REKONSTRUKSI BATIMETRI DAN IKLIM PURBA BERDASARKAN FORAMINIFERA DAERAH RALLA BARRU, SULAWESI SELATAN INDONESIA

RECONSTRUCTIONS OF BATHMETRY AND PALEOCLIMATE BASED ON FORAMINIFERA FROM RALLA BARRU, SOUTH SULAWESI INDONESIA

Meutia Farida¹, Tati Fitriana¹, Jimmi Nugraha¹²

¹Teknik Geologi Universitas Hasanuddin, Jl. Perintis Kemerdekaan Km.10, Makassar, 90245
²Puslitbang BMKG, Jl. Angkasa 1 No.2 Kemayoran, Jakarta, 10720

*E-mail: jimmi.nugraha@gmail.com

ABSTRAK

Kata kunci: Foraminifera, Iklim hangat, Iklim purba, Paleobathymetry, Ralla.

ABSTRACT

Ralla area is located in Barru District, South Sulawesi Province which consisted of carbonate and volcanic rocks. One of the main components of these rocks is foraminifera fossils, include planktonic and bentonic which founded to be abundance. In determining the age and depositional environment (paleobathymetry), foraminifera fossils could be used as a good paleoclimate proxy. The research was conducted by Stratigraphy Measured (Measuring Section) method in marl and limestone outcrop with a thickness of up to 748,16 centimeters which consists of 23 rock layers. Identification and determination of foraminifera fossils suggests that there are 46 bentonic and 28 planktonic species on samples, which are estimated the age of the rocks range from the end of lower Eocene (P9) till the middle of Middle Eocene (P11), bathmetry changes with cycle from inner neritic – upper bathyal – outer neritic. The abundant and diverse species and large-size fossils suggest that the nutrient was abundant with temperature 0°C – 27°C as a warm climate condition (warm water).

Keywords: Foraminifera, Warm Climate, Paleoclimate, Paleobathymetry, Ralla.

1. Pendahuluan

Daerah Ralla memiliki kondisi geologi yang menarik, sebagaimana dijelaskan oleh peneliti terdahulu [2,3], (Gambar 2), perselingan batulempung karbonatan dan batugamping yang tebal dengan kandungan fosil melimpah, kemudian di atas batuan ini terdapatkan batugamping yang tebal, hal tersebut menunjukkan adanya perubahan batimetri dan iklim di daerah penelitian.

Fosil foraminifera merupakan salah satu komponen penting dalam batuan sedimen, khususnya sedimen laut (marine). Keberadaan fosil tersebut menjadi indikator yang baik untuk menentukan umur relatif batuan dan lingkungan purba (paleoenvironment), dimana sifat fisik dan kimia air laut mengontrol perkembangan organisme atau biota yang hidup di lingkungan tersebut, sehingga dapat dijadikan sebagai alat untuk membuat rekonstruksi lingkungan purba khususnya laut (paleoceanography) [4].

Foraminifera merupakan urutan penting dalam protozoa bersel satu, yang hidup baik di dasar laut (bentonik) maupun yang melayang di kolom laut (planktonik) [5]. Foraminifera adalah protozoa yang mempunyai cangkang, hidup di lingkungan akuatik termasuk laut, air payau, atau air tawar dan tersebar pada seluruh wilayah terutama di daerah tropis [4].

Selain itu, fosil ini dapat digunakan dalam rekonstruksi paleokologi [6], iklim purba [7,8], dan paleoceanografi [9].

Foraminifera terdapat di lingkungan laut memanjang dari lingkungan tidal (pasang surut) pada wilayah rawa (marsh) hingga abisal. Tiap lingkungan memiliki karakteristik spesies tertentu termasuk keanekaragaman dan kelimpahannya [6,10]. Beberapa parameter lingkungan menjadi kontrol utama dalam pola penyebaran foraminifera, yaitu kedalaman, suhu, salinitas, ketersediaan makanan dan ketersediaan oksigen [7]. Foraminifera secara khusus penting dalam studi sejarah iklim dari Kenozoik – Kuarter sebab isotop pada cangkang CaCO₃, merekom perubahan temperature dan kimia air laut. Setiap spesies pada bentonik beradaptasi pada kisaran suhu tertentu, pada suhu tersebut bentonik bisa bereproduksi dengan baik [5].

Selain foraminifera bentonik, planktonik juga sangat baik untuk menentukan temperatur dan sirkulasi air laut. Planktonik hidup dalam kolom air tertentu sehingga memberikan gambaran stratifikasi air laut dan arus vertikal (upwelling), yang terjadi akibat perubahan suhu bawah permukaan. Arus ini membawa nutrisi ke permukaan air laut [5,10]. Foraminifera dalam aplikasinya semakin berkembang, tidak hanya dimanfaatkan untuk penentuan umur dan lingkungan pengendapan, namun juga dimanfaatkan dalam mempelajari bagaimana kondisi arus-arus global, iklim, ekologi dan sebagainya.
Salah satu aplikasi foraminifera baik planktonik maupun bentonik digunakan dalam eksplorasi minyak dan gas bumi [5]. Beberapa penelitian tentang fosil foraminifera dibandingkan dengan yang masih hidup (modern) dapat membantu memahami bagaimana kondisi lingkungan purbanya [4].

Penelitian ini bertujuan untuk membuat rekonstruksi iklim purba berdasarkan kelimpahan fosil foraminifera kecil, baik bentonik maupun planktonik.

2. Metode Penelitian

Untuk mencapai tujuan penelitian, maka dilakukan metode penelitian yang meliputi pengumpulan data, pengolahan data, analisis dan interpretasi.

Pengumpulan data lapangan dilakukan dengan pengambilan sampel permukaan menggunakan metode “measuring section”. Metode ini dilakukan apabila kondisi singkapan memiliki ketebalan yang signifikan dan jenis perlapisan batuan yang bervariasi. Kemudian dilakukan sketsa atau foto singkapan baik keseluruhan maupun detail, pengukuran ketebalan dan strike/dip, kemiringan lereng (slope), deskripsi batuan, struktur sedimen serta pengambilan sampel pada setiap litologi yang berbeda.

Data lapangan selanjutnya diolah di Laboratorium Paleontologi Universitas Ilaqanuddin dengan tahapan: pemilahan sampel (sorting) dan preparasi dari sampel terpilih, kemudian disiapkan sampel kering sekitar 100 gram, kemudian sampel tersebut dihancurkan/dihaluskan dengan menggunakan palu geologi/porselen. Setelah itu sampel dimasukkan ke dalam larutan H\textsubscript{2}O\textsubscript{3} (10-15% mol) untuk memisahkan mikrofossil dengan sedimen/matriks. Setelah direndam kurang lebih 2 - 5 jam, residu tersebut dibilas dengan air bersih dan dikeringkan. Selanjutnya sampel yang telah kering dikemas dalam plastik dan diberi nomor/label. Dan sampel pun siap untuk dideterminasi. Proses preparasi hingga determinasi dilakukan selama 1 (satu) bulan.

3. Hasil dan Pembahasan

Pengukuran stratigrafi pada perselingan napal dan batugamping di daerah Ralla dengan lintasan berjarak ± 70 meter, sebanyak 23 perlapisan batuan dengan kedudukan arah dan kemiringan perlapisan N 23\degree E/10\degree (Gambar 3). Dari hasil determinasi fosil foraminifera pada setiap lapisan (dari tua ke muda) diperoleh sebagai berikut:

Lapisan bawah:
Terdiri dari Lapisan 1 dan 2, kandungan fosil foraminifera bentonik pada lapisan ini adalah : *Cibicides io* Cushman, *Cibicides micrus* Bermudez, *Cibicides americanus* (Cushman), *Cibicides* sp., dan *Cibicides granulosus* Bermudez (Tabel 1; Gambar 4).

Gambar 3. Lokasi Pengukuran “Measuring Section”

Tabel 1. Kandungan Foraminifera Bentonik Lapisan 1

<table>
<thead>
<tr>
<th>Jenis Foraminifera</th>
<th>Persentase</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cibicides io Cushman</td>
<td>14%</td>
</tr>
<tr>
<td>Cibicides granulosus Bermudez</td>
<td>7%</td>
</tr>
<tr>
<td>Cibicides micrus Bermudez</td>
<td>29%</td>
</tr>
<tr>
<td>Cibicides americanus (Cushman)</td>
<td>11%</td>
</tr>
<tr>
<td>Cibicides sp.</td>
<td>39%</td>
</tr>
</tbody>
</table>

REKONSTRUKSI BATIMETRI DAN IKLIM PURBA…………………………………………………………………….. Menia Farida, dkk

79

<table>
<thead>
<tr>
<th>Transisi</th>
<th>Neritik</th>
<th>Bathyal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sungai</td>
<td>Rawa</td>
<td>Lagan</td>
</tr>
<tr>
<td></td>
<td>Fluvial-Marine</td>
<td>Pacu-Terbuka</td>
</tr>
<tr>
<td>Inner</td>
<td>(0-30,48m)</td>
<td>Middle</td>
</tr>
<tr>
<td></td>
<td>(93-4,48-128,89m)</td>
<td>(28-88,472-126,94m)</td>
</tr>
<tr>
<td></td>
<td>(93-4,48-128,89m)</td>
<td>(28-88,472-126,94m)</td>
</tr>
<tr>
<td></td>
<td>(138,8-187,68m)</td>
<td>Hadiah</td>
</tr>
</tbody>
</table>

Kandungan Fosil Bentonik

- *Cibicides io* Cushman
- *Cibicides micrus* Bermudez
- *Cibicides americana* (Cushman)
- *Cibicides sp.*
- *Cibicides granulosus* Bermudez

Berdasarkan kandungan fosil diatas, maka lingkungan pengendapan batuan ini adalah *inner neritic – middle neritic* atau Neritik Dalam – Neritik Tengah, pada kedalaman 0-30,48 meter [13], (Tabel 2).

Determinasi umur batuan berdasarkan kandungan foraminifera tersebut adalah ditandai dengan pemunculan fosil *Globorotalia aragonensis* NUTTALL dan pemunculan akhir fosil *Globigerina soldadoensis* BRONNIMANN, sehingga diperoleh umur (P.9) pada kisaran hidup fosil *Globorotalia formosa* yang berumur Eosen Bawah bagian atas [14].

Lapisan 3 – 7:
Pada lapisan 3-7 terjadi perubahan kandungan fosil diantaranya ditunjukkan pada lapisan 4 (Tabel 3; Gambar 5) *Cibicides sp.*, *Eponides sp.*, *Lagenas sp.*, dan *Ovigerina sp.* Berdasarkan kandungan fosil bentonik di atas maka lingkungan pengendapan lapisan ini adalah *Middle Neritic – Outer Neritic* atau Neritik Tengah – Neritik Luar (kedalaman 30-182 meter) [13], (Tabel 4).

Tabel 3. Kandungan Foraminifera Bentonik Lapisan 4
Fosil foraminifera kecil planktonik yang dijumpai pada lapisan ini yaitu: Globigerina ampliapertura BOLLI, Globigerina boweri BOLLI, Globigerina collactea (FINLAY), Globigerina ouachitaensis HOWE and WALLACE, Globigerina senni (BECKMANN), Globigerina soldadoensis BRONNIMAN, Globigerina yeguaensis WEINZIERL and APPLIN, Globorotalia bolivariana (PETTERS), Globorotalia centralis CUSHMAN dan BERMUDEZ, Globorotalia increbescens (BANDY), Globorotalia wilcoxensis CUSHMAN and PONTON, Globorotalia gracillla BOLLI, dan Hastigerina micra (COLE).

Penentuan umur lapisan 3-7 dengan memperhatikan perkembangan maksimum atau zona puncak dari spesies Globigerina boweri BOLLI (P.10 – P.11) yakni pada kisaran hitung fosil Globorotalia bullbrooki dan Globigeropsis kugleri yang menunjukkan umur Eosen Tengah bagian bawah [14].

Lapisan 8 – 13:
Fosil foraminifera bentonik yang dijumpai pada lapisan ini menunjukkan perubahan beberapa jenis spesies (Tabel 5; Gambar 6), antara lain pada lapisan 9-12 adalah *Cibicides americanus* (Cushman), *Cibicides sp.*., *Bulimina sp.*, *Nodosaria sp.*, *Nonion nicobarense* CUSHMAN, *Uvigerina sp.*, *Nonion sp.*, dan *Bolivina sp.*

Berdasarkan keterangan fosil bentonik tersebut, maka lingkungan pengendapan batuan ini adalah Neritik luar – Bathyal atas [13], (Tabel 6).

Lapisan Tengah (14 – 17)
Dari hasil analisis foraminifera bentonik pada lapisan ini, diperoleh lingkungan pengendapan Neritik luar – Bathyal atas, dengan demikian terjadi penurunan muka laut selama terendapkannya batuan tersebut (Tabel 8).

Penentuan umur zona *Globorotalia bolivariana* - *Globigerina boweri* didasarkan pada zona selanjut stratigrafis antara pemunculan awal fosil *Globorotalia bolivariana* (PETTERS) dan pemunculan akhir fosil *Globigerina boweri* BOLLI (P.10 – P.11) yakni pada kisaran hidup fosil *Globorotalia bullbrooki* dan *Globigeropsis kugleri*, yang menunjukkan umur Eosen Tengah bagian bawah [14].
Lapisan Atas (18 – 23)

Lapisan ini disusun oleh batugamping dengan kandungan foram besar: Nummulites sp., Lepidocyclina sp., Asterocyclina sp. (Gambar 8) dan foraminifera kecil berikut: Robulus sp., Nonion sp., Cibicides sp., Textularia sp., Uvigerina sp., Valvulineria sp. (Tabel 9, Gambar 9). Berdasarkan kandungan foraminifera bentonik dan foram besar, maka lingkungan pengendapan lapisan ini adalah Bathyal atas – Neritik luar [13], (Tabel 10).

Fosil foraminifera kecil planktonik yang dijumpai pada zona ini yaitu; Globigerapsis index (FINLAY), Globigerapsis kugleri BOLLI, LOEBLICH, and TAPPAN, Globigerapsis cerrazulensis (COLE), Globigerina ampliapertura BOLLI, Globigerina boweri BOLLI, Globigerina collactea (FINLAY), Globigerina owachtaensis HOWE and WALLACE, Globigerina senni (BECKMANN), Globigerina soldadoensis BRONNIMANN, Globigerina yeguaensis WEINZIERL and APPLIN, Globorotalia bolivariana (PETTERS), Globorotalia broedermanni CUSHMAN and BEMUDEZ, Globorotalia bullbrooki BOLLI, Globorotalia centralis CUSHMAN and BERMUDEZ, Globorotalia increbescens (BANDY), Globorotalia wilcoxensis CUSHMAN and PONTON, dan Hiatigerina micra (COLE).

Penentuan umur zona Globigerina yeguaensis - Globigerina boweri didasarkan pada zona selang yakni selang stratigrafi antara pemuncul an awal fosil Globigerina yeguaensis WEINZIERL and APPLIN dan pemuncukan akhir fosil Globigerina boweri BOLLI (P.11), yakni pada kisaran hidup fosil Globigerapsis kugleri yang menunjukkan umur Eosen Tengah bagian tengah [14].
Iklm Purba Daerah Ralla
Berdasarkan hasil analisis kandungan fosil foraminifera baik bentonik maupun planktonik, maka iklim di daerah penelitian khususnya kondisi air laut kelima batuan tersebut diatas terdapat pada cekungan dibagi menjadi beberapa periode berikut:

Eosen Bawah bagian atas (lapisan 1-2)
Pada umur ini lingkungan pengendapan berada pada Neritik dalam – Neritik tengah (0 – 91,44 m), ditandai dengan dominasi kehadiran *Cibicides* sp. Meskipun kedalaman hingga Neritik tengah, material yang terendapakan pada lingkungan ini berukur halus yang menunjukkan arus cenderung tenang.

Eosen Tengah bagian tengah (lapisan 3-7; 8-13)
Lingkungan pengendapan (cekungan) pada Neritik tengah – Neritik luar dengan kedalaman 30,48-182,88 m, kemudian pada lapisan 8-13 terdapat lapisan terendapkan hingga Bathyal atas (457,2 meter). Dengan demikian terjadi kenaikan muka air laut atau cekungan semakin dalam yang disebabkan antara lain oleh aktivitas tektonik. Meskipun material yang terendapkan berukur halus, pada batuan ini dijumpai fragmen-fragmen batuan yang berasal dari batugamping dan batupasir.

Eosen Tengah bagian bawah (lapisan 14-17)
Kondisi lingkungan pengendapan adalah Neritik luar – Bathyal atas, sebagaimana pada periode kedua, namun demikian air laut pada saat itu sangat kaya akan kandungan CaCO₃, sehingga yang terbentuk adalah lapisan batugamping setebal 35 cm. Kemudian diatasnya terendapkan lapisan napal hingga kedalam berkisar 457 meter.

Eosen Tengah bagian tengah (lapisan 18-23)
Memasuki umur Eosen Tengah bagian tengah lingkungan pengendapan adalah “open marine” dengan agitasi arus dan gelombang cukup kuat. sehingga memungkinkan pembentukan batuan karbonat yang cukup tebal. Lapisan batuan ini sangat kaya akan organisme laut terutama foram besar dan mikrofossil lainnya. Berdasarkan hasil analisis setiap lapisan batugamping maka ditemukan kecenderungan penurunan muka air laut, yaitu dari lingkungan pengendapan dari Bathyal atas ke Neritik luar, hal ini berhubungan dengan perubahan muka air laut global.

Tabel 10. Lingkungan Pengendapan Foraminifera Bentonik (besar dan kecil) [13]

<table>
<thead>
<tr>
<th>Transisi</th>
<th>Neritik</th>
<th>Bathyal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sengeta</td>
<td>Rawa Lagen Fluvio-Marine Pantai Terbuka Inner</td>
<td>(30,48-91,44 m)</td>
</tr>
<tr>
<td>Lagen</td>
<td>(91,44-182,88 m)</td>
<td></td>
</tr>
<tr>
<td>Fluvio-Marine</td>
<td>Outer</td>
<td>(91,44-182,88 m)</td>
</tr>
<tr>
<td>Pantai Terbuka</td>
<td>Upper</td>
<td>(457,2-914,4 m)</td>
</tr>
<tr>
<td>Inner</td>
<td>Middle</td>
<td>(91,44-182,88 m)</td>
</tr>
<tr>
<td>Middle</td>
<td>Outer</td>
<td>(91,44-182,88 m)</td>
</tr>
<tr>
<td>Outer</td>
<td>Abyssal</td>
<td>(1028,8-4576,2 m)</td>
</tr>
<tr>
<td>Abyssal</td>
<td>Haral</td>
<td>(4576,2-914,4 m)</td>
</tr>
<tr>
<td>Haral</td>
<td>Hadal</td>
<td>(914,4-182,88 m)</td>
</tr>
</tbody>
</table>

Kandungan Fosil Bentonik
- *Robulus* sp.
- *Nonion* sp.
- *Cibicides* sp.
- *Textularia* sp.
- *Uvigerina* sp.
- *Valvulineria* sp.

4. Kesimpulan

Ucapan Terima Kasih
Terima kasih kepada pemerintah daerah setempat yang telah memberikan izin melakukan penelitian di daerah Ralla Kabupaten Barru.
Daftar Pustaka

<table>
<thead>
<tr>
<th>Lapangan</th>
<th>15</th>
<th>27</th>
<th>35</th>
<th>24</th>
<th>20</th>
<th>18</th>
<th>15</th>
<th>7</th>
<th>6</th>
</tr>
</thead>
</table>

Erosi dan penimbunan abu

- [Image of the diagram showing lapangan, erosion, and deposition areas.]

Lapangan 15: Erosi dan penimbunan abu yang terjadi di lapangan ini cukup signifikan. Pada titik 27, terdapat penimbunan abu yang cukup tebal, sementara di titik 35, kondisi erosi dijumpai.

Lapangan 24: Erosi terjadi di sepanjang titik ini, dengan penimbunan abu yang terjadi di titik 20.

Lapangan 18: Kondisi erosi dan penimbunan abu terjadi di titik 15 dan 7.

Lapangan 6: Penimbunan abu didominasi di titik 15, sementara erosi terjadi di titik 6.