003
	Within Groups	56.395	33	1.709		
	Total	79.552	35			

Pairwise Comparisons

Measure: MEASURE 1

ivieasure.	MEASURE_I					-		
		Mean	Std.		95% Confidence Interval for Difference ^b			
(I) waktu	(J) waktu	Difference (I-J)	Error	Sig. ^b	Lower Bound	Upper Bound		
1	2	942 [*]	.341	<mark>.019</mark>	-1.692	191		
	3	-1.733 [*]	.306	<mark>.000</mark>	-2.406	-1.061		
2	1	.942 [*]	.341	<mark>.019</mark>	.191	1.692		
	3	792 [*]	.260	<mark>.011</mark>	-1.364	219		
3	1	1.733 [*]	.306	.000	1.061	2.406		
	2	.792 [*]	.260	.011	.219	1.364		

Based on estimated marginal means

b. Adjustment for multiple comparisons: Least Significant Difference (equivalent to no adjustments).

ANOVA

		Sum of Squares	df	Mean Square	F	Sig.
HB_Pre test	Between Groups	12.941	2	6.470	2.523	.096
	Within Groups	84.628	33	2.564		
	Total	97.569	35			
HB_Hari ke-7	Between Groups	18.682	2	9.341	4.868	.014
	Within Groups	63.327	33	1.919		
	Total	82.009	35			
HB_Hari ke-16	Between Groups	23.157	2	11.579	6.775	.003
	Within Groups	56.395	33	1.709		
	Total	79.552	35			

^{*.} The mean difference is significant at the .05 level.

Group Statistics

	KELOMPOK			Std.	Std. Error
	KELOWPOK	N	Mean	Deviation	Mean
HB_Pre test	I (JUS UMBI BIT 300 ml)	12	12.708	1.6155	.4664
	II (JUS UMBI BIT 200 ml)	12	12.650	1.2072	.3485
HB_Hari ke-7	I (JUS UMBI BIT 300 ml)	12	14.033	1.5412	.4449
	II (JUS UMBI BIT 200 ml)	12	13.650	1.3063	.3771
HB_Hari ke-16	I (JUS UMBI BIT 300 ml)	12	14.758	1.1212	.3237
	II (JUS UMBI BIT 200 ml)	12	14.917	1.2187	.3518

Independent Samples Test

				'	ident oa	•				
		Levene'	s Test							
		for Equa	ality of							
		Varia	nces			t-t	est for Equali	ty of Means		
						Sig. (2-	Mean	Std. Error	95% Cor Interva Diffe	l of the
		F	Sig.	t	df	tailed)	Difference	Difference	Lower	Upper
HB_Pre test	Equal									
	variances	.779	.387	.100	22	. <mark>921</mark>	.0583	.5822	-1.1490	1.2657
	assumed									
	Equal									
	variances			.100	20.364	.921	.0583	.5822	-1.1547	1.2713
	not assumed									
HB_Hari ke-	Equal									
7	variances	.066	.800	.657	22	. <mark>518</mark>	.3833	.5832	8262	1.5928
	assumed									
	Equal									
	variances			.657	21.425	.518	.3833	.5832	8280	1.5947
	not assumed									
HB_Hari	Equal									
ke-16	variances	.048	.829	331	22	. <mark>744</mark>	1583	.4780	-1.1497	.8331
	assumed									
	Equal									
	variances			331	21.849	.744	1583	.4780	-1.1501	.8335
	not assumed									

C. Nilai VO2Max

ANOVA

		Sum of Squares	df	Mean Square	F	Sig.
VO2Max_pre	Between Groups	172.402	2	86.201	1.913	.164
	Within Groups	1487.026	33	45.061		
	Total	1659.428	35			
VO2Max_post	Between Groups	421.641	2	210.820	5.648	.008
	Within Groups	1231.865	33	37.329		
	Total	1653.506	35			

Kelompok 1

Paired Samples Statistics

		Mean	N	Std. Deviation	Std. Error Mean
Pair 1	VO2Max_pre	43.692	12	5.9180	1.7084
	VO2Max_post	49.392	12	6.1654	1.7798

Paired Samples Test

		Paired Differences						
				95% Co	nfidence			
			Std.	Interval of the				Sig.
		Std.	Error	Difference				(2-
	Mean	Deviation	Mean	Lower	Upper	t	df	tailed)
Pair VO2Max_pre - 1 VO2Max_post	-5.7000	2.7163	.7841	-7.4258	-3.9742	-7.269	11	.000

Statistics

Delta_Vo2Max_300

N	Valid	12
	Missing	0
Mean		<mark>5.700</mark>
Std. D	eviation	<mark>2.7163</mark>

Kelompok II

Paired Samples Statistics

		Mean	N	Std. Deviation	Std. Error Mean
Pair 1	VO2Max_pre	39.850	12	6.9426	2.0041
	VO2Max_post	43.567	12	6.2564	1.8061

Paired Samples Test

			Paire						
			Std.	Std. Error	Interva	nfidence I of the rence			Sig. (2-
		Mean	Deviation	Mean	Lower	Upper	t	df	tailed)
Pair 1	VO2Max_pre - VO2Max_post	-3.7167	3.8966	1.1248	-6.1924	-1.2409	-3.304	11	.007

Statistics

Delta_Vo2Max_200

_		
N	Valid	12
	Missing	0
Mean	l	<mark>3.717</mark>
Std. [Deviation	<mark>3.8966</mark>

Kelompok III

Paired Samples Statistics

		Mean N		Std. Deviation	Std. Error Mean	
Pair 1	VO2Max_pre	39.850	12	6.9426	2.0041	
	VO2Max_post	43.567	12	6.2564	1.8061	

Paired Samples Test

	raneu Sampies Test											
			Pair	ed Differenc	es							
					95% Confidence							
					Interval of the							
			Std.	Std. Error	Difference				Sig. (2-			
		Mean	Deviation	Mean	Lower	Upper	t	df	tailed)			
Pair 1	VO2Max_pre VO2Max_post	-3.7167	3.8966	1.1248	-6.1924	-1.2409	-3.304	11	.007			

Statistics

Delta_Vo2Max_suplemen

Dona_	_voziviax_oapioi	11011
N	Valid	12
	Missing	0
Mear	١	<mark>2.725</mark>
Std. I	Deviation	<mark>2.2911</mark>

Group Statistics

					Std. Error
	KELOMPOK	N	Mean	Std. Deviation	Mean
VO2Max	I (JUS UMBI BIT 300)	12	43.692	5.9180	1.7084
Pre test	II (JUS UMBI BIT 200)	12	39.850	6.9426	2.0041
VO2Max	I (JUS UMBI BIT 300)	12	49.392	6.1654	1.7798
Post test	II (JUS UMBI BIT 200)	12	43.567	6.2564	1.8061

Independent Samples Test

_				acpenae	ini Samp	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,					
		for Eq	e's Test uality of ances	A Appet for Equality of Manage							
		vani	ances		t-test for Equality of Means						
								Std.	95% Cor	nfidence	
						Sig.	Mean	Error	Interval	of the	
						(2-	Differen	Differen	Differ	ence	
		F	Sig.	t	df	tailed)	ce	ce	Lower	Upper	
VO2Max Pre test	variances assumed	.022	.885	1.459	22	. <mark>159</mark>	3.8417	2.6335	-1.6198	9.3031	
	Equal variances not assumed			1.459	21.462	.159	3.8417	2.6335	-1.6278	9.3111	
VO2Max Post test	Equal variances assumed	.638	.433	2.297	22	. <mark>031</mark>	5.8250	2.5356	.5664	11.0836	
	Equal variances not assumed			2.297	21.995	.031	5.8250	2.5356	.5663	11.0837	

D. Variabel Perancu

Tests of Normality

	Kolm	nogorov-Smir	nov ^a		Shapiro-Wilk	
	Statistic	df	Sig.	Statistic	df	Sig.
IMT	.089	36	.200*	.956	36	.159
Kalori	.086	36	.200*	.958	36	.193
ENERGI	.152	36	.035	.929	36	.023
KARBOHIDRAT	.519	36	.000	.167	36	.000
PROTEIN	.389	36	.000	.306	36	.000
LEMAK	.128	36	.145	.978	36	.672
ZAT_BESI	.089	36	.200*	.975	36	.592
VIT_C	.436	36	.000	.480	36	.000
NITRAT	.538	36	.000	.158	36	.000
TOTAL_KALORI	.157	36	.025	.891	36	.002

^{*.} This is a lower bound of the true significance.

Descriptives

-				Descriptive	5				
						95% Confiden	ce Interval for		
				Std.		Me	ean	Minimu	Maximu
		N	Mean	Deviation	Std. Error	Lower Bound	Upper Bound	m	m
IMT	I (JUS UMBI BIT 300)	12	21.208	2.6401	.7621	19.531	22.886	17.1	25.9
	II (JUS UMBI BIT 200)	12	22.417	2.6278	.7586	20.747	24.086	19.0	26.7
	III (PLASEBO)	12	20.925	2.4257	.7002	19.384	22.466	18.0	27.0
	Total	36	21.517	2.5769	.4295	20.645	22.389	17.1	27.0
Kalori	I (JUS UMBI BIT 300)	12	1485.92	184.886	53.372	1368.45	1603.39	1143	1697
	II (JUS UMBI BIT	12	1527.58	77.264	22.304	1478.49	1576.67	1433	1668
	200) III (PLASEBO)	12	1499.83	89.676	25.887	1442.86	1556.81	1325	1646
	Total	36	1504.44	124.320	20.720	1462.38	1546.51	1143	1697
ENERGI	I (JUS UMBI BIT	12	2104.17	610.094	176.119	1716.53	2491.80	1171	3372

a. Lilliefors Significance Correction

	II (JUS UMBI BIT 200)	12	1860.83	367.219	106.007	1627.51	2094.15	1293	2594
	III (PLASEBO)	12	2047.92	295.068	85.179	1860.44	2235.39	1271	2420
	Total	36	2004.31	444.809	74.135	1853.80	2154.81	1171	3372
KARBOHIDRAT	I (JUS UMBI BIT 300)	12	263.1608	79.08932	22.83112	212.9099	313.4118	161.10	459.08
	II (JUS UMBI BIT 200)	12	225.4825	46.97130	13.55945	195.6384	255.3266	149.20	281.60
	III (PLASEBO)	12	2535.0942	8116.41313	2343.00665	-2621.8287	7692.0170	115.89	28308.00
	Total	36	1007.9125	4680.41660	780.06943	-575.7126	2591.5376	115.89	28308.00
PROTEIN	I (JUS UMBI BIT 300)	12	85.4350	36.26293	10.46821	62.3946	108.4754	33.50	149.93
	II (JUS UMBI BIT 200)	12	85.0075	25.50864	7.36371	68.8001	101.2149	33.59	124.40
	III (PLASEBO)	12	174.3775	285.06947	82.29247	-6.7470	355.5020	41.27	1075.00
	Total	36	114.9400	167.25729	27.87622	58.3483	171.5317	33.50	1075.00
LEMAK	I (JUS UMBI BIT 300)	12	84.8950	30.29927	8.74665	65.6438	104.1462	43.40	155.02
	II (JUS UMBI BIT 200)	12	75.8808	27.11658	7.82788	58.6518	93.1099	44.70	125.50
	III (PLASEBO)	12	93.1475	26.14587	7.54766	76.5352	109.7598	30.37	126.27
	Total	36	84.6411	28.02885	4.67147	75.1575	94.1247	30.37	155.02
ZAT_BESI	I (JUS UMBI BIT 300)	12	11.1408	4.68838	1.35342	8.1620	14.1197	.80	18.60
	II (JUS UMBI BIT 200)	12	13.0000	7.59186	2.19158	8.1764	17.8236	.80	27.90
	III (PLASEBO)	12	12.2200	7.02450	2.02780	7.7568	16.6832	2.10	24.40
	Total	36	12.1203	6.41313	1.06886	9.9504	14.2902	.80	27.90
VIT_C	I (JUS UMBI BIT 300)	12	64.67	111.050	32.057	-5.89	135.22	0	364
	II (JUS UMBI BIT 200)	12	14.75	36.673	10.587	-8.55	38.05	0	118
	III (PLASEBO)	12	9.83	34.064	9.833	-11.81	31.48	0	118
	Total	36	29.75	72.762	12.127	5.13	54.37	0	364
NITRAT	I (JUS UMBI BIT 300)	12	.08	.289	.083	10	.27	0	1

	W (W 6 W 40) D 7								
	II (JUS UMBI BIT 200)	12	.00	.000	.000	.00	.00	0	0
	III (PLASEBO)	12	.00	.000	.000	.00	.00	0	0
	Total	36	.03	.167	.028	03	.08	0	1
TOTAL_KALORI	I (JUS UMBI BIT 300)	12	2581.0833	753.78056	217.59770	2102.1540	3060.0127	1551.32	4136.73
	II (JUS UMBI BIT 200)	12	2274.9558	440.20366	127.07585	1995.2638	2554.6479	1581.96	3101.90
	III (PLASEBO)	12	2459.8875	334.58224	96.58557	2247.3041	2672.4709	1554.73	2916.40
	Total	36	2438.6422	539.40219	89.90036	2256.1348	2621.1497	1551.32	4136.73

ANOVA

		Sum of Squares	df	Mean Square	F	Sig.
Kalori	Between Groups	10799.389	2	5399.694	.336	.717
	Within Groups	530137.500	33	16064.773		
	Total	540936.889	35			
LEMAK	Between Groups	1789.987	2	894.993	1.149	.329
	Within Groups	25706.579	33	778.987		
	Total	27496.566	35			
ZAT_BESI	Between Groups	20.918	2	10.459	.243	.785
	Within Groups	1418.571	33	42.987		
	Total	1439.489	35			

Kruskal-Wallis Test

Ranks

Ranks							
	KELOMPOK	N	Mean Rank				
ENERGI	I (JUS UMBI BIT 300)	12	19.42				
	II (JUS UMBI BIT 200)	12	14.17				
	III (PLASEBO)	12	21.92				
	Total	36					
KARBOHIDRAT	I (JUS UMBI BIT 300)	12	23.25				
	II (JUS UMBI BIT 200)	12	18.46				
	III (PLASEBO)	12	13.79				
	Total	36					
PROTEIN	I (JUS UMBI BIT 300)	12	16.58				
	II (JUS UMBI BIT 200)	12	17.50				
	III (PLASEBO)	12	21.42				
	Total	36					
VIT_C	I (JUS UMBI BIT 300)	12	22.08				
	II (JUS UMBI BIT 200)	12	17.38				
	III (PLASEBO)	12	16.04				
	Total	36					
NITRAT	I (JUS UMBI BIT 300)	12	19.50				
	II (JUS UMBI BIT 200)	12	18.00				
	III (PLASEBO)	12	18.00				
	Total	36					
TOTAL_KALORI	I (JUS UMBI BIT 300)	12	19.25				
	II (JUS UMBI BIT 200)	12	15.08				
	III (PLASEBO)	12	21.17				
	Total	36					

Test Statistics^{a,b}

						TOTAL_
	ENERGI	KARBOHIDRAT	PROTEIN	VIT_C	NITRAT	KALORI
Chi-Square	3.383	4.837	1.425	4.117	2.000	2.092
df	2	2	2	2	2	2
Asymp. Sig.	.184	.089	.490	.128	.368	.351

a. Kruskal Wallis Test

b. Grouping Variable: KELOMPOK

MEROKOK

		Frequency	Percent	Valid Percent	Cumulative Percent
Valid	Tidak	32	88.9	88.9	88.9
	Ya	4	11.1	11.1	100.0
	Total	36	100.0	100.0	

KELOMPOK 1

		Frequency	Percent	Valid Percent	Cumulative Percent
		Troqueries	1 0100110	Valia i diddit	1 0100110
Valid	Tidak	11	91.7	91.7	91.7
	Ya	1	8.3	8.3	100.0
	Total	12	100.0	100.0	

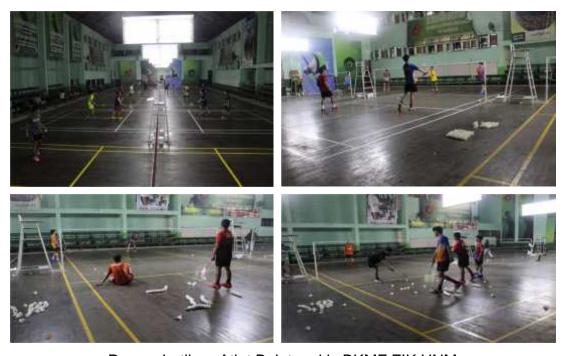
KELOMPOK 2

					Cumulative
		Frequency	Percent	Valid Percent	Percent
Valid	Tidak	11	91.7	91.7	91.7
	Ya	1	8.3	8.3	100.0
	Total	12	100.0	100.0	

KELOMPOK 3

			KELOWII OI	. •	
					Cumulative
		Frequency	Percent	Valid Percent	Percent
Valid	Tidak	10	83.3	83.3	83.3
	Ya	2	16.7	16.7	100.0
	Total	12	100.0	100.0	

LAMPIRAN 12. Dokumentasi Penelitian


Proses Pembuatan Jus Umbi Bit

Pemberian Lembar Penjelasan Penelitian Kepada Responden

Proses Pengisian Lembar Persetujuan dan Lembar Kriteria Responden

Proses Latihan Atlet Bulutangkis BKMF FIK UNM

Pemberian Jus Umbi Bit Kepada Responden

Pengukuran Tinggi Badan Menggunakan Microtoise

Pengukuran Berat Badan dan IMT Menggunakan Body Fat Monitor

Pemeriksaan Kadar Hemoglobin Atlet

Pengukuran Nilai VO2Max Dengan Metode Multistage Fitness Test

Foto Bersama Atlet Bulutangkis BKMF FIK UNM

LAMPIRAN 13. Riwayat Hidup

A. Data Pribadi

Nama : Sanrebayu

Tempat, tanggal lahir : Ujung Pandang, 29 Juli 1995

Jenis Kelamin : Perempuan

Agama : Islam

Alamat : JL. Bangkala 1 No.57, Makassar

Email : <u>Sanrebayu2995@yahoo.co.id</u>

B. Riwayat Pendidikan

No	STRATA	INSTITUSI	TEMPAT	TAHUN
1	TK	TK Handayani	Makassar	2001-2002
2	SD	SD Inp. Perumnas Antang I	Makassar	2002-2007
3	SMP	SMP Neg. 17 Makassar	Makassar	2007-2010
4	SMA	SMA Neg. 12 Makassar	Makassar	2010-2013
5	S1 FIK	Universitas Negeri Makassar	Makassar	2013-2017
6	S2 KESMAS	Universitas Hasanuddin	Makassar	2017-2020