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�e shearlet transform is a promising and powerful time-frequency tool for analyzing nonstationary signals. In this article, we
introduce a novel integral transform coined as the Cli�ord-valued shearlet transform on Cl(p,q) algebras which is designed to
represent Cli�ord-valued signals at di�erent scales, locations, and orientations. We investigated the fundamental properties of the
Cli�ord-valued shearlet transform including Parseval’s formula, isometry, inversion formula, and characterization of range using
the machinery of Cli�ord Fourier transforms. Moreover, we derived the pointwise convergence and homogeneous approximation
properties for the proposed transform. We culminated our investigation by deriving several uncertainty principles such as the
Heisenberg–Pauli–Weyl uncertainty inequality, Pitt’s inequality, and logarithmic and local-type uncertainty inequalities for the
Cli�ord-valued shearlet transform.

1. Introduction

Wavelet transforms have been proved to be a successful tool
for analyzing nontransient signals and have been applied in a
number of �elds including signal and image processing,
di�erential and integral equations, sampling theory, quan-
tum mechanics, medicine, and so on [1]. However, the ef-
�ciency of the wavelet transforms is considerably reduced
when applied to higher dimensional signals as they are not
able to capture the geometric features like edges and corners
at di�erent scales e�ciently.�e detection of such geometric
features in nontransient signals is often highly desirable in
numerous practical applications such as medical imaging,
remote sensing, crystallography, and several other areas. To
circumvent these constraints, a number of novel directional
representation systems have been introduced and employed
in recent years, such as the wedgelets, ridgelets, ripplets,
curvelets, contourlets, surfacelets, brushlets, and shearlets.
Among all these geometrical wavelet systems, the shearlet
systems have been widely acknowledged and emerged as one
of the most e�ective frameworks for representing multidi-
mensional data because they are nonisotropic nature, and
they o�er optimally sparse representations [2], allow

compactly supported analysing elements [3], are associated
with fast decomposition and reconstruction algorithms, and
provide a uni�ed treatment of continuum and digital data
[4, 5].

Cli�ord algebras have dethroned both the Grossmann’s
exterior algebra and Hamilton’s quaternion algebra in the
sense that they incorporate both the geometrical and alge-
braic features of Euclidean space into a single structure [6].
As a result, the theory of Cli�ord algebras has attained an
overwhelming response and gained a respectable status in
higher-dimensional signal and image processing mainly due
to the reason that such algebras encompass all dimensions at
once unlike the multidimensional tensorial approach with
tensor products of one-dimensional phenomena. �is true
multidimensional nature allows speci�c constructions of
higher dimensional signal and image processing tools in-
cluding the Cli�ord Fourier transforms [7, 8], Cli�ord
Gabor transforms, Cli�ord wavelet transforms, and other
integral transforms in general [9–13].

Motivated and inspired by the contemporary develop-
ments in the theory of shearlet transforms abreast the
profound applicability of the Cli�ord algebras, we introduce
the notion of Cli�ord-valued shearlet transforms on Cl(p,q)

Hindawi
Journal of Mathematics
Volume 2022, Article ID 7848503, 21 pages
https://doi.org/10.1155/2022/7848503

mailto:mawardibahri@gmail.com
https://orcid.org/0000-0001-8461-869X
https://orcid.org/0000-0002-8952-2002
https://orcid.org/0000-0003-1628-9163
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2022/7848503


algebras in the context of multidimensional signal analysis.
Unlike the conventional shearlet transform, the proposed
transform inherits both the geometric and algebraic prop-
erties of shearlet transforms and Clifford algebras. Although
a meek analgoue of shearlet transform in the Clifford do-
main has been proposed in [14], it only deals with the
Cl(0,n)algebra, where n � 3mod4. -erefore, the centre piece
of this study is to construct the Clifford-valued shearlets and
the corresponding shearlet transforms in the most general
setting Cl(p,q) by employing translations, sharing, scaling,
and spinning elements. Besides, we study the basic prop-
erties of the Clifford-valued shearlet transforms including
Parseval’s and inversion formulae and range theorem using
the machinery of Clifford Fourier transforms. Moreover, we
derive the pointwise convergence and homogeneous ap-
proximation properties for the proposed transform. Finally,
we formulate some uncertainty inequalities including the
classical Heisenberg–Pauli–Weyl inequality, Pitt’s inequal-
ity, and logarithmic inequality for the Clifford shearlet
transforms.

-e structure of this article is as follows. Section 2 deals
with the preliminaries of Clifford algebras, whereas a
comprehensive analysis of the general Clifford-valued
shearlet transforms is carried out in Section 3. In Section 4,
we study the homogeneous approximation properties for
proposed transform. Several uncertainty principles for the
proposed transform are also being studied in Section 5.
Finally, a conclusion is summarized in Section 6.

2. Basics of Clifford Algebras

In this section, we present a brief overview of the Clifford
algebras including the definitions of Clifford Fourier
transforms, spin group, and some unitary operators.

-e Clifford algebra Cl(p,q) is a noncommutative, as-
sociative algebra generated by the orthonormal basis
e1, e2, . . . , en  of the n-dimensional Euclidean space Rn

governed by the multiplication rule:

eiej + ejei � 2εiδij, i, j � 1, 2, . . . , n, (1)

where n � p + q, εi � +1 for i � 1, 2, . . . , p and εi � − 1 for
i � p + 1, p + 2, . . . , n, with δij denoting the usual Kro-
necker’s delta function. -e noncommutative product and
the additional axiom of associativity generates the 2n− di-
mensional Clifford geometric algebra Cl(p,q), which can be
decomposed as

Cl(p,q) � a
n

k�0
Cl

k
(p,q), (2)

where Clk(p,q) denotes the space of k-vectors given by

Cl
k
(p,q) ≔ span ei1

, ei2
, . . . , eik

; i1 ≤ i2 ≤ . . . ≤ ik . (3)

Any general element of the Clifford algebra is called a
multivector and every multivector M ∈ Cl(p,q) can be rep-
resented in the following form:

M � 
A

MAeA � 〈M〉0 + 〈M〉1 + · · · + 〈M〉n, MA ∈ R, A ⊂ 1, 2, . . . , n{ }, (4)

where eA � ei1
ei2

. . . eik
and i1 ≤ i2 ≤ . . . ≤ ik. Moreover, 〈·〉k

is called as the grade k-part of M, and 〈·〉0, 〈·〉1, 〈·〉2, . . .,
respectively, denote the scalar part, vector part, bivector part,
and so on. -e Clifford conjugate of a multivector
M ∈ Cl(p,q) is given by

M � 
n

r�0
(− 1)

r(r− 1)/2
〈M〉r, (5)

where the scalar product of multivectors M and N is defined
as

Sc(MN) � |MN| � M⋆N � 
A

MANA. (6)

Moreover, for any pair of multivectors M, N ∈ Cl(p,q), it
can be easily verified that

|MN|≤ 2n
|M||N|. (7)

We now intend to recall the fundamental notion of
Clifford Fourier transforms in Lr(R(p,q), Cl(p,q)), 1≤ r<∞
as

L
r
R

(p,q)
, Cl(p,q)  � f: R(p,q)⟶ Cl(p,q); ‖f‖r � 

R(p,q)
|f(x)|

rdn
x 

1/r

<∞
⎧⎨

⎩

⎫⎬

⎭. (8)

It is imperative to mention that any function
f ∈ Lr(R(p,q), Cl(p,q)) can be expressed as a combination of
the real-valued functions fA and the basis elements eA as

f(x) � 
A

fA(x)eA. (9)

Due to the noncommutativity of Clifford-valued
functions, several analogues of the Clifford Fourier
transforms have been introduced in the literature.
However, we shall be interested in following definition
due to Bahri et al. [15].
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Definition 1. Let I ∈ Cl(p,q) be a square root of − 1. -e
Clifford Fourier transform of any function f ∈ L1(R(p,q),

Cl(p,q)) is defined by

FCl[f(x)](ξ) �
1

(2π)
n/2 

R(p,q)
f(x)e

− Iυ(ξ,x)dn
x, (10)

where nx, ξ ∈ R(p,q), dnx � dx1dx2 . . . dxn, υ: R(p,q)×

R(p,q)⟶ R, and υ(ξ, x) � ξ1x1 + ξ2x2 + · · · + ξnxn.
-e inversion and Plancherel formulae associated with

the Clifford Fourier transform (10) are given by

f(x) �
1

(2π)
n/2 

R(p,q)
FCl[f(x)](ξ)e

Iυ(ξ,x)dnξ,

〈f , g〉
L2 R(p,q) ,Cl(p,q)( 

�〈FCl[f],FCl[g]〉
L2 R(p,q) ,Cl(p,q)( 

,

(11)

In this case, the inner product of twomultivector functions f
and g is described through

〈f , g〉
L2 R(p,q) ,Cl(p,q)( 

� 
R(p,q)

f(x)g(x)dn
x, (12)

and its scalar part is given by

|〈f , g〉|
L2 R(p,q) ,Cl(p,q)( 

� 
R(p,q)

|f(x)g(x)|
2dn

x

� 
R(p,q)

Sc(f(x)g(x))dn
x

� Sc 
R(p,q)

f(x)g(x)dn
x .

(13)

For an efficient representation of Clifford-valued func-
tions, we employ the spin elements obtained from the spin
group as defined below.

Definition 2. -e spin-group is a double covering of special
orthogonal group of Rn and is defined by

Spin(n) � r ∈ Cl
+
(p,q); rr � rr � 1 , (14)

where Cl+(p,q) is a subgroup of the invertible elements in the
Clifford algebra Cl(p,q).

To facilitate the construction of Clifford-valued shearlets,
we define the fundamental unitary operators acting on the
space Lr(R(p,q)). For a> 0, s ∈ Rn− 1 and b ∈ Rn, and the
scaling, shearing, spin-rotation, and translation operators
are denoted by DAa

, DSs
, Rr, Tb, respectively, and are de-

fined as

DAa
Ψ(x) � detAa



− 1/2Ψ A

− 1
a x ,

DSs
Ψ(x) � Ψ S

− 1
s x ,

RrΨ(x) � rΨ(rxr)r,

TbΨ(x) � Ψ(x − b),

(15)

and the matrices involved in equation (15) are

Aa �
a 0T

n− 1

0n− 1 sgn(a)|a|
1/n

In− 1

⎛⎝ ⎞⎠,

Ss �
1 sT

0n− 1 In− 1

⎛⎝ ⎞⎠,

(16)

where sT � (s1, s2, . . . , sn− 1), and sgn(·) and 0 denote the
well-known Signum function and the null vector, respec-
tively. Moreover, the composition of the scaling matrix Aa

and the shearing matrix Ss is given by

SsAa �

a sgn(a)a
1/n

s1 sgn(a)a
1/n

s2 sgn(a)a
1/n

s3 · · · sgn(a)a
1/n

sn− 1

0 sgn(a)a
1/n 0 0 · · · · · ·

⋮ ⋮ ⋮ ⋮ ⋮ ⋮

0 0 0 0 0 sgn(a)a
1/n

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (17)

3. The Clifford-Valued Shearlet Transform on
Cl(p,q) Algebras

In this section, we shall construct the Clifford-valued shearlets
on Cl(p,q) algebras by using the combined action of the scaling,
sharing, spin-rotation and translation operators. Besides, we
study the fundamental properties of the Clifford-valued shearlet
transform including Parseval’s formula, inversion formula, and
obtain a complete characterization of the range. Prior to that, we
shall demonstrate that the novel family of Clifford-valued
shearlets is endowed with an affine group structure.

Consider that the set G � R+ × Spin(n) × Rn− 1 × Rn

endowed with the binary operation ⊙ is defined as

(a, r, s, b)⊙ a′, r′, s′, b′( 

� aa′, r + r′, s + a
1− (1/n)

s′, b + SsAab′ ,
(18)

where a, a′ ∈ R+, s, s′ ∈ Rn− 1, b, b′ ∈ Rn, r, r′ ∈ Spin(n).
Clearly, (1, 0, 0n− 1, 0n, ) is the neutral element of G, whereas
(a− 1, − r, − a1/n− 1s, − A− 1

a S− 1
s b) is the inverse of any arbitrary

element (a, r, s, b) ∈ G. Moreover, it is easy to verify that
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(a, r, s, b)⊙ a′, r′, s′, b′( ( ⊙ a″, r″, s″, b″( 

� (a, r, s, b)⊙ a′, r′, s′, b′( ⊙ a″, r″, s″, b″( ( .

(19)

Hence, we conclude that (G, ⊙ ) constitutes a group and is
formally called as the similitude group of dilations, trans-
lations, shearing, and spinning.

Furthermore, we claim that the left Haar measure onG is
given by dη � dadrdn− 1sdnb/an+1. In fact, for any function
f ∈ L2(G, Cl(p,q)), we have


G
f (a, r, s, b)⊙ a′, r′, s′, b′(  dη � 

R+×Spin(n)×Rn×Rn
f aa′, r + r′, s + a

1− (1/n)
s′, b + SsAab′  

dadrdn− 1
sdn

b

a
n+1 . (20)

Making use of the substitution a: � aa′, r: �

rr′,s: � s + (a)1− 1/ns′, b: � b + SsAab′, i.e., da � (a′)− 1da,

dr � dr, dn− 1s � (a)− ((n− 1)2/n)dn− 1s, dnb � (a)− 2+1/ndnb, the
above expression becomes


G

f (a, r, s, b)⊙ a′, r′, s′, b′(  dη � 
R+×Rn×Spin(n)×Rn

f[(a, r,s, b)]
a′( 

− 1dadr(a)
− (n− 1)2/n( )dn− 1

s(a)
− 2+1/ndnb

a/a′( 
n+1

� 
R+×Rn×Spin(n)×Rn

f[(a, r,s, b)]
dadrdn− 1

sdnb

(a)
n+1 ,

(21)

which validates the claim that dη � dadrdn− 1sdnb/an+1 is
indeed the left Haar measure on G.

Next, we shall construct a novel class of shearlet systems
on Cl(p,q) algebras by the combined action of the scaling DAa

,
sharing DSs

, spin-rotation Rr, and translation Tb operators
on any analyzing function Ψ ∈ L2(R(p,q), Cl(p,q)).

For any a ∈ R+, s ∈ Rn− 1, b ∈ Rn, and r ∈ Spin(n),
consider the family of analyzing functions:

Ψr
a,s,b(x) � DAa

DSs
RrTbΨ(x) � a

(1/2n)− 1rΨ A
− 1
a S

− 1
s r(x − b)r r ,

(22)

which is called as the family of Clifford-valued shearlets on
the geometric algebra-Cℓ(p,q). -e system of functions (22)
satisfies the following properties:

(i) -e system (22) is a dense subspace of
L2(Rn, Cl(p,q))

(ii) -e following norm equality holds good:

Ψr
a,s,b

����
����

L2 Rn,Cl(p,q)( 
� ‖Ψ‖

L2 Rn,Cl(p,q)( 
. (23)

(iii) -e Clifford Fourier transform of the family of
functions Ψra,s,b(x) reads

FCl Ψ
r
a,s,b (ξ) � a

1− (1/2n)
FCl[rΨ(·)r] rSsAaξr( e

− Iυ(ξ,b)
.

(24)

Next, we shall present the notion of an admissible
Clifford-valued shearlet on the space of Clifford-valued
functions L2(Rn, Cl(p,q)).

Definition 3 (Admissibility). A nontrivial function
Ψ ∈ L2(Rn, Cl(p,q)) is called an admissible Clifford-valued
shearlet if

CΨ � 
R+×Rn− 1×Spin(n)

FCl[rΨ(·)r] rSsAaξr(   FCl[rΨ(·)r] rSsAaξr(  
dadn− 1

sdr

a
n2− n+1/n( )

, (25)

which is an invertible multivector and finite, i.e., ξ ∈ R(p,q).

Remark 1. It is worth noticing that FCl[rΨ(·)r](0) � 0, for
ξ � 0; that is, Ψ(x) � AΨA(x)eA. and


R(p,q)
ΨA(x)eAe

− Iυ(0,x)dn
x � 0, (26)

which in turn implies that for every component ΨA of the
Clifford-valued shearlet Ψ is zero; that is,


R(p,q)
ΨA(x)dn

x � 0. (27)

Based on the novel family of Clifford-valued shearlets
defined in equation (22), we have the following main def-
inition of the continuous Clifford-valued shearlet transform.
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Definition 4. -e continuous Clifford-valued shearlet
transform of any multivector signal f ∈ L2(Rn, Cl(p,q)) with
respect to an analysing Clifford-valued shearlet
Ψ ∈ L2(R(p,q), Cl(p,q)) is defined by

CSΨf(a, r, s, b) �〈f,Ψr
a,s,b〉L2 R(p,q) ,Cl(p,q)( 

� 
R(p,q)

f(x)Ψr
a,s,b(x)dn

x.
(28)

where Ψra,s,b(x) is given by equation (22).
-e corresponding spectral representation of the Clif-

ford-valued shearlet transform is

CSΨf(a, r, s, b) � a
1− (1/2n)


Rn
FCl[f](ξ)

· e
Iυ(ξ,b)

FCl[rΨ(·)r] rSsAaξr( dnξ.

(29)

We now present an example for the lucid illustration of
the proposed Clifford-valued shearlet transform (28).

Example 1. Consider the Clifford-valued Hermite wavelets
[16]as

ψn(x) � (− 1)
n
z

n
x exp −

|x|
2

2
  ,

z
n
x �

z
n

zx1
+

z
n

zx2
+ · · · +

z
n

zxn

 .

(30)

-erefore, the corresponding Clifford-valued shearlets
of ψn(x) are obtained as

Ψra,s,b(x) � detAa



− 1/2r A

− 1
a S

− 1
s (x − b)

n
 exp −

A
− 1
a S

− 1
s (x − b)



2

2
⎛⎝ ⎞⎠r,

(31)

and the Clifford-valued shearlet transform (28) of any
function f ∈ L2(Rn, Cln), with respect to the analyzing
shearlets (31) can be computed as

CSΨf(a, r, s, b) � detAa



− 1/2


Rn
f(x)r A

− 1
a S

− 1
s (x − b)

n
 

× exp −
A

− 1
a S

− 1
s (x − b)



2

2
⎛⎝ ⎞⎠rdn

x.

(32)

For simplicity, we shall compute the two-dimensional
Clifford-valued shearlet transform for the given function f
with respect to the shearlets:

Ψra,s,b x1, x2(  � detAa



− 1/2

A
− 1
a S

− 1
s x1 − b1( 

2
, x2 − b2( 

2
  

× exp −
A

− 1
a S

− 1
s x1 − b1, x2 − b2( 



2

2
⎛⎝ ⎞⎠,

(33)

where Aa �
a 0
0 a

1/2 , Ss �
1 s

0 1 . After simplifying, we
obtain

Ψra,s,b x1, x2(  �
��
a

√
x1 − b1( 

2
− s − a

3/2
  x2 − b2( 

2
 

× exp −
x1 − b1( 

2
+ s − a

− (1/2)
  x2 − b2( 

2

2a
2

⎛⎝ ⎞⎠.

(34)

-e two-dimensional analyzing shearlets ψr
a,s,b(x1, x2)

given by equation (34) at different values of a, s, r, and b are
plotted in Figure 1. -e parameters a and s determine the
scaling anisotropy and the decaying rate of shearlets pro-
viding more accurate location and orientation. In com-
parison with wavelets, shearlets not only inherits advantages
of wavelets (s � 0) but also provide detailed information of
position, normal and curvature of discontinuities.

-e Clifford-valued shearlet transform of f(x1, x2) �

exp − (x2
1 + x2

2)/2  is computed as

CSψf(a, r, s, b) �
��
a

√

R2

x1 − b1( 
2

− s − a
3/2

  x2 − b2( 
2

  × exp −
x1 − b1( 

2
+ s − a

− 1/2
  x2 − b2( 

2
+ a

2
x
2
1 + x

2
2 

2a
2

⎛⎝ ⎞⎠dx1dx2. (35)

For different values of a, s, r, and b, the corresponding
Clifford-valued shearlet transforms of f(x1, x2) with respect
the analysing shearlets (34) are depicted in Figure 2 after
computing the integrals (35) inMathematica software. From
the simulation, we infer that the Clifford-valued shearlet
transform enables a precise characterization of location,
orientation, and curvature of discontinuities in two di-
mensional signals.

In the following theorem, we assemble some of the basic
properties of the Clifford-valued shearlet transform (28).

Theorem 1. Ψra,s,b(x1, x2)for f , g ∈ L2(R(p,q), Cl(p,q)), and
admissible Clifford-valued shearletsΨ andΦ. 9e continuous

Clifford-valued shearlet transform (28) satisfies the following
properties:

(i) Linearity: CSΨ(αf + βg)(a, r, s, b) � αCSΨf(a, r,
s, b) + βCSΨg(a, r, s, b), α, β ∈ Cl(p,q)

(ii) Anti − linearity: CSαΨ+βΦf(a, r, s, b) � CSΨf(a, r,
s, b)α + CSΦf(a, r, s, b)β

(iii) Translation covariance: CSΨ(Tkf)(a, r, s, b) �

CSΨf(a, r, s, b − k)

(iv) Dilation covariance: CSΨ(D(1/c)f(x))(a, r, s, b) �

(CSDcΨf(x))(a, r, s, (b/c)), c ∈ R
(v) Parity: CSΨ(Pf(x))(a, r, s, b) � (− 1)nCSPΨ (f(x))

(a, r, s, − b), Pf(x) � f(− x)
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(vi) Translation inΨ: CSTkΨ(f(x))(a, r, s, b) � CSΨ(f(x))

(a, r, s, b + k)

Proof. For the sake of brevity, we omit the proof.
In our next theorem, we show that the Clifford-valued

shearlet transform sets up an isometry from L2(R(p,q),

Cl(p,q)) to L2(R+ × Rn− 1 × Rn × Spin(n), Cl(p,q)). □

Theorem 2. (Plancherel theorem). Let CSΨf(a, r, s, b) and
CSΨg(a, r, s, b) be the Clifford-valued shearlet transforms of
the multivector signals f and g, respectively. 9en, we have


R+×Rn− 1×Rn×Spin(n)

Sc CSΨf(a, r, s, b)CSΨg(a, r, s, b) 
dadn− 1

sdn
bdr

a
n+1

� (2π)
n

R(p,q)

Sc f(x)CΨg(x) dn
x � (2π)

n 〈fCΨ, g〉



L2 R(p,q) ,Cl(p,q)( 

,

(36)
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Figure 1: Two-dimensional analyzing shearlets ψr
a,s,b(x1, x2) given by equation (34) at different values of a, r, b, and s. (a) 2D-shearlets at

a� 1, b� 1, and s� 0. (b) Contour plot of 2D-shearlets at a� 1, b� 1, and s� 0. (c) 2D-shearlets at a� 1/2, b� 1 and s� 1. (d) Contour plot of
2D-shearlets at a� 1/2, b� 1 and s� 1.
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where CΨ is given by equation (25). Proof. .Invoking the spectral representation (29) of Clifford
shearlet transforms, we obtain


R+×Rn− 1×Rn×Spin(n)

Sc CSΨf(a, r, s, b)CSΨg(a, r, s, b) 
dadn− 1

sdn
bdr

a
n+1

� 
R+×Rn− 1×Rn×Spin(n)

a
2− (1/n)

Sc 
Rn
FCl[f](ξ)e

Iυ(ξ,b)
FCl[rΨ(·)r] rSsAaξr( dnξ

× 
Rn
FCl[g] ξ′( e

Iυ ξ′,b( )FCl[rΨ(·)r] rSsAaξ′r( dnξ′
dadn− 1

sdn
bdr

a
n+1 ,

� 
R+×Rn− 1×Rn×Spin(n)

a
2− (1/n)


Rn


Rn

Sc FCl[f](ξ)e
Iυ(ξ,b)

FCl[rΨ(·)r] rSsAaξr( 

×FCl[rΨ(·)r] rSsAaξ′r( e
− Iυ ξ′ ,b( )FCl[g] ξ′( dnξdnξ′

dadn− 1
sdn

bdr
a

n+1 .

(37)

-en, equation (37) can be rewritten as
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Figure 2: Two-dimensional Clifford-valued shearlet transforms of f(x1, x2) � exp − (x2
1 + x2

2)/2  with respect to analyzing function
Ψra,s,b(x1, x2) given by equation (35). (a) Clifford-valued STof f at a� 1/2, b� 1, and s� 1/2. (b) Clifford-valued STof f at a� b� 1, and s� 1.
(c) Contour plot of Clifford-valued ST of f at a� 1/2, b� 1, and s� 1/2. (d) Contour plot of Clifford-valued ST of f at a� b� 1, and s� 1.
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R+×Rn− 1×Rn×Spin(n)

Sc CSΨf(a, r, s, b)CSΨg(a, r, s, b) 
dadn− 1

sdn
bdr

a
n+1

� 
R+×Rn− 1×Rn×Spin(n)


Rn


Rn

Sc FCl[f](ξ)e
Iυ(ξ,b)

e
− Iυ ξ′ ,b( )

× FCl[rΨ(·)r] rSsAaξr(   FCl[rΨ(·)r] rSsAaξ′r(  FCl[g] ξ′( dnξdnξ′
dadrdn− 1

sdn
b

a
n2− n+1/n( )



� (2π)
n

Rn


Rn

Sc FCl[f](ξ)
1

(2π)
n 

Rn
e

Iυ ξ− ξ′ ,b( )dn
b 

× 
R+×Spin(n)×Rn− 1

FCl[rΨ(·)r] rSsAaξr(   FCl[rΨ(·)r] rSsAaξ′r(  
dadrdn− 1

s

a
n2− n+1/n( )

×FCl[g] ξ′( dnξdnξ′

� (2π)
n


Rn


Rn

Sc FCl[f](ξ)δ ξ − ξ′( (

× 
R+×Spin(n)×Rn− 1

FCl[rΨ(·)r] rSsAaξr(   FCl[rΨ(·)r] rSsAaξ′r(  
dadrdn− 1

s

a
n2− n+1/n( )

×FCl[g] ξ′( dnξdnξ′

� (2π)
n

Rn

Sc FCl[f](ξ) × 
R+×Spin(n)×Rn− 1

FCl[rΨ(·)r] rSsAaξr(   FCl[rΨ(·)r] rSsAaξr(  
dadrdn− 1

s

a
n2− n+1/n( )

×FCl[g](ξ)dnξ

� (2π)
n

Rn

Sc FCl[f](ξ)CΨFCl[g](ξ) dnξ

� (2π)
n

R(p,q)

Sc f(x)CΨg(x) dn
x.

(38)

-is completes the proof of -eorem 2. □ Corollary 1. For f � g, we have the following identity:


R+×Rn− 1×Rn×Spin(n)

CSΨf(a, r, s, b)



2dadn− 1

sdn
bdr

a
n+1 � (2π)

n

R(p,q)

Sc f(x)CΨf(x) dn
x. (39)

By taking Ψ ∈ L2(R(p,q), Cl(p,q)) with CΨ � 1, the Clif-
ford-valued shearlet transform CSΨf(a, r, s, b) becomes an
isometry from L2(R(p,q), Cl(p,q)) to L2(R+ × Rn− 1×

Rn × Spin(n), Cl(p,q)).
Ke next theorem guarantees the reconstruction of the

input Clifford-valued signal from the corresponding Clif-
ford-valued shearlet transform.

Theorem 3 (Inversion formula). Any Clifford-valued signal
f ∈ L2(R(p,q), Cl(p,q)) can be reconstructed from the Clifford-
valued shearlet transform CSΨf(a, r, s, b) via the formula:

f(x) �
1

(2π)
n 

R+×Rn− 1×Rn×Spin(n)
CSΨf(a, r, s, b)Ψra,s,b(x)C

− 1
Ψ
dadn− 1

sdn
bdr

a
n+1 . (40)
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Proof. Implication of Plancherel theorem of Clifford-valued
shearlet transform (36) for every g ∈ L2(R(p,q), Cl(p,q))

yields that

(2π)
n 〈fCΨ, g〉



L2 R(p,q) ,Cl(p,q)( 

� 〈CSΨf ,CSΨg〉



L2 G,Cl(p,q)( 

� 
R+×Rn− 1×Rn×Spin(n)

Sc CSΨf(a, r, s, b)CSΨg(a, r, s, b) 
dadn− 1

sdn
bdr

a
n+1

� 
R+×Rn− 1×Rn×Spin(n)

Sc CSΨf(a, r, s, b)
R(p,q)

g(x)Ψra,s,b(x) dn
x
dadn− 1

sdn
bdr

a
n+1

� 
R+×Rn− 1×Rn×Spin(n)


R(p,q)

Sc CSΨf(a, r, s, b)Ψra,s,b(x)g(x) dn
x
dadn− 1

sdn
bdr

a
n+1

� 
R(p,q)


R+×Rn− 1×Rn×Spin(n)

Sc CSΨf(a, r, s, b)Ψra,s,b(x) 
dadn− 1

sdn
bdr

a
n+1 g(x)dn

x

� 
R+×Rn− 1×Rn×Spin(n)

CSΨf(a, r, s, b)Ψra,s,b(x)
dadn− 1sdnbdr

an+1 , g 




L2 R(p,q) ,Cl(p,q)( 

,

(41)

where we used the Fubini–Tonelli theorem in getting the
second last step. Since g ∈ L2(R(p,q), Cl(p,q)) is arbitrary, we
have

(2π)
nf(x)CΨ � 

R+×Rn− 1×Rn×Spin(n)
CSΨf(a, r, s, b)Ψra,s,b(x)

dadn− 1
sdn

bdr
a

n+1 , (42)

or equivalently

f(x) �
1

(2π)
n 

R+×Rn− 1×Rn×Spin(n)
CSΨf(a, r, s, b)Ψra,s,b(x)C

− 1
Ψ
dadn− 1

sdn
bdr

a
n+1 . (43)

-is completes the proof of -eorem 3.
-e next theorem presents a characterization of the

range of the Clifford-valued shearlet transformCSHΨ. -e
result follows as a consequence of the reconstruction for-
mula (40) and the well known Fubini theorem. □

Theorem 4 (Characterization of range of CSΨ ). If
h � CSΨf ∈ L2(G, Cl(p,q)), let Ψ be an admissible Clifford-
valued shearlet. 9en, h is a Clifford-valued shearlet trans-
form of a function f ∈ L2(G, Cl(p,q)) if and only if it satisfies
the reproducing property:

h a′, r′, s′, b′(  �
1

(2π)
n 

G
h(a, r, s, b)〈Ψra,s,bC

− 1
Ψ ,Ψr′a′ ,s′ ,b′〉L2 R(p,q) ,Cl(p,q)( 

dadn− 1
sdn

bdr
a

n+1 . (44)

Proof. Let h belongs to the range of the Clifford-valued
shearlet transform CSΨ. -en, there exist a Clifford-valued

function f ∈ L2(R(p,q), Cl(p,q)) such thatCSΨf � h. In order
to show that h satisfies equation (44), we proceed as
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h a′, r′, s′, b′(  � CSΨf a′, r′, s′, b′( 

� 
R(p,q)

f(x)Ψr′a′,s′,b′d
n
x

� 
R(p,q)

1
(2π)

n 
G
CSΨf(a, r, s, b)Ψra,s,b(x)C

− 1
Ψ
dadn− 1

sdn
bdr

a
n+1 Ψr′a′,s′ ,b′d

n
x

�
1

(2π)
n 

G
CSΨf(a, r, s, b) 

R(p,q)
Ψra,s,b(x)C

− 1
Ψ Ψ

r′
a′ ,s′ ,b′d

n
x 

dadn− 1
sdn

bdr
a

n+1

�
1

(2π)
n 

G
CSΨf(a, r, s, b)〈Ψra,s,bC

− 1
Ψ ,Ψr′a′ ,s′ ,b′〉L2 R(p,q) ,Cl(p,q)( 

dadn− 1
sdn

bdr
a

n+1

�
1

(2π)
n 

G
h(a, r, s, b)〈Ψra,s,bC

− 1
Ψ ,Ψr′a′,s′ ,b′〉L2 R(p,q) ,Cl(p,q)( 

dadn− 1
sdn

bdr
a

n+1 .

(45)

Conversely, suppose that an arbitrary function
h ∈ L2(G, Cl(p,q)) satisfies equation (44). -en, we show that
there exists f ∈ L2(R(p,q), Cl(p,q)), such that CSΨf � h.
Assume that

f(x) �
1

(2π)
n 

G
h(a, r, s, b)Ψra,s,b(x)C

− 1
Ψ
dadn− 1

sdn
bdr

a
n+1 .

(46)

-en, it can be easily verified that

‖f‖2
L2 R(p,q) ,Cl(p,q)( 

�
1

(2π)
2n

C
− 1
Ψ



2
Ψra,s,b

����
����
2
L2 R(p,q) ,Cl(p,q)( ‖h(a, r, s, b)‖

2
L2 G,Cl(p,q)( 

, (47)

which implies that f ∈ L2(R(p,q), Cl(p,q)). Moreover, as a
consequence of the well-known Fubini theorem and in-
version -eorem (40), we have

CSΨf a′, r′, s′, b′(  � 
R(p,q)

f(x)Ψr′a′ ,s′ ,b′(x)dn
x

� 
R(p,q)

1
(2π)

n 
G
CSΨf(a, r, s, b)Ψra,s,bC

− 1
Ψ
dadn− 1

sdn
bdr

a
n+1 Ψr′a′,s′,b′(x)dn

x

�
1

(2π)
n 

G
CSΨf(a, r, s, b)

R(p,q)
Ψra,s,bC

− 1
Ψ Ψ

r′
a′ ,s′ ,b′(x)dn

x
dadn− 1

sdn
bdr

a
n+1

�
1

(2π)
n 

G
h(a, r, s, b)〈Ψra,s,bC

− 1
Ψ ,Ψr′a′ ,s′ ,b′〉L2 R(p,q) ,Cl(p,q)( 

dadn− 1
sdn

bdr
a

n+1

� h a′, r′, s′, b′( .

(48)

-is evidently completes the proof of theorem. □

Corollary 2. For an admissible Clifford shearlet
Ψ ∈ L2(R(p,q), Cl(p,q)), the range of the Clifford shearlet

transform 28) is a reproducing kernel in L2(R(p,q), Cl(p,q))

with kernel that can be given by

KΨ a, r, s, b, a′, r′, s′, b′(  �
1

(2π)
n〈Ψ

r
a,s,bC

− 1
Ψ ,Ψr′a′ ,s′ ,b′〉L2 R(p,q) ,Cl(p,q)( 

. (49)
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4. HAP Property for the Clifford-Valued
Shearlet Transforms

Homogeneous approximation property (HAP) means that
the approximation rate in a reconstruction of signal is es-
sentially invariant under time-scale shifts. -e HAP is being
extensively used for studying frame density [17]. In this

section, we investigate the homogeneous approximation
property for the proposed Clifford-valued shearlet trans-
forms. Initially, we shall present some results related to the
pointwise convergence of the reconstruction formula (40).

Theorem 5. Let CSΨf(a, r, s, b) be the Clifford-valued
shearlet transform of any f ∈ L2(R(p,q), Cl(p,q)) such that

fM,N(x) �
1

(2π)
n 

N

M

Rn×Rn− 1×Spin(n)

CSΨf(a, r, s, b)Ψra,s,b(x)C
− 1
Ψ
drdn− 1

sdn
bda

a
n+1 , N>M> 0, (50)

where Ψ ∈ L2(R(p,q), Cl(p,q)) is an admissible Clifford-valued
shearlet with CΨ ≠ 0, real valued. 9en, we have

FCl fM,N (ξ) � FCl[f](ξ) 
N

M

Rn− 1×Spin(n)

FCl[rΨ(·)r] rSsAaξ′r( 



2
C

− 1
Ψ
drdn− 1

sda

a
n2− n+1/n( )

. (51)

Proof. For M, N ∈ R+, we define

fM,N(x) �
1

(2π)
n 

N

M

Rn×Rn− 1×Spin(n)

CSΨf(a, r, s, b)Ψra,s,b(x)C
− 1
Ψ
drdn− 1

sdn
bda

a
n+1 . (52)

-en, the application of Schwartz’s inequality implies
that


N

M

Rn×Rn− 1×Spin(n)

CSΨf(a, r, s, b)Ψra,s,b(x)


C
− 1
Ψ
drdn− 1

sdn
bda

a
n+1 ≤ 

N

M

Rn×Rn− 1×Spin(n)

CSΨf(a, r, s, b)



2drdn− 1

sdn
b 

1/2

× 
Rn×Rn− 1×Spin(n)

Ψra,s,b(x)



2drdn− 1

sdn
b 

1/2

C
− 1
Ψ

da

a
n+1

� 
N

M

Rn×Rn− 1×Spin(n)

CSΨf(a, r, s, b)



2drdn− 1

sdn
b 

1/2

× Ψra,s,b(x)
����

����L2 Rn×Rn− 1×Spin(n)( )C
− 1
Ψ

da

a
n+1

≤ 
N

M

Rn×Rn− 1×Spin(n)

CSΨf(a, r, s, b)



2drdn− 1

sdn
b
da

an+1 

1/2

×‖Ψ‖L2 Rn×Rn− 1×Spin(n)( )C
− 1
Ψ 

N

M

da

an+1 

1/2

≤ (2π)
n 〈fCΨ, f〉



L2 R(p,q) ,Cl(p,q)(  

1/2

‖Ψ‖L2 Rn×Rn− 1×Spin(n)( )C
− 1
Ψ

1
�
n

√ M
− n

− N
− n

 
1/2 <∞.

(53)
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-is shows that fM,N is well defined on R2. Next, we show that fM,N is uniformly continuous on Rn.
For any x, x′ ∈ Rn, we have

fM,N(x) − fM,N x′( 


 �
1

(2π)
n 

N

M

Rn×Rn− 1×Spin(n)

CSΨf(a, r, s, b) Ψra,s,b(x) − Ψra,s,b x′(  C
− 1
Ψ
drdn− 1

sdn
bda

a
n+1





≤
1

(2π)n 
N

M

Rn×Rn− 1×Spin(n)

CSΨf(a, r, s, b)



2 drdn− 1sdnbda

an+1 

1/2

×
1

(2π)n 
N

M

Rn×Rn− 1×Spin(n)

Ψra,s,b(x) − Ψra,s,b x′( 



2 drdn− 1sdnbda

an+1 

1/2

C
− 1
Ψ




≤
1

(2π)
n/2 〈fCΨ, f〉



L2 R(p,q) ,Cl(p,q)(  

1/2
× 

N

M

Rn×Rn− 1×Spin(n)

Ψra,s,b(x) − Ψra,s,b x′( 



2 drdn− 1sdnbda

an+1 

1/2

C
− 1
Ψ


.

(54)

From equation (54), we observe that
|fM,N(x) − fM,N(x′)|⟶ 0 as ‖x − x′‖⟶ 0. -us, we
conclude that fM,N is uniformly continuous on R(p,q).

Moreover, for any g ∈ L1 ∩ L2(R(p,q), Cl(p,q)), we have

〈fM,N, g〉



L2 Rn,Cl(p,q)( 

� 
Rn

Sc fM,N(x)g(x) dn
x

� Sc 
Rn

1
(2π)

n 
N

M

Rn×Rn− 1×Spin(n)

CSΨf(a, r, s, b)Ψra,s,b(x)C
− 1
Ψ
drdn− 1

sdn
bda

a
n+1 g(x) dn

x

�
1

(2π)
n 

N

M

Rn×Rn− 1×Spin(n)

Sc CSΨf(a, r, s, b) 
Rn
Ψra,s,b(x)g(x)dn

x C
− 1
Ψ 

drdn− 1
sdn

bda

a
n+1

�
1

(2π)
n 

N

M

Rn×Rn− 1×Spin(n)

Sc CSΨf(a, r, s, b)CSΨg(a, r, s, b)dn
xC

− 1
Ψ 

drdn− 1
sdn

bda

a
n+1

�
1

(2π)
n Sc 

N

M

Rn×Rn− 1×Spin(n)

a
1− (1/2n)


Rn
FCl[f](ξ)e

Iυ(ξ,b)
FCl[rΨ(·)r] rSsAaξr( dnξ 

× a
1− (1/2n)


Rn
FCl[g] ξ′( e

Iυ(ξ,b)
FCl[rΨ(·)r] rSsAaξ′r( dnξ′ C

− 1
Ψ
drdn− 1

sdn
bda

a
n+1 

�
1

(2π)
n Sc 

N

M

Rn×Rn− 1×Spin(n)


Rn
FCl[f](ξ)e

Iυ(ξ,b)
FCl[rΨ(·)r] rSsAaξr( dnξ

×
Rn
FCl[rΨ(·)r] rSsAaξ′r( e

− Iυ ξ′ ,b( )FCl[g] ξ′( dnξ′C− 1
Ψ
drdn− 1

sdn
bda

a
n2− n+1/n( )



�
1

(2π)
n Sc 

N

M

Rn×Rn− 1×Spin(n)


Rn


Rn
FCl[f](ξ)e

Iυ(ξ,b)
e

− Iυ ξ′,b( )FCl[rΨ(·)r] rSsAaξr( dnξ

×FCl[rΨ(·)r] rSsAaξ′r( FCl[g] ξ′( dnξ′C− 1
Ψ
drdn− 1

sdn
bda

a
n2− n+1/n( )
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� Sc 
N

M

Rn×Rn− 1×Spin(n)


Rn
FCl[f](ξ)

1
(2π)

n 
Rn

e
Iυ ξ− ξ′ ,b( )dn

bFCl[rΨ(·)r] rSsAaξr( dnξ

×FCl[rΨ(·)r] rSsAaξr( FCl[g] ξ′( dnξ′C− 1
Ψ
drdn− 1

sdn
bda

a
n2− n+1/n( )



� Sc 
N

M

Rn×Rn− 1×Spin(n)


Rn
FCl[f](ξ)δ ξ − ξ′( FCl[rΨ(·)r] rSsAaξr( 

×FCl[rΨ(·)r] rSsAaξ′r( FCl[g] ξ′( dnξ′C− 1
Ψ 

drdn− 1
sda

a
n2− n+1/n( )

� Sc 
N

M

Rn×Rn− 1×Spin(n)


Rn
FCl[f](ξ)FCl[rΨ(·)r] rSsAaξr( 

×FCl[g](ξ)FCl[rΨ(·)r] rSsAaξr( dnξC
− 1
Ψ
drdn− 1

sda

a
n2− n+1/n( )



� 
N

M

Rn− 1×Spin(n)


Rn

Sc FCl[f](ξ) FCl[rΨ(·)r] rSsAaξr( 



2
FCl[g](ξ)dnξC

− 1
Ψ 

drdn− 1
sda

a
n2− n+1/n( )

� 
Rn

Sc FCl[f](ξ) 
N

M

Rn− 1×Spin(n)

FCl[rΨ(·)r] rSsAaξr( 



2
C

− 1
Ψ
drdn− 1

sda

a
n2− n+1/n( )

 FCl[g](ξ) dnξ. (55)

Invoking scalar part for the Clifford Fourier transform,
we can deduce that

F fM,N (ξ) � FCl[f](ξ) 
N

M

Rn− 1×Spin(n)

FCl[rΨ(·)r] rSsAaξr( 



2
C

− 1
Ψ
drdn− 1

sda

a
n2− n+1/n( )

. (56)

-is completes the proof of -eorem 5. □

Theorem 6. Let Ψ ∈ L2(R(p,q), Cl(p,q)) be an admissible
Clifford-valued shearlet. 9en, for any f ∈ L1 ∩ L2(R(p,q),

Cl(p,q))), we have

lim
M⟶0

, N⟶∞ f − fM,N

����
����∞ � 0,

lim
M⟶0

, N⟶∞ f − fM,N

����
����2 � 0.

(57)

Proof. Using Parseval’s formula for the Clifford Fourier
transforms together with an application of -eorem 5, we
have

f − fM,N

����
����

L∞ Rn,Cl(p,q)( 
≤ f − fM,N

����
����

L1 Rn,Cl(p,q)( 

� FCl[f](ξ) − FCl fM,N (ξ)
�����

�����L1 Rn,Cl(p,q)( 

� ‖FCl[f](ξ) − FCl[f](ξ) 
N

M

Rn− 1

× Spin(n)×FCl[rΨ(·)r] rSsAaξr( 



2drdn− 1sda

a n2− n+1/n( )
C

− 1
Ψ ‖

L1 Rn,Cl(p,q)( 

� ‖FCl[f](ξ) 1 − 
N

M

Rn− 1

× Spin(n)×FCl[rΨ(·)r] rSsAaξr( 



2drdn− 1sda

a n2− n+1/n( )
C

− 1
Ψ ‖

L1 Rn,Cl(p,q)( 

� 
Rn

FCl[f](ξ)


‖1 − 
N

M

Rn− 1

×Spin(n) × FCl[rΨ(·)r] rSsAaξr( 



2drdn− 1

sda

a
n2− n+1/n( )

C
− 1
Ψ |dnξ.

(58)
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Since Ψ is given to be admissible, it follows that


N

M

Rn− 1×Spin(n)

FCl[rΨ(·)r] rSsAaξr( 



2 drdn− 1

sda

a
n2− n+1/n( )

≤
R+


Rn− 1×Spin(n)

FCl[rΨ(·)r] rSsAaξr( 



2 drdn− 1

sda

a
n2− n+1/n( )

� CΨ <∞.

(59)

-erefore, we have

lim
M⟶0

, N⟶∞ 1 − 
N

M

Rn− 1×Spin(n)

FCl[rΨ(·)r] rSsAaξr( |
2drd

n− 1
sda

a
n2− n+1/n( )

C
− 1
Ψ




� 0. (60)

Using dominated convergence theorem in equation (58),
we conclude that

lim
M⟶0

, N⟶∞ f − fM,N

����
����

L∞ Rn,Cl(p,q)( 
� 0. (61)

Proceeding in a manner similar to the above case, we can
show that

lim
M⟶0

, N⟶∞ f − fM,N

����
����

L2 Rn,Cl(p,q)( 
� 0. (62)

-is completes the proof of -eorem 6.
In the sequel, we study the homogeneous approximation

property for the proposed Clifford-valued shearlet trans-
forms. Prior to that, we introduce some notations as given
below:

For every (a′, r′, s′, b′) ∈ L2(R+ × Spin(n) × Rn− 1×

Rn, Cl(p,q)) and M>N, P> 0, we denote

QM,N;P � ([− N, − M]∪ [N, M]) × Spin(n) ×[− P, P]
n− 1

×[− P, P]
n
,

a′, s′, b′, r′( QM,N;P � a′, s′, b′, r′( (a, s, b, r)

� a′a, s′ + a′
1− (1/n)

s + s′, b′ + Ss′Aa′b, r′r ,

(63)

where a ∈ [− N, − M]∪ [N, M], r ∈ Spin(n), s ∈ [− P, P]n− 1

and b ∈ [− P, P]n. □

Theorem 7. Let Ψ ∈ L2(R(p,q), Cl(p,q))be an admissible
Clifford-valued shearlet with CΨ ≠ 0, real valued. 9en,

for any f ∈ L2(R(p,q), Cl(p,q)) and ε> 0, there exist some
constants N>M> 0, P> 0, such that for any
(a′, r′, s′, b′) ∈ L2(R+ × Spin(n) × Rn− 1 × Rn, Cl(p,q)), with
any 0<M′ ≤M, N≤N′ and P′ ≥P, we have

fr′a′ ,s′ ,b′ − 
(a,s,b,r)∈Q′
〈fr′a′,s′ ,b′ ,Ψ

r
a,s,b〉C

− 1
Ψ Ψ

r
a,s,b

dadn− 1sdnbdr
an+1

��������

��������

2

L2 R(p,q) ,Cl(p,q)( 
< ε, (64)

where (a′, s′, b′, r′)QM′ ,N′;P′ � Q′.

Proof. For an arbitrary g ∈ L2(R(p,q), Cl(p,q)), we have
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fa′, s′, b′r
′
− 

(a,s,b,r)∈Q′
〈fa′, s′, b′r

′
,Ψra,s,b〉C

− 1
Ψ Ψ

r
a,s,b

dadn− 1sdnbdr
an+1

��������

��������

2

L2R(p,q) ,Cl(p,q)

� sup
‖g‖�1
〈fa′, s′, b′r

′
− 

(a,s,b,r)∈Q′
〈fa′, s′, b′r

′
,Ψra,s,b〉C

− 1
Ψ Ψ

r
a,s,b

dadn− 1sdnbdr
an+1 , g〉





2

� sup
‖g‖�1
〈fa′, s′, b′r

′
, g〉 

(a,s,b,r)∈Q′
〈fa′, s′, b′r

′
,Ψra,s,b〉C

− 1
Ψ Ψ

r
a,s,b

dadn− 1sdnbdr
an+1 , g 





2

� sup
‖g‖�1
〈fa′, s′, b′r

′
, g〉 − 

(a,s,b,r)∈Q′
〈fa′, s′, b′r

′
,Ψra,s,b〉C

− 1
Ψ Ψ

r
a,s,b

dadn− 1sdnbdr
an+1





2

� sup
‖g‖�1


(a,s,b,r)∉Q′

〈fa′, s′, b′r
′
,Ψra,s,b〉C

− 1
Ψ Ψ

r
a,s,b

dadn− 1sdnbdr
an+1





2

≤ sup
‖g‖�1


(a,s,b,r)∉Q′

〈fa′, s′, b′r
′
,Ψra,s,b〉 C

− 1
Ψ



2dadn− 1

sdn
bdr

a
n+1 × 

(a,s,b,r)∉Q′
〈Ψra,s,b, g〉2



dadn− 1

sdn
bdr

a
n+1

� 
(a,s,b,r)∉Q′

〈fa′, s′, b′r
′
,Ψra,s,b〉





2
C

− 1
Ψ



2dadn− 1

sdn
bdr

a
n+1 × sup

‖g‖�1


(a,s,b,r)∉Q′
〈g,Ψra,s,b〉

2

dadn− 1

sdn
bdr

a
n+1

� 
(a,s,b,r)∉Q′

〈fa′, s′, b′r
′
,Ψra,s,b〉





2
C

− 1
Ψ



2dadn− 1

sdn
bdr

a
n+1 × sup

‖g‖�1


(a,s,b,r)∉Q′
CSΨg(a, s, b, r)



2dadn− 1

sdn
bdr

a
n+1

� 
(a,s,b,r)∉Q′

〈fa′, s′, b′r
′
,Ψra,s,b〉





2
C

− 1
Ψ



2dadn− 1

sdn
bdr

a
n+1 × CΨ

� 
(a,s,b,r)∉Q

M′ ,N′ ;P′
〈f ,Ψra,s,b〉



2dadn− 1

sdn
bdr

a
n+1 C

− 1
Ψ



2

× CΨ.

(65)

By choosing N and P large enough and M arbitrary
small, we can make R. H. S as small as we need. -is
completes the proof of -eorem 7. □

5. Uncertainty Principles for the Clifford-
Valued Shearlet Transforms

In this section, we shall establish several uncertainty in-
equalities including Heisenberg–Pauli–Weyl uncertainty
inequality, Pitt’s inequality, and logarithmic and local un-
certainty inequality for the Clifford-valued shearlet

transform as defined by equation (28). Prior to establishing
the uncertainty principle for the Clifford-valued shearlet
transform, we have the following lemma which shall be
employed for deriving certain uncertainty inequalities and
whose proof follows directly from the Parseval’s and in-
version formulae of the Clifford Fourier transforms.

Lemma 1. Let Ψ ∈ L2(R(p,q), Cl(p,q)) be an admissible
Clifford-valued shearlet. 9en, for any f ∈ L2(R(p,q), Cl(p,q))),
we have

FCl CSΨf(a, r, s, b) (ξ) � (2π)
(n/2)

a
1− (1/2n)

FCl[f](ξ)FCl[rΨ(·)r] rSsAaξr( . (66)

Theorem 8 (Heisenberg–Weyl inequality). Let CSΨf(a, r,
s, b) be the Clifford-valued shearlet transform of any Clifford-

valued function f ∈ L2(R(p,q), Cl(p,q))). 9en, the following
inequality follows
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bCSΨf(a, r, s, b)
����

����
L2 G,Cl(p,q)( 

ξFCl[f](ξ)CΨ
����

����
L2 R(p,q) ,Cl(p,q)( 

≥
1
2
〈f(x)CΨ, f(x)〉



L2 G,Cl(p,q)( 

. (67)

Proof. For any Clifford-valued function f ∈ L2(R(p,q),

Cl(p,q)), the Heisenberg–Paul–Weyl inequality for the
Clifford Fourier transforms [8, 18] is given by


Rn

|b|
2
|f(b)|

2dn
b 

1/2

Rn

|ξ|
2
FCl[f](ξ)


dnξ 

1/2
≥

1
2(2π)

n/2 
Rn

|f(b)|
2dn

b. (68)

Considering CSΨf(a, r, s, b) as a function of b and
replacing f by CSΨf(a, r, s, b) in (68), we get


Rn

|b|
2
CSΨf(a, r, s, b)



2dn

b 
1/2


Rn

|ξ|
2
FCl CSΨf(a, r, s, b) (ξ)



2dnξ 

1/2
≥

1
2(2π)

(n/2)

Rn

CSΨf(a, r, s, b)



2dn

b. (69)

We now integrate the above inequality with respect to
measure (drdn− 1sda/an+1), and using Schwartz inequality, to
obtain


R+×Rn− 1×Spin(n)


Rn

|b|
2
CSΨf(a, r, s, b)



2dn

b
drdn− 1sda

an+1 

1/2

× 
R+×Rn− 1×Spin(n)


Rn

|ξ|
2
Fc CSΨf(a, r, s, b) (ξ)



2dnξ

drdn− 1sda

an+1 

1/2

≥
1

2(2π)
(n/2)


R+×Rn− 1×Spin(n)


Rn

CSΨf(a, r, s, b)



2drdn− 1

sda

a
n+1 dn

b.

(70)

Using Lemma 1 together with Fubini theorem, we obtain


Rn×R+×Rn− 1×Spin(n)

|b|
2
CSΨf(a, r, s, b)



2dn

b
drdn− 1sda

an+1 

(1/2)

× 
R+×Rn− 1×Spin(n)


Rn

|ξ|
2

(2π)
(n/2)

a
1− (1/2n)

FCl[f](ξ)FCl[rΨ(·)r] rSsAaξr( 



2
dnξ

drdn− 1sda

an+1 

(1/2)

≥
1

2(2π)
(n/2)


Rn×R+×Rn− 1×Spin(n)

CSΨf(a, r, s, b)



2drdn− 1

sda

a
n+1 dn

b.

(71)

Equivalently, we have


G

|b|
2
CSΨf(a, r, s, b)



2dη 

1/2
× 

Rn
|ξ|

2
FCl[f](ξ)



2

R+×Rn− 1×Spin(n)

FCl[rΨ(·)r] rSsAaξr( 



2
dnξ

drdn− 1sda

a n2− n+1/n( )
dnξ 

1/2

≥
1

2(2π)
n 

G
CSΨf(a, r, s, b)



2dη.

(72)
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Using the definition of CΨ in L. H. S and Corollary 1 in
R. H. S, we obtain the desired result as follows

bCSΨf(a, r, s, b)
����

����
L2 G,Cl(p,q)( 

ξFCl[f](ξ)CΨ
����

����
L2 R(p,q) ,Cl(p,q)( 

≥
1
2
〈f(x)CΨ, f(x)〉



L2 G,Cl(p,q)( 

. (73)

-is completes the proof of -eorem 8. □ Remark 2. For real-valued CΨ, -eorem 5 boils down to

bCSΨf(a, r, s, b)
����

����
L2 G,Cl(p,q)( 

ξFCl[f](ξ)
����

����
L2 R(p,q) ,Cl(p,q)( 

≥
���
CΨ



2
‖f(x)‖

2
L2 G,Cl(p,q)( 

. (74)

-e classical Pitt’s inequality expresses a fundamental
relationship between a sufficiently smooth function f and the
corresponding Clifford Fourier transform [19]. We derive

the Pitt’s type inequality for the proposed Clifford-valued
shearlet transform (28). -e Schwartz space on Cℓ(p,q) al-
gebras is given by

S R
(p,q)

, Cl(p,q)  � f ∈ C
∞

R
(p,q)

, Cl(p,q) : sup
t∈R(p,q)

t
α
z
β
t f(t)



<∞
⎧⎨

⎩

⎫⎬

⎭, (75)

where C∞(R(p,q), Cl(p,q)) is the class of smooth functions,
and α, β denote multiindices, and zt denotes the usual partial
differential operator.

Theorem 9 (Pitt’s inequality for CSΨ). For any
f ∈ S(R(p,q), Cl(p,q)), the Pitt’s inequality for the Clifford-
valued shearlet transform (28) is given by


Rn

|ξ|
− λ

FCl[f](ξ)



2dnξ ≤

Cλ

(2π)
2 

G
|b|

λ
CSΨf(a, r, s, b)



2
C

− 1
Ψ dη, (76)

where CΨ is the admissibility condition of Clifford-valued
shearlet, and Cλ is given by

Cλ � πλ
Γ′(n − λ/4)

Γ(n + λ/4)
 

2

, 0≤ λ< n, (77)

where Γ(·) denotes the well-known Euler’s gamma function.

Proof. Considering CSΨf(a, r, s, b) as a function of the
translation variable b, the Pitt’s inequality in the Clifford
Fourier domain implies 13:


Rn

|ξ|
− λ

FCℓ CSΨf(a, r, s, b) (ξ)



2dnξ ≤

Cλ

(2π)
n 

Rn
|b|

λ
CSΨf(a, r, s, b)



2dn

b, (78)

which upon integration with respect to the measure
(drdn− 1sda/an+1) yields


R+×Rn− 1×Spin(n)


Rn

|ξ|
− λ

FCl CSψf(a, r, s, b) (ξ)



2
dnξ

drdn− 1
sda

a
n+1

≤
Cλ

(2π)
n 

R+×Rn− 1×Spin(n)

Rn

|b|
λ
CSΨf(a, r, s, b)



2dn

b
drdn− 1

sda

a
n+1 .

(79)
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Invoking Lemma 1, we can express the inequality (79) in
the following manner:


R+×Rn− 1×Spin(n)


Rn

|ξ|
− λ

(2π)
(n/2)

a
1− (1/2n)

FCl[f](ξ)FCl[rΨ(·)r] rSsAaξr( 



2
dnξ

drdn− 1
sda

a
n+1

≤
Cλ

(2π)
n 

R+×Rn− 1×Spin(n)

Rn

|b|
λ
CSΨf(a, r, s, b)



2dn

b
drdn− 1

sda

a
n+1 .

(80)

Equivalently, we have


Rn

|ξ|
− λ

FCl[f](ξ)



2

R+×Rn− 1×Spin(n)

FCl[rΨ(·)r] rSsAaξr( 



2 drdn− 1

sda

a
n2− n+1/n( )

dnξ

≤
Cλ

(2π)
2n


R+×Rn− 1×Spin(n)


Rn

|b|
λ
CSΨf(a, r, s, b)



2dn

b
drdn− 1

sda

a
n+1 .

(81)

Since Ψ is an admissible Clifford shearlet, inequality (81)
boils down to


Rn

|ξ|
− λ

FCl[f](ξ)



2
CΨd

nξ ≤
Cλ

(2π)
2n


G

|b|
λ
CSΨf(a, r, s, b)



2dη. (82)

which is the desired Pitt’s inequality for the Clifford-valued
shearlet transform. □

Remark 3. For λ � 0, equality which holds in equation (76)
is equivalent to equation (39).

Next, we shall formulate the logarithmic uncertainty
principle for the Clifford-valued shearlet transform
CSΨf(a, r, s, b) given by equation (28).

Theorem 10 (Logarithmic uncertainty principle). For any
f ∈ S(R(p,q), Cl(p,q)), the Clifford-valued shearlet transform
CSΨf(a, r, s, b) satisfies the following logarithmic estimate of
the uncertainty inequality:

1
(2π)

n 
G
CSΨf(a, r, s, b)



2ln|b|dη +(2π)

n

Rn

FCl[f](ξ)



2
CΨln|ξ|dnξ ≥

Γ′(n/4)

Γ(n/4)
− lnπ  〈fCΨ, f〉



L2 G,Cl(p,q)( 

, (83)

provided the left hand side of this inequality is defined. Proof. For the Clifford-valued function f ∈ S(R(p,q),

Cl(p,q)), the logarithmic uncertainty inequality in the Clif-
ford Fourier domain yields [18]


Rn

|f(b)|
2ln|b|dn

b +(2π)
n

Rn

FCl[f](ξ)



2 ln|ξ|dnξ ≥

Γ′(n/4)

Γ(n/4)
− lnπ 

Rn
|f(b)|

2dn
b. (84)

Upon replacing f(b) by CSΨf(a, r, s, b) in the above
inequality, we obtain
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Rn

CSΨf(a, r, s, b)



2ln|b|dn

b +(2π)
n

Rn

FCl CSΨf(a, r, s, b) (ξ)



2ln|ξ|dnξ

≥
Γ′(n/4)

Γ(n/4)
− lnπ 

Rn
CSΨf(a, r, s, b)



2dn

b.

(85)

Integrating equation (85) with respect to measure
(drdn− 1sda/an+1) and then invoking the Fubini theorem, we
obtain


G
CSΨf(a, r, s, b)



2ln|b|dn

b
drdn− 1

sda

a
n+1 +(2π)

n

G
FCl CSΨf(a, r, s, b) (ξ)



2ln|ξ|dnξ

drdn− 1
sda

a
n+1

≥
Γ′(n/4)

Γ(n/4)
− lnπ 

G
CSΨf(a, r, s, b)



2dn

b
drdn− 1

sda

a
n+1 .

(86)

Using Lemma 1, the inequality (86) can be further
simplified as


G
CSΨf(a, r, s, b)



2 ln|b|dn

b
drdn− 1

sda

a
n+1 +(2π)

n

G

(2π)
(n/2)

a
1− (1/2n)

FCl[f](ξ)FCl[rΨ(·)r] rSsAaξr( 



2
ln|ξ|dnξ

drdn− 1
sda

a
n+1

× ln|ξ|dnξ
drdn− 1

sda

a
n+1 ≥

Γ′(n/4)

Γ(n/4)
− ln π 

G
CSΨf(a, r, s, b)



2dn

b
drdn− 1

sda

a
n+1 .

(87)

Alternatively, the above inequality can be rewritten as


G
CSΨf(a, r, s, b)



2 ln|b|dη +(2π)

2n

Rn

FCl[f](ξ)



2

× 
R+×Rn− 1×Spin(n)

FCl[rΨ(·)r] rSsAaξr( 



2drdn− 1

sda

a
n2− n+1/n( )

ln|ξ|dnξ

≥
Γ′(n/4)

Γ(n/4)
− ln π 

G
CSΨf(a, r, s, b)



2dη.

(88)

Noting that Ψ is admissible and using Corollary 1, we
obtain the desired result as

1
(2π)

n 
G
CSΨf(a, r, s, b)



2 ln|b|dη +(2π)

n

Rn

FCl[f](ξ)



2
CΨ ln|ξ|dnξ ≥

Γ′(n/4)

Γ(n/4)
− ln π  〈fCΨ, f〉



L2 G,Cl(p,q)( 

. (89)

-is completes the proof of -eorem 10.
In the following, we establish a local-type uncertainty

principle for the Clifford-valued sharelet transform CSΨf
defined by equation (28). More precisely, we shall dem-
onstrate that the portion of CSΨ lying outside some given
set M of finite Lebesgue measure cannot be arbitrarily
small. □

Theorem 11 (Concentration of CSΨ in small sets). Let
Ψ ∈ L2(R(p,q), Cl(p,q)) be an admissible Clifford-valued
shearlet satisfying 0< (|a|(1/2n)− 1‖Ψ‖2μ(M)/CΨ)< 1. 9en,
for any measurable subset M of G � R+ × Rn− 1×

Rn × Spin(n) and f ∈ L2(R(p,q), Cl(p,q)), we have
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CSΨf(a, r, s, b)
����

����
L2 Ec,Cl(p,q)( 

≥
���
CΨ


1 −

|a|(1/2n)− 1μ(M)‖Ψ‖2
L2 R(p,q) ,Cl(p,q)( 

CΨ

⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠

1/2

‖f‖
L2 R(p,q) ,Cl(p,q)( 

, (90)

where μ(M) denotes the measure of M. Proof. Using the definition of Clifford-valued shearlet
transforms, we have

CSΨf(a, r, s, b)



L2 R(p,q) ,Cl(p,q)( 

� a
(1/2n)− 1


R(p,q)

f(x)rΨ A− 1
a S− 1

s r(x − b)r( rdn
x



L2R(p,q) ,Cl(p,q)

≤ |a|
(1/2n)− 1


R(p,q)

|f(x)| rΨ A
− 1
a S

− 1
s r(x − b)r r



d
n
x.

(91)

By virtue of Holders inequality, we have

CSΨf(a, r, s, b)
����

����
L2 R(p,q) ,Cl(p,q)( 

≤ |a|
((1/2n)− 1)

‖f‖
L2 R(p,q) ,Cl(p,q)( 

‖Ψ‖
L2 R(p,q) ,Cl(p,q)( 

. (92)

On the other hand, we can write

CSΨf(a, r, s, b)
����

����
2
L2 G,Cl(p,q)(  � C

G
CSΨf(a, r, s, b)



2
L2 R(p,q) ,Cl(p,q)( dη

� C
M

CSΨf(a, r, s, b)



2
L2 R(p,q) ,Cl(p,q)( dη + C

Mc
CSΨf(a, r, s, b)



2
L2 R(p,q) ,Cl(p,q)( dη

≤ |a|
(1/2n)− 1μ(M)‖f‖

2
L2 R(p,q) ,Cl(p,q)( 

‖Ψ‖
2
L2 R(p,q) ,Cl(p,q)( 

+ CSΨf(a, r, s, b)
����

����
2
L2 Ec,Cl(p,q)( .

(93)

Application of Corollary 1 for the real-valued CΨ implies
that

CΨ‖f‖
2
L2 R(p,q) ,Cl(p,q)( 

≤ |a|
(1/2n)− 1μ(M)‖f‖

2
L2 R(p,q) ,Cl(p,q)( 

‖Ψ‖
2
L2 R(p,q) ,Cl(p,q)( 

+ CSΨf(a, r, s, b)
����

����
2
L2 Ec,Cl(p,q)( , (94)

or

CSΨf(a, r, s, b)
����

����
L2 Ec,Cl(p,q)( 

≥ CΨ − |a|
(1/2n)− 1μ(M)‖Ψ‖

2
L2 R(p,q) ,Cl(p,q)( 

 
1/2

‖f‖
L2 R(p,q) ,Cl(p,q)( 

�
���
CΨ


1 −

|a|(1/2n)− 1μ(M)‖Ψ‖2
L2 R(p,q) ,Cl(p,q)( 

CΨ

⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠

1/2

‖f‖
L2 R(p,q) ,Cl(p,q)( 

.

(95)

-is completes the proof of -eorem 11. □ 6. Conclusion

In the present study, we formulated the notion of continuous
Clifford-valued shearlet transform on the generalized
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geometric algebra Clp, q. -e proposed transform has the
advantage of efficiently handling Clifford-valued signals at
various scales, positions and orientations while upholding
the affine structure. Besides, studying the fundamental as-
pects of the Clifford-valued shearlet transform, the homo-
geneous approximation property is also investigated in
detail. Nevertheless, some prominent uncertainty inequal-
ities, such as the Hesienberg–Puali–Weyl logarithmic and
local uncertainty principles are obtained at the end.
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