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The shearlet transform is a promising and powerful time-frequency tool for analyzing nonstationary signals. In this article, we
introduce a novel integral transform coined as the Clifford-valued shearlet transform on Cl(p,q) algebras which is designed to
represent Clifford-valued signals at different scales, locations, and orientations. We investigated the fundamental properties of the
Clifford-valued shearlet transform including Parseval’s formula, isometry, inversion formula, and characterization of range using
the machinery of Clifford Fourier transforms. Moreover, we derived the pointwise convergence and homogeneous approximation
properties for the proposed transform. We culminated our investigation by deriving several uncertainty principles such as the
Heisenberg-Pauli-Weyl uncertainty inequality, Pitt’s inequality, and logarithmic and local-type uncertainty inequalities for the

Clifford-valued shearlet transform.

1. Introduction

Wavelet transforms have been proved to be a successful tool
for analyzing nontransient signals and have been applied in a
number of fields including signal and image processing,
differential and integral equations, sampling theory, quan-
tum mechanics, medicine, and so on [1]. However, the ef-
ficiency of the wavelet transforms is considerably reduced
when applied to higher dimensional signals as they are not
able to capture the geometric features like edges and corners
at different scales efficiently. The detection of such geometric
features in nontransient signals is often highly desirable in
numerous practical applications such as medical imaging,
remote sensing, crystallography, and several other areas. To
circumvent these constraints, a number of novel directional
representation systems have been introduced and employed
in recent years, such as the wedgelets, ridgelets, ripplets,
curvelets, contourlets, surfacelets, brushlets, and shearlets.
Among all these geometrical wavelet systems, the shearlet
systems have been widely acknowledged and emerged as one
of the most effective frameworks for representing multidi-
mensional data because they are nonisotropic nature, and
they offer optimally sparse representations [2], allow

compactly supported analysing elements [3], are associated
with fast decomposition and reconstruction algorithms, and
provide a unified treatment of continuum and digital data
[4, 5].

Clifford algebras have dethroned both the Grossmann’s
exterior algebra and Hamilton’s quaternion algebra in the
sense that they incorporate both the geometrical and alge-
braic features of Euclidean space into a single structure [6].
As a result, the theory of Clifford algebras has attained an
overwhelming response and gained a respectable status in
higher-dimensional signal and image processing mainly due
to the reason that such algebras encompass all dimensions at
once unlike the multidimensional tensorial approach with
tensor products of one-dimensional phenomena. This true
multidimensional nature allows specific constructions of
higher dimensional signal and image processing tools in-
cluding the Clifford Fourier transforms [7, 8], Clifford
Gabor transforms, Clifford wavelet transforms, and other
integral transforms in general [9-13].

Motivated and inspired by the contemporary develop-
ments in the theory of shearlet transforms abreast the
profound applicability of the Clifford algebras, we introduce

the notion of Clifford-valued shearlet transforms on Cl( )
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algebras in the context of multidimensional signal analysis.
Unlike the conventional shearlet transform, the proposed
transform inherits both the geometric and algebraic prop-
erties of shearlet transforms and Clifford algebras. Although
a meek analgoue of shearlet transform in the Clifford do-
main has been proposed in [14], it only deals with the
Cl o, algebra, where n = 3mod4. Therefore, the centre piece
of this study is to construct the Clifford-valued shearlets and
the corresponding shearlet transforms in the most general
setting Cl(,, ., by employing translations, sharing, scaling,
and spinning elements. Besides, we study the basic prop-
erties of the Clifford-valued shearlet transforms including
Parseval’s and inversion formulae and range theorem using
the machinery of Clifford Fourier transforms. Moreover, we
derive the pointwise convergence and homogeneous ap-
proximation properties for the proposed transform. Finally,
we formulate some uncertainty inequalities including the
classical Heisenberg-Pauli-Weyl inequality, Pitt’s inequal-
ity, and logarithmic inequality for the Clifford shearlet
transforms.

The structure of this article is as follows. Section 2 deals
with the preliminaries of Clifford algebras, whereas a
comprehensive analysis of the general Clifford-valued
shearlet transforms is carried out in Section 3. In Section 4,
we study the homogeneous approximation properties for
proposed transform. Several uncertainty principles for the
proposed transform are also being studied in Section 5.
Finally, a conclusion is summarized in Section 6.

M=) Mye, = (Mg + (M), +
A

where e, =¢;¢e; ...¢, and i <i, < ... <i;. Moreover, {-);
is called as the grade k-part of M, and [OTR OO >,
respectively, denote the scalar part, vector part, bivector part,
and so on. The Clifford conjugate of a multivector
M e Cl(,, is given by

n
M=)
r=0

where the scalar product of multivectors M and N is defined
as

(_1)r(r— 1)/2mp (5)

M),
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2. Basics of Clifford Algebras

In this section, we present a brief overview of the Clifford
algebras including the definitions of Clifford Fourier
transforms, spin group, and some unitary operators.

The Clifford algebra CZ(M) is a noncommutative, as-
sociative algebra generated by the orthonormal basis
{e1,es,...,e,} of the n-dimensional Euclidean space R”
governed by the multiplication rule:

eejteje; =260, Lj=12...,n (1)

ivij>
where n=p+gq, & =+1fori=1,2,...,p and ¢ = -1 for
i=p+1Lp+2,...,n with §;; denoting the usual Kro-
necker’s delta function. The noncommutative product and

the additional axiom of associativity generates the 2"— di-
mensional Clifford geometric algebra CI(,, ;, which can be

decomposed as

n
_ k
Clipg =D Cli,y ()
k=0
where Cl’g 1. denotes the space of k-vectors given by
k . )
Clipg = span{eil,ei2, co€ i S <L < zk}. (3)

Any general element of the Clifford algebra is called a
multivector and every multivector M € CI,, ., can be rep-
resented in the following form:

M,eR,AcC{l,2,...,n} (4)

Sc(MN) = [MN| = M*xN = ) M4N ,. 6)
A

Moreover, for any pair of multivectors M, N ¢ Cl( ) it
can be easily verified that

|MN|SZ"|M||N|. (7)
We now intend to recall the fundamental notion of

Clifford Fourier transforms in L' (R??,CI (p,q)), 1<r<oco
as

1/r
L(R%,Cl, ) = {f: RPD — Cl, 0 Ifll, = ( JR(p)q)|f(x)|’d"x> <00 } (8)

It is imperative to mention that any function
fel (RP?, Cl(P, )) can be expressed as a combination of
the real-valued functions f, and the basis elements e, as

f£(x) =) falx)e, 9)
A

Due to the noncommutativity of Clifford-valued
functions, several analogues of the Clifford Fourier
transforms have been introduced in the literature.
However, we shall be interested in following definition
due to Bahri et al. [15].
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Definition 1. Let I € Cl, . be a square root of —1. The

Clifford Fourier transform of any function f € L' (RP9),
Cl(pg) is defined by

1 _
Falf @O = j e,
where nx,§ € [R{(P’q), d"'x = dx,dx, ...dx,, v: RPDx
R®PD — R, and v (& x) = &, + &%, + -+ &%,
The inversion and Plancherel formulae associated with
the Clifford Fourier transform (10) are given by
1

(10)

(0= | Falf@I @,
(1)

<f’ g>L2 (R(M)’Cl(p,q)) = <‘O}Cl [f]’ ‘O]Cl [g]>LZ (R(P’q),cl(m)),

In this case, the inner product of two multivector functions f
and g is described through

£, (R00c1,,) = JR(P‘q)f(x)g(x)d"x, (12)
and its scalar part is given by
2 qn
KED,: i, ) = | F B
_ J ScE(Rgd'x  (13)
R (P2
= Sc(JRW)f(x)g (x)d x).

For an efficient representation of Clifford-valued func-
tions, we employ the spin elements obtained from the spin
group as defined below.

l/n

a sgn(a)a s, sgn(a)a

0 sgn(a)a'" 0
SSAQ =

0 0 0

3. The Clifford-Valued Shearlet Transform on
Cl,,q Algebras

In this section, we shall construct the Clifford-valued shearlets
on Cl, . algebras by using the combined action of the scaling,
sharing, spin-rotation and translation operators. Besides, we
study the fundamental properties of the Clifford-valued shearlet
transform including Parseval’s formula, inversion formula, and
obtain a complete characterization of the range. Prior to that, we
shall demonstrate that the novel family of Clifford-valued
shearlets is endowed with an affine group structure.

Definition 2. The spin-group is a double covering of special
orthogonal group of R” and is defined by

Spin(n) = {r eCll, :Fr=rf = 1} (14)

(pa)?

where CI, . is a subgroup of the invertible elements in the

Clifford algebra Cl

To facilitate the constructlon of Clifford-valued shearlets,
we define the fundamental unitary operators acting on the
space L' (R®D). For a>0, s € R" ! and b € R", and the
scaling, shearing, spin-rotation, and translation operators
are denoted by D, , Dy, R,, T}, respectively, and are de-
fined as

DA ¥ (x) —|detA | 2y ( 71x),

a

D ¥ (x) = ¥(S; %),

(15)
R (x) = r¥ (rxr)rT,
T,¥(x) =Y¥Y(x-b),
and the matrices involved in equation (15) are
A~ < a 0., >
0, , sgn(a)al”"I,_, (16

1 s
SS ) < >,
on—l In—l

where s = (s;,5,,...,5,.1), and sgn(-) and 0 denote the
well-known Signum function and the null vector, respec-
tively. Moreover, the composition of the scaling matrix A,
and the shearing matrix S, is given by

l/n l/n

, sgn(a)a - sgn(a)a 4
0
(17)
0 0 sgn(a)a"

Consider that the set & = R* x Spin(n) x R" ! x R"
endowed with the binary operation © is defined as

(a,r,s,b)o (a',r',s',b")

(18)
=(aa',r+r',s+a"” W b+ S.Ab )
where a,a’ € RY,s,s' e R, b,b" € R",r,v' € Spin(n).
Clearly, (1,0,0,_,,0,,) is the neutral element of &, whereas
(@', -r,—a""'s,—A71S;'b) is the inverse of any arbitrary
element (a,r,s,b) € &. Moreover, it is easy to verify that



((a,r,s,b)0 (a',1',s', b)) o (a",x",s",b")
=(a,r,s,b)o ((a',r',s",b")o (a",r",s",b")).
(19)

Jgf[(a,r,s,b)o (a',r',s',b )]dn:J

R*xSpin (n)xR"xR"

Making use of the substitution a: =aa',F: =
rr', 5 =s+ ()", b: =b+S.Ab, ie., da = (a')"'da,

J flla,r,s,b)o (a',r',s',b")]dy = J
z

R*xR"xSpin (n)xR"

JR*XR”XSpin (n)xR"

which validates the claim that dy = dadrd” 'sd"b/a™! is
indeed the left Haar measure on &.

Next, we shall construct a novel class of shearlet systems
on Cl, ;) algebras by the combined action of the scaling D, ,
sharing 9, spin-rotation %,, and translation T, operators
on any analyzing function ¥ € L2 (R(P’q),Cl( )

For any a€R*seR"beR" and re€ Spin(n),
consider the family of analyzing functions:

V(%) ={Dy Ds R, T, ¥ (x) = a*" " r¥(A]'SE (x - b))z},
(22)
which is called as the family of Clifford-valued shearlets on

the geometric algebra-C¢,, ). The system of functions (22)
satisfies the following properties:

(i) The system (22) is
L*(R",Cl, )

(ii) The following norm equality holds good:

a dense subspace of

f [(aa/, r+r,s+a" Y b+ SSAab')]

FlansH )

(@,7,3,D0)]
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Hence, we conclude that (&, ©) constitutes a group and is
formally called as the similitude group of dilations, trans-
lations, shearing, and spinning.

Furthermore, we claim that the left Haar measure on & is
given by dy = dadrd™ 'sd"b/a™!. In fact, for any function
feL?(9,Cl,,), we have

dadrd™ 'sd"b

n+l

(20)

2 —_
dr = dF, d" s = (a)” (VMg 15 g7 = (a) V" d"b, the
above expression becomes

_ldﬁd'r‘(a)_(("_ 1)2/n)dn— 13((1)— 2+1/n gn;

a/a; n+l
( ) (21)
(a)nﬂ >
"\P;,s,bn]} (r"Clpy) ~ ”\P”LZ (R"Clpy ) (23)

(iii) The Clifford Fourier transform of the family of
functions ¥}, (x) reads

Fa [\P;,S,b] (&) = " F G [P (VF) (1S, 4,E8)e” P,
(24)
Next, we shall present the notion of an admissible

Clifford-valued shearlet on the space of Clifford-valued
functions L2 (Rn, Cl (P)q)).

Definition 3 (Admissibility). A nontrivial function
¥ e L2 (R",Cl (P»q)) is called an admissible Clifford-valued
shearlet if

. dad" 'sdr

C\Il = J
R*xR"!xSpin (n)

which is an invertible multivector and finite, i.e., § € R,

Remark 1. It is worth noticing that F  [r¥ ()] (0) = 0, for
& =0; that is, ¥ (x) = Y 4 ¥4 (x)e,. and

J ¥ (x)ene M dx = 0, (26)
R (P4

{F o [vY (F] (rS,A ) HF o [vY ()] (xS, A, )}

NCETTOY (25)

which in turn implies that for every component ¥, of the
Clifford-valued shearlet WV is zero; that is,
J ¥, (x)d"x = 0. (27)
R (P9

Based on the novel family of Clifford-valued shearlets
defined in equation (22), we have the following main def-
inition of the continuous Clifford-valued shearlet transform.
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Definition 4. The continuous Clifford-valued shearlet
transform of any multivector signal f € L* (R",Cl(,,,)) with

respect to an analysing Clifford-valued shearlet
VYel? ([R(P'q),Cl(P’q)) is defined by
Syt (a,r,s,b) ={f, \Ilu,s,b>L2 (R(P’q)vCl(p,q))
(28)

_ J £V, (x)d"x.
) S

where W  , (x) is given by equation (22).
The corresponding spectral representation of the Clif-
ford-valued shearlet transform is

Syt (a,1,5,b) = alf(”mnga [f1(5) (29)

e F W ()F] (1S, A, EE)d"E.

We now present an example for the lucid illustration of
the proposed Clifford-valued shearlet transform (28).

Example 1. Consider the Clifford-valued Hermite wavelets

[16]as
i o 1A
I//n(x) = (_1) ax[exp(_ P )])

J, = an+an+ +an
* \ox, ox, ox, )
Therefore, the corresponding Clifford-valued shearlets
of y, (x) are obtained as

1 2
W () =|detA, | r(A]'s]! (x—b)")exp<_7|Aﬂ S ;x o) )f,

(31)

and the Clifford-valued shearlet transform (28) of any
function f € L*(R",Cl,), with respect to the analyzing
shearlets (31) can be computed as

©S,f(arsb) = \/EJ ((x1 -b,)’ —(s - am) (x, - bz)z) x exp(

[RZ

For different values of a,s,r, and b, the corresponding
Clifford-valued shearlet transforms of f (xy, x,) with respect
the analysing shearlets (34) are depicted in Figure 2 after
computing the integrals (35) in Mathematica software. From
the simulation, we infer that the Clifford-valued shearlet
transform enables a precise characterization of location,
orientation, and curvature of discontinuities in two di-
mensional signals.

In the following theorem, we assemble some of the basic
properties of the Clifford-valued shearlet transform (28).

Theorem 1. ¥}, (x,,x,)for f, g€ I? ([R(P’q),Cl(P’q)), and
admissible Clifford-valued shearlets ¥ and ®. The continuous

5
GSyf(ar,s,b) =|detA,| "ZJ for(A;'S] (x-b)")
-
< J4,'s." <x—b>|2>_ :
xexp| ————— |rd"x.
2
(32)

For simplicity, we shall compute the two-dimensional
Clifford-valued shearlet transform for the given function f
with respect to the shearlets:

\P;,s,b (x1,%,) = |detAal71/2(A;ISs_l [ (%, — bl)z’ (%, — bz)z])

< 14,18, (%) — by, x, - b2)|2>
X eXp >

2
(33)

where A, = a (1)/2 S = Ls . After simplifying, we
. 0 a 01
obtain

Woop (x15%,) = \/E( (%) = bl)z _(5 - ‘13/2) (%, = bz)z)

( (%, —b1)2 +(s—a7(1/2))(x2 —b2)2>
X exp .
2a

(34)

The two-dimensional analyzing shearlets v}, (x;, x;)
given by equation (34) at different values of a, s, r, and b are
plotted in Figure 1. The parameters a and s determine the
scaling anisotropy and the decaying rate of shearlets pro-
viding more accurate location and orientation. In com-
parison with wavelets, shearlets not only inherits advantages
of wavelets (s = 0) but also provide detailed information of
position, normal and curvature of discontinuities.

The Clifford-valued shearlet transform of f(x;,x,) =
exp{—(x? + x3)/2} is computed as

(x, - b1)2 +(s —-a 1/2)(x2 - bz)z + az(xf + xé)

P )dxldx2. (35)

Clifford-valued shearlet transform (28) satisfies the following
properties:
(i) Linearity: €Sy (of + g) (a,1,5,b) = a€Syf(a, r,
s, b) + B€Syg(a,r,s,b),a,p € Cl, o
(ii) Anti - linearity: €S yy,p0f (a,1,5,0) = €Syt (a,r,
s;bya+ ESef(a,r,s,b)p
(iii) Translation covariance: €Sy (Tif) (a,r,s,b) =
CSyf(a,r,s,b-k)
(iv) Dilation covariance: €Sy (D (l/y)f (x))(a,r,s,b) =
(€Sg wf (X)) (a. 1,5, (b/y)), y € R
(v) Parity: €Sy (Pf(x))(a,1,s,b) = (-1)"ESpy (f(x))
(a) LS, _b)) Pf(x) = f(_x)
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F1GURE 1: Two-dimensional analyzing shearlets yf  ; (x;, x,) given by equation (34) at different values of a, r, b, and s. (a) 2D-shearlets at
a=1,b=1,and s=0. (b) Contour plot of 2D-shearletsata=1,b=1, and s =0. (c) 2D-shearlets at a=1/2, b=1 and s = 1. (d) Contour plot of
2D-shearlets at a=1/2, b=1 and s=1.

(vi) Translationin'¥: €Sy 4 (f(x))(a,1,5,b) = €Sy (f(x)) Theorem 2. (Plancherel theorem). Let €Syf (a,r,s,b) and
(a,r,s,b+k) €Syg(a,r,s,b) be the Clifford-valued shearlet transforms of
the multivector signals £ and g, respectively. Then, we have

Proof. For the sake of brevity, we omit the proof.

In our next theorem, we show that the Clifford-valued
shearlet transform sets up an isometry from L?(R P,
Cl(pg) to L*(R* x R™ ! x R" x Spin (1), Clp0))- O

dad™ 'sd"bdr

J Sc(‘gé’wf(a, r,s,b)6Syg(a,r,s, b)) P
R*xR" ! xR"xSpin (1) a

(36)
- (Zn)nJR(M)SC(f(x)C\ym)dnx = (27-[)n|<fc\y’g>|L2 (R(P’W,Cl(pvq)))
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F1GURE 2: Two-dimensional Clifford-valued shearlet transforms of f(x,,x,) = exp{—(x? + x3)/2} with respect to analyzing function
W7 o (X1, ;) given by equation (35). (a) Clifford-valued ST of fat a=1/2, b=1, and s=1/2. (b) Clifford-valued ST of fata=b=1,and s=1.
(c) Contour plot of Clifford-valued ST of fat a=1/2, b=1, and s=1/2. (d) Contour plot of Clifford-valued ST of fat a=b=1, and s=1.

where Cy is given by equation (25). Proof. .Invoking the spectral representation (29) of Clifford

shearlet transforms, we obtain

dad™ 'sd"bdr

n+1

j Sc(‘g&},f(a, r,s,b)6Syg(a,r,s, b))
R*xR™ 1xR"xSpin (1)

:J - az_(I/")Sc<J F o[£ (D) VT [ (OF] (154, Er)d"E
R*xR" ! xR"xSpin (1) R"

1o (€ = — .\ dad" 'sd"bd
X J Rng algl (E)e' 0 oy e (] (rS,A,8'T)d"E )%

=J az_(”")J j Se(F oy 1£1 (B S T, 0% (O] (15, A, )
R* xR xR"xSpin (1) RrR"J R?

,dad” 'sd"bdr

n+1
a

x F oy [P¥ (F] (15,4, EF)e WD 5 [g] (f’))d”{d”&

Then, equation (37) can be rewritten as

(37)



J Sc(%é’\yf(a, r,s,b)6Syg(ar,s, b))
R*xR" ! xR"xSpin (1)

PR N
R*xR"™!xR"xSpin (1) J R" J R"

agf)}{gja [I‘\I’()f] (rss

, - 1
=(2m) JR”JR”SC<JCI (f] )

(f)elv(f,b)e—IU(f',b)

X{F o [*¥ ()F] (xS, A,

j er(f—E',b)dnb>
RYI

X J
R*xSpin (n)xR""!

:(2”)"HRJ Sc(Folfl ()8 (E-E)

X J
R*xSpin (m)xR""!

AL DT gl (¢))d"Ed"E’
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dad™ 'sd"bdr

n+l
a

dadrd™ 1sd”b>

a (nz—n+1/n)

dadrd™'s

(F o [0 ()F] (1S, A E0) HF o [1V ()F] (rS,A,E'F)} ~rrim < alsg] (&))d"ea e’
a

dadrd™'s

(F o [0 ()F] (¢S, A E0) HF ¢ [r¥ ()F] (rS,A,£'F)} ~rrim < Falsg] (&))d"ga"e’
a

dadrd™ 's

= (Zﬂ)nJRnSC(ga [£1(8) x J

R*xSpin (n)xR"™!

- @)’ S FalflOC Fa el @)

- @[ Se(f(C,gG)d'x

This completes the proof of Theorem 2. O

dad”
J €S yf (a,1,5,b)
R*xR"!'xR"xSpin (1)

By taking ¥ € L*(RP9,CI ,, ) with Cy = 1, the Clif-
ford-valued shearlet transform €S8'yf (a,r, s,b) becomes an
isometry from L? (R(P’q),Cl(P,q)) to L*(R* x R" !x
R™ x Spin (n), CZ(M)).

$e next theorem guarantees the reconstruction of the
input Clifford-valued signal from the corresponding Clif-
ford-valued shearlet transform.

x) =
f(x) = (27‘[) JR*XR”’IXR"xSpin(n)

{F o [vY ()F] (xS, A

~1sd"bdr

n+l
a

ESyf (a,1,5,b)¥, , (x)Cy

) F o [e¥ (V] (£5,4,£5)} ﬁ xFoi[g] (9)d"E

(38)

Corollary 1. For f = g, we have the following identity:

(39)

= (27[)"J Sc
R (P2

Theorem 3 (Inversion formula). Any Clifford-valued signal
f e L2(R'P,Cl, ) can be reconstructed from the Clifford-
valued shearlet transform €Syf(a,r,s,b) via the formula:

(£(x)Cyf (x))d"x

n-1_1n
1dad™ “sd bdr' (40)

n+1
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Proof. Implication of Plancherel theorem of Clifford-valued
shearlet transform (36) for every ge L?>(R”9,CI o)
yields that

(27-[)”| {Cy.8) |L2 (R#9.Clp) ~ |<Cg§\yf’ CSve) |L2 (9Clpg)

_ . dad"'sd"bd
= J Sc(%é’wf(a, r,s,b)6Syg(a,r,s, b))—a nfl !
R*xR™ 1 xR"xSpin (1) a

- n-1_1qn
Sc(%é’wf(a, I, s, b)J g(x)‘l’zsb(x)>d"xw
(n) R (P2 ” a

JR*xR"-lxR"xSpin

_ (41)

——\ o dad"'sd"bd

=J j S(GSyf (a,1,5, L)V, (0)g(x))d'x T2
R*xR" ! xR"xSpin (n) J R PP 55l .

dad” 'sd"bdr——
= Sc(€Sof (a,r,s,b)¥" - g(x)d"
JR(Prq)JR*xR”’IXR"XSpin(n) C( ¥ (a Bs ) @b (x)) a"“ g(x) *

dad™ 'sd"bd
:‘<J %&\yf (a,1,s, b)‘{’;)s’b (x) %, g> >
R* xR xR"xSpin (1) a L2 (R(p'q)’Cl(p,q))

where we used the Fubini-Tonelli theorem in getting the
second last step. Since g € L? (R(P9, Cl () is arbitrary, we
have

n-1_qn
(27)"f (x)Cy = J Gyt (1,5, b)Y, (x) 204_sdbdr (42)
a

R* xR xR"xSpin (1)

or equivalently

_ dad" 'sd"bdr

1
f(x) =7 %c‘s}\yf (a, LS, b)\P;,s,b (X)C\I, T (43)

)" ,[ R*xIR" xR"xSpin ()

This completes the proof of Theorem 3. Theorem 4 (Characterization of range of €S8y). If

The next theorem presents a characterization of the  h=%8yf € L*(¥Z,Cl (pg))» let ¥ be an admissible Clifford-
range of the Clifford-valued shearlet transform €8§7#’y. The  valued shearlet. Then, h is a Clifford-valued shearlet trans-
result follows as a consequence of the reconstruction for-  form of a function f € L*(%&,Cl (pg) If and only if it satisfies
mula (40) and the well known Fubini theorem. O  the reproducing property:

dad™ 'sd"bdr

1 —1 !
h (a’, r’) 5” b’) = W J’gh (a, IS, b) <\Ij;,s,bc‘y 5 \II;,,SI,h, >L2 ([R(P'q),cl(qu)) an+1

(44)

Proof. Let h belongs to the range of the Clifford-valued  function f € L (R»9,CI (pq) such that €Sy f = h. In order
shearlet transform €&y, Then, there exist a Clifford-valued  to show that h satisfies equation (44), we proceed as
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h(a',r',s',b') = 6Sf(a’,r',s',b")

r n
- JR(M)f(x)‘Par)sf’brd x

~ 1 (dad™ 'sd"bdr | 7,
- JR(M) [WI GSyf (a1, 5,b)¥" ,, (x)Cy af]\y yd'x

dad™ 'sd"bdr (45)
f(a,1,s, ‘1\11, opdix|
- 7 jg%xy (@1 s b)“ Wi (G W 0|
dad™ 'sd"bdr
(27‘[) J-Z%Sq,f a,r,s, b)(‘l’ast\P ,\I’ar S (ReDClp )

dad™ 'sd"bdr

b >L2 (R(P’q),Cl(p’q)) an+1

h(a,r, s, b)Y, Col, V5

(271)" ¢

(dad™ lsd”bdr

v n+1
a

Conversely, suppose that an arbitrary function f(x)= @ J h(a,r,s b)Y, , (x)Cy
hel?*(€,Cl & )satlsﬁes equation (44). Then, we show that

there exists f e L2(R(PD ,Cl(py)> such that €Syf =h. (46)
Assume that Then, it can be easily verified that

2 1 2
||f||L2 (R(P’q),Cl(P,q)) = W'C\P | ” a,s,b||L2 ([R(P'q),Cl(M ) ”h (a, L, s, b)”LZ (? cl, ) (47)

which implies that f € LZ(R(P’Q),Cl(p,q)). Moreover, as a
consequence of the well-known Fubini theorem and in-
version Theorem (40), we have

GSyf (1,5, b)) =J E¥ (D'
R

! . dad” lsd"bdr
= JR(M) [(zn)nj?‘g&yf(a, r,s,b)¥, ,Cy — \y oy (0)d"x

1 ———  dad" 'sd"bdr 48
:WJ "gé’\yf(a,r,s b)J bC “P oy (x)d XT ( )
a
1 e dad" 'sd"bdr
= 2n)" Jgh (a,1,5, b)<\ya,s, ‘Ija sb' >L2 (R(pq) cly,, )) !

=h(a',r',s',b").

This evidently completes the proof of theorem. O  transform 28) is a reproducing kernel in 1> (RP9,Cl (ra)

with kernel that can be given by
Corollary 2. For an admissible Clifford  shearlet

‘I’GLZ(R(*”’@,CZ(M)), the range of the Clifford shearlet

Ky(a,r,s,b,a’,r',s b)— )<‘Past\y,‘I’r 'b>L2(RM )l ) (49)
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4. HAP Property for the Clifford-Valued section, we investigate the homogeneous approximation
Shearlet Transforms property for the proposed Clifford-valued shearlet trans-

forms. Initially, we shall present some results related to the
Homogeneous approximation property (HAP) means that pointwise convergence of the reconstruction formula (40).
the approximation rate in a reconstruction of signal is es-
sentially invariant under time-scale shifts. The HAP is being ~ Theorem 5. Let €Syf(a,r,s,b) be the Clifford-valued
extensively used for studying frame density [17]. In this  shearlet transform of any f € L*(RP9,CI (pq) Such that

1 (N drd" 'sd"bda
£ = ESof(a,r,s,b)V" Cif——— "7 N>M>0, 50
(%) )" JM JR”XR”’IXSpin(n) wE (@05 0¥ (X)Cy a*! - (50

where ¥ € L2 (RP9, Cl(p)q)) is an admissible Clifford-valued
shearlet with Cy #0, real valued. Then, we have

N i 2, drd" 'sda
Faltun]@=Falll® | [ | |FalrOREsAgDE (51)
M J R"'xSpin (n) a(n n+1/n)
Proof. For M,N € R*, we define
1 (N drd"”'sd"bda
f = ESyf(a,1,5, b)Y, (X)Cy ———— 52
(%) 2m)" .[M JR"xRHxspin(n) wf (@55 D)%, (X)Cy a™! 52
Then, the application of Schwartz’s inequality implies
that
N d dn—l dnbd N 1/2
J J €S (a,1,5 D)V, (x)|Co—— " < j “ |€Syf(ar,s, b)|2drd”lsd”b}
M J R"xR" ' xSpin (n) o a M R"xR"!xSpin (n)

1/2
2 -1 _qn -1 da
x V()] drd” Tsd"b Cy——
{J R”xR”’lepin(n)l st () Yar!

N 1/2
_ J “ Gyt (a1, b)|2drd”’lsd”b}
R"xR"! xSpin (1)

M

_y da
X Gl (R"xR*'xSpin () ‘I’IW

) 2 da 1/2
S“ J |€Syf (a,1,5,b)| dfd"_lsd”b_l}
M J R"xR™ ! xSpin (1) P

1/2

N da 1/2
-1 n
Wl (R“xR”"xSpin(n))C‘P {JM a””} < { (27) |<fc\y’f>|]_z ([R(P"f),cl(p,q))}

1
-1 - ~n1/2
1 (R”XR""XSpin(n))C‘I’ W[M "= N <c0.

(53)
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This shows that f,,  is well defined on R%. Next, we show that f; \; is uniformly continuous on R".
For any x,x' € R", we have

drd™ 'sd"bda

1 N
ESyf(a,r,sb) |V, (x)-¥ _, (x')|Cy ——M——
,[ M j R"xR" xSpin (1) ¥ )[ a‘s’b( ) “’s’h( )] ¥ a"!

|fM,N (%) —fyn (x')| = 2n)"

1 N n-1_3n 172
< . J J |BSyf (a,r,s, b)fM
2m)" ) M ) rexee xspin () antl

(54)
1N »drd"™ 'sd"bda) %,
— pr -y N ——— C
X{(zn)" jM J.RanHXsPin(nJ (X)) = ()] P } ICy |
1 11 (N . . oadrd™lsd"wda) P,
= (2ﬂ)"’2{|<fc‘y’ f>|LZ (R("”)’Clw)} * {JM ,I'R"XR""XSPin(n)PPa'S’b (0 = ¥ ()] an+l ICel
From equation (54), we observe that Moreover, for any g € L' N L* (R»?,CI (pg))> We have

[farn (0 —forn x) — 0 as |lx-x'|| — 0. Thus, we
conclude that f,;  is uniformly continuous on R P9,

I(fM,N’g>|Lz C JRnSC(fM’N (x)M)d”x

1 (N . L drd” 'sd"bda) —\ .,
_ &(JR" {(271)" JM waw—lxspmm)(g&wf(“’ s DY (0 S }g(x))d x
drd" 'sd"bda

1 N .
=51 f y Ly O \Pr " } _1)
2n)" JM JR”XR”’lepin(n)Sc<(gSw (@15 b){JRﬂ asp (Vg (X)d X Cy a!

1 N - d dn71 dnbd
J J Sc(ESyf (a,1,5,b)ESyg(a 1,5, b)dnxc‘_lfl)M
R"xR" xSpin (1)

- (27‘[)n M n+1
b Y N M= - —
T (2n) SC(jM JR”XR"’lePin(n){a JR”JCZ {1 (D™ F eV OF] (15, 4,67)d 5}

_drd" 'sd"bda
e e bda

n+l
a

X {ali(mn) jRngCl (g] (5/)610(&)?@ [r¥ ()F] (rS,A,E'T)d"E }C

1 N Tv(&b) = —\ n
- WSC(J-M J'[R”X[R”’IXSP' ( )JR”gCl [f] (f)e ’ gCl [r\P()r] (rSSAafr)d f

n-1_1n
XJ For¥ ()7 (rSsAaf'f)e_I“(El’b)md"f'(?;idrd( > Sdl,b)da>
R” a n*-n+l/n

N '
) ﬁs( J y J Rnxwwsp-n(mj R J _Falfl @ e O 7 (rw (] (15,4, 80)d"¢

n-1_qn
YOS A E T e e

k4 a (nz—n+1/n)
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N
=[] J7
M J R"xR"'xSpin (n) J R"

XF o [PV ()F] (rS,A87)F o [g] (§)d"E'Cy,

N
:&( j j . j Foif1(9)0 (8 - §)F ¢ [r¥ ()] (xS,A,E¥)
R"xR" ' xSpin (n) J R"

M

X F o [P (F] (rS,A,E' ) F ¢y [g] (f’)d”f/c;})

N
B SC(L\/I JR"XR"’IXSPin(n)JRngCl [f] (O)F i [r¥ (-)7] (xS,A,T)

XF o (81 ()F o [r¥ ()F] (rS,A,¢r)d"E

M

N -
- JWSC( {% GG Jw-lxspmm'% [£% (F] (£5,4,80)Cy W}% [g] (f))d"s.

Invoking scalar part for the Clifford Fourier transform,
we can deduce that

N
CNIGEEMGICE |

R"!xSpin

This completes the proof of Theorem 5. O

Theorem 6. Let ¥ € L2(R(P9, Cl( )) be an admissible
Clifford-valued shearlet. Then, for any f € L' NL*(RP9,
Cl P»q))) we have

Jim , N — ooflf - v, =0,

| (57)
A}EO’N — oo||f - fMJ\,"2 =0.

£ - fM,N”L00 (RrClpy) = I£- fM’N"L' (R".Clpp)

N
] STl O]F ey O (15.4,80) Fo ')
R" xSpin(n) J R"

13
o j 8D g5 To¥ (O] (25,4, &) d"E
_drd" 'sd"bda
a(n n+1/n)
drd" 'sda
a(nz—n+1/n)
drd" 'sda
C\y (n n+1/n)
drd" 'sda
a( n?—n+l/n)
_drd" 'sda (55)
n—1
Falrron s, Adp|cydrdsda (56)

¥ a (n?-n+1/n)’

Proof. Using Parseval’s formula for the Clifford Fourier
transforms together with an application of Theorem 5, we
have

= “gcl [f](8) - Fa [fM,N] (5)“L1 (R"’Cl(p-q))

N
= |F i [£1(E) - {F/«‘cl (] (&) JM JR x Spin (m){F ¢ [r¥ ()] (rS, A, EF)|
N
= |F g lf] (5){1 - JM JR x Spin (m) X} F ¢ [P¥ (V] (1S A, )| Cy

N
= J |97Cl [f] (f)|||1 - J J ><Sp1n(n) ><|JCI [r¥ ()] (rS,A, )l
R" M J R

zdl'dn sda -1
el
a—nitm) ¥ [ (recr,,)

»drd™ 'sda
(n2 n+1/n) ||L1 (R" Cl< q))
2drd"'sda
( 2—n+1/n) \y

",

(58)
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Since V¥ is given to be admissible, it follows that

N
| ] |Faley O (55.4,5)
M J R"'xSpin (n)

Therefore, we have

lim ,N — oo
M—0

Journal of Mathematics

»drd" 'sda
a(n —n+1/n)
(59)
drd" 'sd
SJ j lJCZ[rq’()r] (rS,A fr)|2#=c\y<oo.
R* R“’lepin(n) (n —n+1/n)
N n—-1
1-1 J F o [r¥ ()F] (rSSAu£f)|2MC\;} =0. (60)
M J R xSpin (n) a(n -n+1/n)

Using dominated convergence theorem in equation (58),

we conclude that

hm N—>oo||f fMN"

=0.
1 (R",Cl ) (61)

Proceeding in a manner similar to the above case, we can
show that

1\/11120’ N — ooff - fM’N"LZ (RClipy) ~ 0 (62)

This completes the proof of Theorem 6.

In the sequel, we study the homogeneous approximation
property for the proposed Clifford-valued shearlet trans-
forms. Prior to that, we introduce some notations as given
below:

For every (a',r,s',b') € [I*(R* x Spin(n) x R" 'x
R", Cl(p)q)) and M > N, P >0, we denote

Qunp = ([N, =M] U [N, M]) x Spin (1) x [-P, P]""! x [P, P]",

(a,) S’a b,)r,)QM,N;P = {(a,; S,) b,) r’) (a; S, ba r)

1-(1/n)
= (a'a, Sl + a'

where a € [-N,-M]U [N, M],r € Spin(n),s € [-P,P]""!
and b € [-P, P]". O

Theorem 7. Let ‘I’ELZ(R(P’q),Cl(p,q))be an admissible
Clifford-valued shearlet with Cy #0, real valued. Then,

4

fr/I/

a,s,b

where (a',s',b', ¥ )Quy v = @'

Proof. For an arbitrary g € L? ([R(P’q),Cl(P’q)), we have

Ly
- ,|-(ushr)€@<fu, s’ b”\Ijusb>C‘P asb

(63)

s+s,b +SyA,b, r'r)},

for any f € LZ(R(p’q),Cl@)q)) and €>0, there exist some
constants N>M>0,P>0, such that for any
(a',r',s',b) e *(RY xszn(n) x R x R", Clipg) with
any 0<M'<M,N<N' and P' > P, we have

dad™ 'sd"bdr|’
- <e,
a1

2 (r®2cl,,)

(64)
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; o dad™ sd"bdr
fﬁ’t"é’bl _J <fa’$’b \Pasb>c I\Pasb%
(a,s,br)ed a 2R (P Clipa
; dad™ 'sd"bdr |
= su f:,é,ér—-[ f, s,b g Cy Lyt _—
Hgllg e (asbr)e@ € '“b> asb antl 8
dad™ 'sd"bdr \ [
= sup <fh,s,b g>< <fa,s,b ¥ Y, >
lgl=1 (@sbir)e a
; dad™ 'sd"bdr|"
= sup (£, 8, —J f s,b ¥ C“l‘lf -
ugug fpsbop) (a,s,b,r)e@’< b asb T gntl
oo dad™ 'sdbdr|
= sup J (£, s,b ‘P“b>C ‘Pasb—ﬂ
lgl=1 (a,s5,b,r)¢@" a
(65)
1 2dad™ 'sd"bd dad™ 'sd"bd
< SuPJ <fu,5,b \Pasb>|c 1|2% J | asb’ > lu‘
lgl=1 (a,s,br)¢@ (a,s,br)¢@
dad™ sd”bdr dad™ 'sd"bdr
= f s,b v Cy 9 X su J v _—
Jasbr)m '< “5b>| G| a™! lg ||5 (@sbrg@ e o] a™!
L2dad™ 'sd"bdr ,dad™ 'sd"bdr
f:sb\P Cy suj €Sye(a,s, b)) ————
J (ashr)i@ '< asb>| | v l a n+1 ||g||£ (@sbre@ | ‘Pg( )| a n+l
dad™ sd”bdr
£, 50w cl’
j(asb )¢Q|< S asb>| | an+1 v
dad™ sd bdr, _
-, e, jcu

(a s,b,r)é@M/‘Nr:P/

By choosing N and P large enough and M arbitrary
small, we can make R. H. S as small as we need. This
completes the proof of Theorem 7. O

5. Uncertainty Principles for the Clifford-
Valued Shearlet Transforms

In this section, we shall establish several uncertainty in-
equalities including Heisenberg-Pauli-Weyl uncertainty
inequality, Pitt’s inequality, and logarithmic and local un-
certainty inequality for the Clifford-valued shearlet

Fa|6Suf (a,1,5,b)] (&) = 2m)"Pa' "V F L [£] (O)F o [r¥ (-)F] (xS, A, EF).

Theorem 8 (Heisenberg-Weyl inequality). Let €Syt (a, 1,
s, b) be the Clifford-valued shearlet transform of any Clifford-

transform as defined by equation (28). Prior to establishing
the uncertainty principle for the Clifford-valued shearlet
transform, we have the following lemma which shall be
employed for deriving certain uncertainty inequalities and
whose proof follows directly from the Parseval’s and in-
version formulae of the Clifford Fourier transforms.

Lemma 1. Let V¥ e L2 (R(®D ,Cl, ) be an admissible
Clifford-valued shearlet. Then, for anyf € [*(RP, Clip):
we have

(66)

valued function f € L* (R(P9,Cl

(pg))- Then, the following
inequality follows
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1
[6€Sof (a,1,5,b)| (?’Cl(p)q))"f%a [f1(€)Cy] . (R0l ) 2 E' £ (X)Co (%)), (sci,) (67)

Proof. For any Clifford-valued function f € L2(R(PD,
Cl(,), the Heisenberg-Paul-Weyl inequality for the
Clifford Fourier transforms [8, 18] is given by

{JW b1 (D) UZUW 1E2|F o ] (E)|d”£}1/2 > m jw If (b)d". (68)

Considering €S8yf(a,r,s,b) as a function of b and
replacing f by €8'yf (a,r,s,b) in (68), we get

X 12 2 112 2
[ press@rsofas) {[ 1eFalest@nsm) @) @Syt (ar s b)[d'b.  (69)

>—
2(2m)"? JR”

We now integrate the above inequality with respect to
measure (drd" 'sda/a™), and using Schwartz inequality, to
obtain

n-1 172 n—1 12
“ j |b|2|%§’\l,f(a,r,s,b)lzd”bLlsda} ><<“ J Iflzlgc[‘gcfwf(a,r,s,b)](f)lzd”fw}
R*xR™ xSpin (n) J R" art R*xR" xSpin (n) J R” a™t
(70)
1 ,drd™ 'sda ,
22— CSyf(a,r,s,b)| ————d"b.
2(2m)"? J'R*XR"*XSPin(n)J'R” wf(@.r.5.0) a!
Using Lemma 1 together with Fubini theorem, we obtain
_ (1/2)
drd" 'sd
J PGSyt (a1, s, b)Pd"p %
R"xR*xR" " xSpin (1) antl
] drd* 'sda] "
X J f €| (2m) a2 F 6] (8 F oy [P OF] (18,488 4 = (71)
R*xR" ' xSpin () J R" at
1 drd" 'sd
> J 1GSyf (a5, b) s,
2(2m) "2 ) moxr xR xspin () a
Equivalently, we have
12 el 1/2
2 2 — —2 . drd" "sda
‘” bI*|€Syf (a,1,5,b)] dﬂ} X I 1| F i [£1 ()] J- 'gcz [r¥ ()] (szAafl')| & d'e
z R" R*xR“’lepin(n) g (m?*-n+l/n (72)

1

2
ijgl%’\uf (a5, b) d.
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Using the definition of Cy in L. H. S and Corollary 1 in
R. H. S, we obtain the desired result as follows

1
[pBS ot @150, (5., WoF QT OCul: (i, ) 2ACEICE D (51, )

This completes the proof of Theorem 8. O

”b%é’\yf @r.s, b)"L2 (Z’Clmq))”fga [£] (f)"LZ (R#2,Cl(, ) =

The classical Pitt’s inequality expresses a fundamental
relationship between a sufficiently smooth function f and the
corresponding Clifford Fourier transform [19]. We derive

S(RP?,Cl, ) = {f e CO(RP

where C® (R®?,CI (pq) 18 the class of smooth functions,
and a, § denote multiindices, and 9, denotes the usual partial
differential operator.

[IEREAGIG R

where Cy is the admissibility condition of Clifford-valued
shearlet, and C, is given by

o nl[r’ (n— \/4)
N Ut}

T'(n+1/4) 77)

2
] , 0<A<n,

JW|£|‘*|F;C€ [BSyf (a,1,5,b)] ()] 'd"E<

which upon integration with respect to the measure
(drd™ 'sda/a™") yields

o jglblﬂ%&yf(a, rs,b)’Cyldn,

17

(73)

Remark 2. For real-valued Cy, Theorem 5 boils down to

ﬁ

f .
5 IE ol (s.ct,,)

(74)

the Pitt’s type inequality for the proposed Clifford-valued
shearlet transform (28). The Schwartz space on C¢ () al-
gebras is given by

,Cliyp): sup t“aff(t)|<oo}, (75)
teR (P2
Theorem 9 (Pitt’s inequality for €Sy). For any

fe S(R(P’q),Cl(p)q)), the Pitt’s inequality for the Clifford-
valued shearlet transform (28) is given by

(76)

where I (-) denotes the well-known Euler’s gamma function.

Proof. Considering €8yt (a,r,s,b) as a function of the
translation variable b, the Pitt’s inequality in the Clifford
Fourier domain implies 13:

G

2n) (78)

j M Syf (a1, 5, b)d"b,
Rn

drd" 'sda

Mo 2
JR*XR”’IXSPin(n)JRn|£| A'J’Cl [%s‘/’f(a’ LS b)] (E)l &' a™!

C)

<
- (en)”

(79)
drd" 'sda

j j b1 S ot (a1, 5, b)Fd"b L
R*xR"xSpin (n) J R" a
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Invoking Lemma 1, we can express the inequality (79) in

the following manner:
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- n —-(1/2n — =12 in drd"_lsda
| |t en a0 16 (0F o o O (8,48 4 T
R*xR"!'xSpin (1) J R" a
(80)
CA J J 1 2 drd” 'sda
b'€Syf(a,r,s,b)| d"'b———
(27‘[) R*xR"!'xSpin (1) [R"l | | ¥ (a b )l an+1
Equivalently, we have

) drd" 'sda ,

| lerFam©r | L Falry O s8] S

R” R 1xS (n n+1/n)

(81)
drd" 'sda
sc—lzj J b [ESyf (1,5, b db T2
(27)™" J R*xR" ' xSpin (1)
Since ¥ is an admissible Clifford shearlet, inequality (81)
boils down to
N 2 m Cy A 2

|l iFatn@fodss— 2y [ st @ns bl (82)
R" Qn)” e

which is the desired Pitt’s inequality for the Clifford-valued
shearlet transform. O

Remark 3. For A = 0, equality which holds in equation (76)
is equivalent to equation (39).

Next, we shall formulate the logarithmic uncertainty
principle for the Clifford-valued shearlet transform
ESyf(a,r,s,b) given by equation (28).

1

o ng%&wf(a, r,5,b)[Inlbldy + (2n)”jw|9v

provided the left hand side of this inequality is defined.

j I£ (&) Plnfbld"D + ( zn)j | i [£1(©) Infé1d"E (

Upon replacing f(b) by €Syf(a,r,s,b) in the above
inequality, we obtain

Theorem 10 (Logarithmic uncertainty principle). For any
fe S(R(P’q),Cl(p)q)), the Clifford-valued shearlet transform
CSyf(a,r,s,b) satisfies the following logarithmic estimate of
the uncertainty inequality:

I’ (n/4)

£] (&) Cylnlé|d"é > ( oD 1n71)|(fC\I,, Ol (v, ) (83)

Proof. For the Clifford-valued function f e S(R®?,
Cl(,g)> the logarithmic uncertainty inequality in the Clif-

ford Fourier domain yields [18]

I’ (n/4)
I'(n/4)

- lnn)J £ (b)2d". (84)
-
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J |?€c5’\yf(a,r,s,b)|21n|b|d”b+(Zn)”J |F 1 [ESuf (5,5 )] (E)nlEld"E
R" R"
(85)
> r (n/4)—ln7r J |€Syf(ar,s b)|2d"b
= r(n/4) R v > 459 .
Integrating equation (85) with respect to measure
(drd™ 'sda/a™"') and then invoking the Fubini theorem, we
obtain
n-1 n—1
j @Syt (a,r,5,b)Infbldp X4 (271)J |F [yt (arr,5,b)] (O Injelde FL_sda
a” a
(86)
I' (n/4) drd" 'sda
f b bi.
2(1“(71/4) )J |€Syf (a1,s, )ld
Using Lemma 1, the inequality (86) can be further
simplified as
n-1 n—
J |8 Syt (a,1,s,b)|" Infbld"b L +(2n)" J,|(2n)<"/2)a1*<1/2")9c,[f] (6)F o [r¥ ()F] (rS,A gr)| In|é|d™E M
a
2drd” 'sda (T’ (n/4) ) drd" 'sda
x 1 f(a, _
n|§|d"¢ P 2(1‘(11/4) )J |%c$’\y (arsb)l d"b o
(87)

Alternatively, the above inequality can be rewritten as

J €Syt (a1, 5,b) Injbldy + (27) J EMLIG

drd" .,
g YO (S A80) iy nlea’e
R*xR" xSpin (n) .
I’ (n/4) ,
2<r<n/4> ‘1“”)J NESf (@ r.s.b)f dn.
(88)

1
(2n)"

This completes the proof of Theorem 10.

In the following, we establish a local-type uncertainty
principle for the Clifford-valued sharelet transform €&y f
defined by equation (28). More precisely, we shall dem-
onstrate that the portion of €S8y lying outside some given
set M of finite Lebesgue measure cannot be arbitrarily
small. O

Jgrg&yf(a, I,s, b)|2 In|b|dy + (271)"JR”|9CI (f] (£)|2C\y In|¢|d"¢ > <

Noting that ¥ is admissible and using Corollary 1, we
obtain the desired result as

I’ (n/4)
T (n/4)

~In ﬂ)l(fC\y,f>|Lz (5c1,,) (89)

Theorem 11 (Concentration of €&y in small sets). Let
Ve [2(RPD ,Cl,,) be an admissible Clifford-valued
shearlet satlsfymg O< (la| 2=y |12 u(M)/Cy) < 1. Then,
for any measurable subset M of & =R"'xR"!x
R" x Spin(n) and f € L* (R(P’q),Cl(p)q)), we have
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|a|(1/2 ) 1‘Ll (ﬂ)“\yniz (R(M) a, ))
“pa
|€Suf (a,r,5,0)|,, (1) > VCyl 1- C 1£: (mia ) (90)
where u (M) denotes the measure of M. Proof. Using the definition of Clifford-valued shearlet

transforms, we have

I(gé’\yf (a,r,s, b)|L2 (R(P’q),Cl(P,q)) = ‘a(l/Zn)— 1 J'R(M)f(x)f\y (A;lsglf(x _ b)l’)l’dnx

L2RPD.Cli,
’ (91)

<lal (“2”*1IRW|f(x)||w(A;ls;1f(x — b)r)r|d"x.

By virtue of Holders inequality, we have

/ —
€St (a,rs, b)"Lz CLZISPNE Jal 12 1)"f”Lz (R(P»@,czw)'w'ILz (r®2,C1,,) (92)

On the other hand, we can write

[esut@nsbl oo, ) = [ [|] [BSeE@ns ol @ong,, )dn

2 2
= J Hjﬂi%é’\yf (a,r,s, b)|L2 (R(P,q),aw))dn + J j”ﬂ |6Syf(a,1,s, b)|L2 (R<P’V1’,c1(m))d’7 (93)

(1/2n)—1 2 2 2
<lal " OV, (n . W (o, ) HIESeE @08 B (e, )

Application of Corollary 1 for the real-valued Cy, implies

that
2 (1/2n)-1 2 2 2
C‘I’llf”Lz ([R(P’q),Cl(M)) < |a| U (‘%)”flle (R‘P’q),Cl(P‘q)) ”\P”Lz (R(p:q)’cl(P’q)) + “Cgé’?f (a’ L s, b)"LZ (EC,CI(M>)’ (94)
or
12
(1/2m)-1 2
65385 Dl (11, (Co 1ol ™ WCOM, (01, ) 1 (anc,
al (1/zn)-1#(/%)||\},”i2 ) 12 (95)
=Gy 1~ Cy B "f”Lz (R(qu),cl(},‘q))'
This completes the proof of Theorem 11. O 6. Conclusion

In the present study, we formulated the notion of continuous
Clifford-valued shearlet transform on the generalized
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geometric algebra Cl, ,. The proposed transform has the
advantage of efficiently handling Clifford-valued signals at
various scales, positions and orientations while upholding
the affine structure. Besides, studying the fundamental as-
pects of the Clifford-valued shearlet transform, the homo-
geneous approximation property is also investigated in
detail. Nevertheless, some prominent uncertainty inequal-
ities, such as the Hesienberg-Puali-Weyl logarithmic and
local uncertainty principles are obtained at the end.
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