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Abstract

The concept of simultaneity is undoubtedly the most influential idea in econometrics, such as the relationship
in farmer exchange rate. A simultaneous equations model is model with two or more equadinedsas

one in which a variable explained in one equation appears as an explanatory in another. In theaisultane
equation model, the variables used are known as endogenous variables and exogenous varialdeh,ths a re
model's endogenous variables are determined at the same time. Moreover, in these simeljaations,

there is a correlation between the error terms of the structural equations of the model, thgeeast square
method was selected to estimate. Under the issues of multicollineasistage least squares estimation in a
simultaneous equations model has several desirable properties. Futhermore, we UStagesvizast square
estimator for the simultaneous equations model, which suffers from autocorrelation issues and then we
combined with ridge regression estimator whicfiegs from multicollinearity issues. After adjusting this with

the ordinary ridge regression estimator, we use a mixed method to apply the two stages leastrsgeduves.

From the this study, it was found that the two stage ridge is better than two staggukaastEhis is influenced

by the simultaneous relationship and multicollinearity in each equation

Keywords Simultaneous Equation Modeldlulticollinearity; Two Stage Least Square; Ridge Regression

1. Introduction

The dependent variable in two or more equations is also the independent variable in several other equations
in a simultaneous equation (Koutsoyiannis, 1978). Thus, a variable in the simultaneous equatiomdies, t
namely as endogenous variable an@agyenous variable (Supranto, 1984). In simultaneous equations, a set
of endogenous variables to a set of exogenous variables with error variables and the termsendatie
error variables. In this method, endogenous variables can become exogenous variables that endogenous
variables have a possibility to relate exogenous variables. Endogenous variable are variabledwehase va
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determined in the system of equations, while exogenous variables are determined outside the maatel (Syafa
1996).

In general, an equation is thought to represent a relationship describing a phenomenoergreasipn
modelling. Many situations involve a set relationships that explain how certain variables behave. As a result
parameter estimation in this situation has characteristics that are not present when a modebimychsngle
equation. When a relationship is a component af a system, some explanatory variables are stndhastic
correlated with the error term. In investigating the realationship between explanatory and regsjeviss ira
a single equation. Ordinary Least Squares (OLS) is the best linear unbiased e@@aE)rin investigating
the relationship between explanatory and response variables in a single equation. The OLS is ordieapplica
when all regression assumptions are satisfied and some of them are; errors in therenddsttilauted
withnormal distribution with zero mean and a constant and nohigh correlation problem among the explanatory
(independent variables) (Shariff and Duzan, 2018). However, the endogenous variable in the simultane
equation are correlated with error (disturbance) so OLS estimator will produce a biasedomsistent
(Eledum and Alkhalifa, 2012).

Several alternative for estimating simultaneous equation which is associated with the datmroafe
errors which occurs when the value of the error term in any particular period is correlatedomithpteceding
value or values are the reduce form equations, two stage least square estiamationn@gics)east square,
and three stage least square. The 2SLS method was introduced by (Theil, 1958n(Bd957). The 2SLS
better than ILS, because it gets one estimator for one parameter and returnsa stesrdfr each estimator
(Guijarati, 2010), (Lopez-Espin, Vidaand Giménez, 2012)

In the simultaneous equations, the problem of multicollinearity may still exist in the individual equations.
If the simultaneous equation solution to this problem is adopted there may be an intolerable risedrothe s
the model with the consequent depletion of the number of exogenous variables (\MHKthhno) & Dian,

2011). Multicollinearity is defined as conditions on which some or all explanatory variables have large
influence on others explanatory variables. This critical issue might happen if the analysis coggiset$anf

data with several numbers of explanatory variables and this will affect to the existence ofllimakitty
problem. In the presence of multicollinearity, the regression assumptions are invalid suuth,athe OLS
cannot be preceded in the next stage of estimation. Otherwise, the results of paréimatesesd inference
under OLS procedure will be insignificant and unreliable. Due to such problem, there aneiophiee methods

of estimations to overcome multicollinearity problem in regression anai@sl and Kennard (1970yathe

first to introduceridge egession method by adding sithgpositive quantities (denoted by letteinkmany
studiesto the dagonal of the maix X'X where X'X is matix of explanatory variable) andit is showncan
minimize the ased esimates and men squared erroMSE) of the model (Duan H., Shariff, 2015).

In this paper, we purpose a method for estimating the pararfeterised problem, namely auto-correlated
errors and multicollinearity. We chose to combined the two stagedgaare estimator and ridge regression
estimator. Trs study proposes anothé&chnique with kcan be formed as aihea combinaion o coefficierts
of determinabn o explanatay variables (Maan, Shukur, Kibria, 2010). The performance of the proposed
methodis investigated and comparison is m&nl2SLS and sora exsting methods by sing Variance Inflation
Factor (VIF) andVISE citerion. In this article, what is presented is a description of the estimation two stage
ridge regression.

2. Material
This section will explain the research data, sampling techniques, and research variables.
2.1 Two Stage Least Square for Simultaneous Equation

Each simultaneous equation is composed of two variables, namely exogenous and endogenous variables.
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Endogenous variables are dependent variables whose value are determined in the simultaneous equation
Exogenous variables are variables whose values have been determined outside the model. Théretneations
model are called structural equations while the parameters are called structural paraBtatetural
parameters reflect the direct effect of each exogenous variable on endogenous varsifleareous model

is said to be complete if the number of equations in the system likely the number of endogdables.vaAn
estimator called two-stage least squares would involve running OLS two times. Assume we \stimiate e

the coefficients of the linear model

Yi = Bo = BrXyi + -+ BpXpi T & (1)

The two stage least square estimatgf @ the following procedure:

1. First Stage: Z affects X

Regress eacki; onZ and save the predict value%, If X; is included inZ, we will have)?] = X;. Each
endogenous variable is regressed against all exogenous variable of a system so that thefeteatialuced
form is obtained. Suppose there is multiple regression equation:
Y1 =00+ BiX11 + BoXio + -+ BpXip + &4
Yy = Bo + B1X21 + BoXop + ot BpXop T &

Yi = Bo + BiXis + BoXip + -+ BpXip + &
But some of the variablg;; are correlated with the error term.

OLS estimation of this equation will be biased and inconsistent. Where equation (1) is whritigmnixrform
as follows

Y, =XB +¢ (2)
From equation (2), got the following error as:
=Y, —Xp €)

To minimize equation (3), it is obtained by finding the derrivative of the eshowith respect tgg and then
equating each dervative to zero

0
ﬁ - _ZZ(Yl’ = Bo = BiX1p = BoXiz — - = 'BPXL"’) =0

de
W - _ZZ(YI' = Bo = BiX1p — BoXip — - — 'BpXip) =0

de
ap, B _Zz(yi — Bo = BiX1p = BoXiz = = BpXip) = 0
de

35, ZE(YL- = Bo — B1X1p — B Xiz — - — ﬁpXip) =0

Let By, B2, -+, By dinyatakan dengay, b,, -+, by, maka

ZYl =nb0+blin1+bZZXi2+---++prXip
Z YiXi = bOXil + b1 ZXizl + bz zxizxil +-+ +bszipXi1
Z YiXiz = boXiz + by ZXuXiz + b, ZXizz +t +prXipXi2

Y YiXip = boXip + by X X Xip + by ¥ XipXip + -+ + by X X3, 4)
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Equation (4) can write{X'X)b = X'Y so that the estimataris:

g =XX)XY (5)
then look for theX projection to theZ projection which is the instrument variable matrix.
X=27p

=(Z'2)17'x

= P,X (6)

2. The second Step
Estimates via the OLS estimate of the regression model Eq. (1)
Y=XB+¢
e=Y-XpB
g'e Y—X’,B)’(Y—)?,B)
Y —X'g") (Y- XB)
=(Y'Y-Y'Xp)- (YBX +B'XXB) (7
de'e
ap
de'e 5 PPN
o8 =2X'Y +2X'X B
0=-2X'Y +2X'Xp
2X'X B =2X'Y

WhereE (¢*) = 0 and Cov(e*) = 21, Therefore, the OLS estimator for the model Eq. (7) is:

! _1
b=(Xx"Xx") x"y (8)
Where
Ji-p22 0 0 - 0\ /N
—-P, 1 0 - 0}|[Y
Y*i=PY = 0 -P, 1~ il
0 \
0 0 -P, 1

—_
[N
I
N
o -
o
o o
—
R

—P. 1 0o -
X*=P,X = z
z 0 -P, 1 - \
w0
X
0 0 —P, 1 "

Note that*'X = X'P,'P,X = X'QX andX*'Y = X'P;'P,Y = X'QY, where:

1 —P, 0 0
/_PZ 1"‘1:)22 _PZ 0 \
| 2 . .o
Q="P,/P, = | 0 —f’z 1 +“Pz : 0 |
\ : o 14P2 —P /
0 0 -pP, 1
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Thus, 2SLS estimator is given as
bygs = (X'QX)7X'QY 9)

2.2 Ridge Regression Model

The 2SLS estimate in equation (9) is invalid due to large deviatibnTiheb is said to be unbiased but
inconsistent. To overcome this problem, the positive valueisfadded to the diagonal elementstifx
matrix in Eg. (9) to minimize the impact of high correlation in explanatory variables [14]. Hence, the ridge
regression model for simultaneous equation is:
bg = (X'X + kD)7'X'Y (10)
According to [11], the value of the ridge estimadtdn Eq. (10) will provide a smaller value of MSE compared
to OLS estimator.

2.3 Two Stage Ridge Regression

In this study, the performance of existing ridge estimator are compared with 2SLS and thedpropos
simultan equation model with multicollinearity via two stage ridge regression estimator. According to equation
(9) with X'ox"isa symmetric matrix, so there is on orthogdhasuch thatT’'(X*' QX*)T = A

T'X"QX*'T = A
(X*T)' QX*T = A

MQM=A (12)
WhereA is diagonal matrbof sizeq x g with the elements of the main diagonal being the eigenvalues
(A1, 42, ..., 44) of the orthogonal matriX*' QX" whose elements are the eigenvector valugs ¢iX*. Based
on equation (11), then equation (2) can be written as follows:

Y*=X*B +¢&*
=X"If + ¢
=X'TT'B + ¢*
=X'T)T'B + ¢*
=Ma+¢* (12)
with M = (X*T) dana = T'B
from (12) we get:
=Y — Ma
H — g*lé‘
=({*—Ma)(Y*—Ma)
=" -Ma")(Y*—Ma)
=Y'Y" —Y'Ma —a'M'Y*+a'M'Ma)
= (Y*'Y* —2a'M'Y* + a'M'Ma)

oH _
At =
2M'Y* +2M'Ma =0
M'Ma = M'Y*
&=MMMY*
=T MYy (13)

from equation (1_}%can be formed into
a=(TX'0QXT) X*'T)'Y"
= (T'X'QXT)IT'X"'X*B

@
& = (T'X"QXT) T’ X' X* 1
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& = (T'X'QXT)'T'X*' X*TT'B
& = (T'X"QXT)"Y(T'X*' X*T)T'f
a=Tp
p=Ta (14)
by using the lagrange multplier, wheteas the value that minimize the objective function with the constraining
condition:
a'a—c>=0
obtained
H={*"-—Ma)(Y*—Ma) + k(a'a —c?)
=YY" —Y"'Ma—a'M'Y*+a'M'Ma + k(a'a — c?)
=YYY* = 2a'M'Y* + a'M'Ma + ka'a — kc?) (15)

%Jalified:
2alen =0
othat

0=0-2M'Y*+2M'Ma + 2ka
0=-MY*"+MMa+ka

M'Y* =MMa+ka

wherek is a constant, therefore

M'Ma+ ka =—-M'Y*
M'Ma +kya=-M'Y*
a=MM+Ek)MY*
= (((X*T)'(X*T) + K)"'(X*T)'Y™)
= ((PzXT)'(P,XT) + K)~"*(pXT)'pY)
= ((T'X'P,'P,XT + K)~T'X' P}P,Y)
= ((T'X'QXT + k)™IT'X'QY)

Therefore, the two stages ridge regression estimator is
Brr = (T'X'QXT + kI)™IT'X'QY) (16)

Wherek is a constant andas defined in Eq. (9). Estimator
two stage ridge is a bias estimator and its expectation is given as

E(Brr) = B — kI((T'X'QXT + kI)~'B (17)
3. Method
3.1 Data Sources and Research Variables

The data used in the application of the paramater estimation results was data on price iivéeklrgce

farmers and price index paid farmers. This data sourced from welagiteps.go.idin January 2011-December
2016. Completely the research variables can be seen on table 1.
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Table 1. List of Variable

Variadde Variable Name

Y; = price index received by farmers (%

Endogenous Y, = price index paid farmers (%)

X, = Producer Price Index (%)

X, = Household Consumption Index (%
Exogenous

X3 =Production Cost Index and Additio
of Capital Goods (%)

3.2 Step of Analysis

The analysis steps are as follows:

Test classic assumptions and detect multicollinearity by looking at the VIF value of the indeperialgliet va

Forming a reduction equation based on a structural model

Perform the Simultaneous Test to see that every equation have a simultaetsmmship between equation

Identify the model using the order condition method

Estimating the parameters of the simultaneous equation model using the 2SLS method.

Perform data transformation using centering and scaling for response variables and preibtes va

Perform the orthogonalization process on the independent variables by multiplying the independent variable

X by the orthogonal eigenvectors.

Determine the initial estimator of the 2SLS method for equations that experience multicollinearity

9. Estimating the parameters of the two stage ridge

10. Calculating the mean square error (MSE) and variance of the two stage ridgetpam®stimators for the
model suitability test

NoghrwdE

©

4. Result
4.1 Description Data

For farmer exchange rate data which consists of two endogenous variables and three exogainless ther
model specifications are as follows:

Y1 = vi0 +v12Y2 + B11X1 + 84 (18)

Yo = Va0 + v21Y1 + B12Xy + BasXs + & (19)
Based on minitab output, the VIF value for equation) {@Beach exogenous variable is shown in Table 2 dan
the VIF value for equation (}%or each exogenous variable is shown in Table 3.
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Table 2. The VIF Value Exogeneous Variable for It

Variable The VIF Value Description

Y, 1.364 Non Multicollinearity

X4 1.364 Non Multicollinearity

Table 3. The VIF Value Exogeneous Variable for Ib

Variable  The VIF Value Description
Y, 224.278 Multicollinearity

X, 55.506 Multicollinearity

X, 115.801 Multicollinearity

Tabel 2 shows that all exogenous variables have a Vélue 10. Thus, it can be concluded that there is no
multicollinearity problem in It data. While from table 3, it can be seen that all exogenous vahialtea
VIF value > 10 like Y; =224.278,X, =55.596 and X; = 115.801 . This shows that there is
multicollinearity problem in the Ib data.

Tabel 4. Simultaneous Test

Model  Error F Poaiwe DESCription
Eq.(18) & 6947.6 0.000 Simultan
Eq.(19) &  399079.2 0.000 Simultan

The significanse of the error variable in each equation is shown in table 4.In equati@md1@P) with
significant errora. = 0.05 indicates that there is a simultaneous effect between equations in the model.
Simultaneous test results show that both of equation contain simultaneous effects. Thenefittemeous
parameter estimation can be using 2SLS method.

4.2 The Application of The Parameter Estimation Two Stage Least Square
The First Stage

Apply OLS estimator to equation (18) and equation (19). Based on the calculation of the matlab program,
the coefficients for each variable rduced form:

WWw.ijrp.org
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ST —30.1710 0 —0.0062
T | _ | —0.0004 dan T21( _ [—0.0003
T2 0.5517 T2 0.7442
T3 0.7868 T3 0.2738
Then

§1 = —30.2 - 0.0004 X; + 0.5521 X, + 0.7868 X;
§, = —0.0062 — 0.0003 X; + 0.7442 X, + 0.2738 X;

The Second Stage

Subtitutey, into the equatior(18) and y; into equatior(19) so that it is obtained:

Y = Yio +Viz2¥2 + B Xs + €1
Y; = Y20 + Y2191 + 21Xz + B23X5 + €1

Apply OLS method to equation (P2 and equation (23 to estimate

Y10-Y12: Y20Y21, B11, B21 dan B3s.
1. Apply OLS method to equation (22)

1 131.82 7853 135.72
[1 132.80 7612] [136.36
X*=[1 ¥, X1]=[1 132.17 7371‘Y1=[136.34}

Y10
Y12

Bll

1 126.19 11476 127.81

= (X"X)7THXY)

2. Apply OLS method to equation (23
1 137.76 1344 123.07 124.56
1 13819 1363 123.36] 1246
X*=[1 9 X, X3]= [1 138.42 1355 123.59| Y, =|125.49

1 12837 13117 11544 125.94

Y20

Y21 W\ —1 ro!
Bzz =(X X) 1(X Yz)

623

Based on the matlab program, the simultaneous equation model using 2SLS method:

Y, = —6.2470 + 1.14028Y, — 0.0008 X,
¥, =19.552 + 0.6483Y; + 0.3866 X, — 0.2363X 5

4.3 Determination ot and Parameter Estimation Two Stage Ridge

Parameter value af,s; s calculating withis
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(20)
(21)

(22)
(23)

the value of
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—0.579076
Oyss = [—0.326332]
—0.589659
While the MSE value obtaina,; s is 6= 0.091077, then the itial & value is:

o _ 0.091077

1= Cosrsorey — 0271606
0 = 20077

kz = (-0.326332)2 0.855242
0 0.091077  _ 0261943

3 7 (Z0.589659)2
After getting the value df = diag(k?, k9,k2), The next step is to determine the paramejgrthrough the

iteration process. By using the help of Matlab software, the initial parameﬁeg,p}ﬁ (can be seen in the table
5.

Table 5. The Tesults of the Two Stage Ridge Parameter Estimator

Parameter ap
a, -0.530634
a, -0.007606
Qs -0.000314

To estimate parameter of two stage ridge, used paraeter@glue table 5 wher@,, = Q@ diperoleh
0.306222
Brr = [0.311sosl
0.301365
From the estimated parameter, the estimation results of the simutaneous equations model using two stage
ridge are shown below:
Y, =0.306222Y; + 0.311508 X, + 0.301365 X;
To find out the best models of parameters in this study, namely by using bias and MSE vagled. A
estimator is an estimator who has the smallest bias and MSE value. From the output matlab obtairedd a ratio
variance, bias and mse values of each method.

Tabel 6. Variane, Bias and MSE

Method Variance Bias MSE
Brr 0.41839 0.00000 0.41839
B,ss  0.02831 0.45126 0.47957

Based on table 6, it can be seen that the two stage ridge method has more optimal bias and MSE values.
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5. Conclusion

To find out the best model parameter estimatthigstudy is by using a comparison of the value
of bias and MSE. A good estimator is an estimatar fias the smallest bias and MSE values. From
the result of the study, it was found that the stage ridge is better than two stage least squais.
is influenced by the simultaneous relationship emdticollinearity in each equation.
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