American-Eurasian Journal of Sustainable Agriculture (AEJSA)
12' Frequency

Our Editorial Board...
a detailed view.

Our Editorial Board...
a detailed view.

- Home (index.php)
- Editorial Board

Editor in Chief:

Contact us for more info (contact.html)
• Dr. Abdel Rahman Mohammad Said Al-Tawaha, Founder President of American-Eurasian Network for Scientific Information

Advocacy Board:

• Prof. Dr. Majid Monajemi Prof. of Physical Chemistry, Science & Research Campus, Islamic Azad University, Tehran P.O. Box14155/714 Tehran.
• Prof. Dr. Wenju Liang Professor, Institute Of Applied Ecology, Chinese Academy of Sciences, P.O.Box 417, Shenyang 110016 China.
• Prof. Dr. Abd Al-Kareem Al-Sallal Professor of Applied Microbiology, Biotechnology and Genetic Eng., Jordan University of science and Technology, Jordan.
• Dr. Ignacy Kotowski Department of Nature Conservation, Institute of Biology, University of Maria-Curie Sklodowska, Akademicka 19, PL-20-033 Lublin, Poland.
• Dr. Andrzej Kormos Department of Radiochemistry and Colloid Chemistry, Maria Curie Sklodowska University, Lublin, Poland.
• Benoit SCHOFMS Professeur de Biologie et Physiologie Végétales Directeur du champ disciplinaire "Physiologie" Directeur du M1 "Sciences du végétal" Directeur du M2P "Plantes Productions Biotechnologies UMR CNRS (5184)/INRA (1098)/Université de Bourgogne - Plante- Microbe-Environnement BIOT COPP 17, Rue Sully, BP 90510, 21065 DIJON Cedex, France
• Dr. Robin DUPONNOIS Directeur de Recherche a INRA, Laboratoire Commun de Microbiologie, IRD/ISRAJAC, Centre de Recherche de Bel-Air, BP 1338 CP 18924 Dakar-Sénégal.
• Dr. Hidetaka HORI Ph.D. Laboratory of Applied Bioscience, Graduate School of Science and Technology, Niigata University, Niigata 950-2181, Japan.
• Dr. Panos S. ECONOMIDIS Professor Emeritus at the Aristotle University, Larisa, et al., GR-544 53 Thessaloniki, Greece.
• Dr. Christopher (Kit) E. Begwell, Ph.D. Savannah River National Laboratory, SRNL Environmental Sciences & Biotechnology.
• Dr. Yuxue Wang College of Bioscience and Biotechnology, Yangzhou University, No. 12 East Wenhui Road, Yangzhou City, Jiangsu Province, China.
• Dr. Rashid Al-Sa'eed (Dr. Eng.) Associate Professor In Environmental Sciences & Engineering, Institute of Environmental and Water Studies (SHEWS), Birzeit University, P.O. Box 14, Birzeit, West Bank, Palestine.
• Dr. Rais Ahmad Department of Applied Chemistry, F/O Engg. & Technology, AMU Aligarh, India.
• Dr. Marius Ciprian Branfla Technical University of Iasi, Faculty of Electrical Engineering, Department of Electrical Measurements and Materials, Bd. Dimitrie Mangeron 53 Iasi, 700050 Romania.

Advocacy Board:

• Dr. Mohammad Weydan Biological Department, Al Hussein Bin Talal University, Ma'an, P.O. Box 20, Jordan.
• Dr. Cai Lihua, Professor of Tropical Botanical Garden, The Chinese Academy of Sciences, Beijing, Yunnan 666303, P.R. China.
• Dr. S.B. Dudgeon Department of Microbiology, CCS Haryana agricultural University, Hisar 125004, India.
• Dr. B.K. Tyagi Officer in-Charge, Centre for Research in Medical Entomology (Indian Council of Medical Research), 4-Bansijti Street, Chhina, Chhikulun, Madras - 600 002, India.
• Dr. Fa Yuan Wang Department of Resources and Environmental Science, Agricultural College, Henan University of Science and Technology, 70 Tianji Road, Luoyang, Henan province 471003, P.R. China.
• Dr. Nishtha Mathur Head of Department, Department Of Biotechnology, Mahila P.G. Mahavidyalaya, Jodhpur-342001, Rajasthan, India.
• Dr. F.M. Alamzaman Department of Plant Pathology, Sher-e-Bangla Agricultural University, Sher-e-Bangla Nagar, Dhaka-1207, Bangladesh.
• DR. DHURJA KUMAR JHA Gauhati University, Campus Guwahati-781014, Assam, India.
• Dr SSS Sarma Professor & National Researcher, National Autonomous University of Mexico, Campus Iztacala AP 314, CP 54090 Los Reyes, Iztacala, Tlalnepantla Edo. de Mexico Mexico.
• Prof Dr. SVS Rana Head Dept. of Zoology, Coordinator Dept. of Env. Science CCS University, Meerut.
• Dr. Murat Demir Istanbul University, Faculty of Forestry, Department of Forest Construction and Transportation, 34473 Bahcekoy / Sariyer / Istanbul, Turkey.
• Dr. Zafar OLMEZ Artvin Coruh University, Faculty of Forestry, 08003 Artvin, Turkey.
• Dr. YASIR HASAN SIDDIQUE FIBIR Human Genetics and Toxicology Lab, Section of Genetics, Department of Zoology, Faculty of Life Sciences, Aligarh Muslim University, Aligarh-202002 (UP) India.
• Dr. P. R. Salve Scientist, Environmental Impact and Risk Assessment Division, National Environmental Engineering Research Institute (NEERI), Nehru Marg, Nagpur-440 020 (M.S.), India.
• Dr. S. KARTHIKEYAN Lecturer in Physics, St. Joseph's College of Engineering, Chennai-600 119 Tamil Nadu, India.
• Dr. Nuray MISIR Karadeniz Technical University, Faculty of Forestry, 61200, Trabzon, Turkey.
• Dr. Bragadesswaran CAS in Marine Biology, Annamalai University, Parangipettai 608 502 Cuddalore, Tamil Nadu, India.
• Dr. Sevli TOROGLU Biology Department, Faculty of Arts and Sciences, University of KSO, 46100 Avsar Campus, Kahramanmaras, Turkey.
• Dr. Taiga Akpovghaye Department Of Biological Sciences, K.S.U., P.M.B. 1008, Arvyba, Kogi State.
• Dr. Jilendra Panwar Biological Sciences Group, Birbal Institute of Technology & Science (BITS), Pilani-333 031 (Rajasthan) INDIA.
• Dr. Ezekiel Olutunji Department of Fisheries, Cross River University of Technology, Calabar, P.M.B. 102, Obubra, Nigeria.
• Dr. Ali Gazeinian Department of Genetic and Physiology, Agricultural and Natural Resources Research Center of Khorrassan, Address: Mashhad, Razavi Khorrassan Province, Iran Box P.O.: 91735-1148, Mashhad, Iran.
• Dr. Shahid U. Somali Paul-Hinderith-Allee 4/Apt. 312, D-80995 München, Germany.
• Dr. YOGASHERRE NADOO Senior Lecturer, School of Biological and Conservation Sciences, UKZN –Westville campus.
• Dr. Ranyta Aly Helmy Amer Department of Environmental Biotechnology, Genetic Engineering and Biotechnology Research Institute (GEBRI), Mubarak City for Scientific Research and Technology Application, New Burg El-Arab City, Universities and Research Institutes Zone, 21934 Alexandria, Egypt.
• Dr. A. Karthikayan Division of Forest Protection, Institute of Forest Genetics and Tree Breeding, P.O. Box: 1061; R.B. Puram, Coimbatore - 641 002, India.
• Assist. Prof. Dr. Nihat SIVRI Istanbul University, Faculty of Engineering, Dept. of Environmental Engineering, Avci Yarım Campus 34320, Istanbul TÜRKİYE.
• Dr. Kamelia Mahmoud Osman Ahmed Department Microbiology, Faculty Veterinary Medicine, University Cairo, Egypt.
• Dr. Slavomir Cernyansky Comenius University In Bratislava, Faculty of Natural Sciences, Department of Ecotoxicology and Plant Ecology, Mlynska dolina 1, 842 15 Bratislava, Slovakia.
• Prof. Dr. Renato G. Reyes College of Arts and Sciences, Central Luzon State University, Science City of Muñoz, Nueva Ecija.
• Dr. A.O. Togun Department of Crop Protection & Environmental Biology, Faculty of Agriculture & Forestry, University of Ibadan, Ibadan, Nigeria.
• Dr. Abdulwahid Saeed Al Department of Veterinary Preventive Medicine and Public Health, Faculty of Veterinary Medicine, University of Khartoum, Khartoum North, Postal code: 11115, P.O. Box 321, SUDAN.
• Dr. Anwar Chandra Crop Improvement Division, Indian Grassland and Fodder Research Institute, Jhansi – 284003 India.
• Dr. KALIMUTHU KANDASAMY Department of Botany, Government Arts College, Coimbatore - 641 018, India.
• Dr. Abdul Latif A. Al-Ghrawl Department of Biology and Biotechnology, Faculty of Science, The Hashemite University, Zarqa-Jordan.
• Dr. Hali Erian EROGLU Department of Biology, 68200 YOZGAT, Bozok University, Faculty of Science and Arts, Turkey.
• Prof. Shikhl DONGS School of Environmental Sciences, Beijing Normal University, No. 19, Xiangjiakou Waidjia, Haidian District, Beijing, 100875 P.R. China.
• Dr. Naheed Ahmed Khan Senior Lecturer in Microbiology, School of Biological & Chemical Sciences, Birkbeck College, University of London, Malet Street, London WC1E 7HX, England, U.K.
• DR. DHRUVA KUMAR JHA Department of Botany, Gauhati University, Guwahati-781 014, Assam, India.
• Dr. Ignacy Kwieciński Department of Nature Conservation, Institute of Biology, Maria Curie-Skłodowska University, Akademicka 19.
PI-20-033 Lublin, Poland

- Dr. Nidal Mohammad Ismat Salem Industrial Chemistry Center, Royal Scientific Society, P.O.Box: 1438 Aljabha, Amman 11841, Jordan.
- Dr. MUHAMMAD AASIM Department of Field Crops, Faculty of Agriculture, University of Ankara, Ankara, Turkey.
- Dr. Songhe Zhang College of Environment, Hohai University, XiKang road NO.1. Gulou district, Nanjing 210098, Jiangsu

Regional Editors:

- Dr. Oscar Martinez Alvarez Station de Biologie Marine du Musee National d'Histoire, Naturelle et du Collège de France, BP 225, 29182 Concarneau Cedex, France.
- Dr. Piotr Tryjanowski Department of Behavioural Ecology, Adam Mickiewicz University, Umultowska 89, PL 61-614 Poznan, Poland.
- Dr. Rafael Casaltero Garcia de Antelao Centro de Ciencias Ambientales, C/Serrano 115 bts, Madrid 28006, Spain.
- Dr. Cemir BAYSAL Turkish Ministry of Agriculture and Rural Affairs, West Mediterranean Agricultural Research Institute (BATEM), Plant Pathology Department, P.B. 35, 07100 Antalya/Turkey.
- Dr. Ashir Nada, Ph.D. Medical College of Georgia, USA.
- Dr. Li, Feng-Rui Department of Ecology and Agriculture, Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences, China.
- Md. Amin Udin Midha Department of Botany, University of Chittagong, Bangladesh.
- Dr. O.J. BAGYARAJ INSA Senior Scientist & Chairman, CNBRCI # 41 RBI Colony, Anand Nagar, Bangalore, India.
- Dr. Shyam Singh Yadav Ph D, FISIOP, FISPRD, FISPPB, MSIGMA Xi (U.S.A), Technical Expert, United Nations Development Programme, Yemen.
- Dr. Gamal M. Fahmy Professor of Plant Ecology, Department of Botany, Faculty of Science, University of Cairo, Giza 12613, Egypt.
- Dr. Sarwoko Mangkoedipranji Department of Environmental Engineering, Sepuluh November Institute of Technology (ITB), Campus ITB Sukolilo Surabaya 60111, Indonesia.
- Dr. Bob Redden Curator, Australian Temperate Field Crops Collection, DPI-Vic, Private mail bag 260, Horsham Vic 3401, Australia

Regional Editors:

- Dr. Ahmad K. Hegazy Head of Ecology Division, Prof. of Conservation & Applied Ecology, Botany Department, Faculty of Science, Cairo University, Giza 12613, Egypt.
- Prof. Dr. Marcelo Enrique Conti SPES - Development Studies Research Centre, Universita di Roma "La Sapienza" Via Del Castro Laurerziano 9, 00161 Rome, Italy

Contact Us:

- Editor in Chief - Dr. Abdel Rahman Tawaha
- Address: Amman-Jordan
- * +962-7955016606
- Email: Aensieditor@Gmail.Com (mailto:Aensieditor@Gmail.Com)
- Email: Jasaeditor@Gmail.Com (mailto:Jasaeditor@Gmail.Com)
Effect of water stress on growth, yield, proline and soluble sugars contents of Signal grass and Napier grass species

1Budiman Nohong and 2Syamsuddin Nompo

1Faculty of Animal Science Hasanuddin University, Makassar, Indonesia 90245
2Department of Forage Crops and Grassland Management, Faculty of Animal Husbandry, Hasanuddin University, Makassar, Indonesia

Received 12 March 2015; Accepted 28 August 2015; Available online 22 September 2015

ABSTRACT

The research was conducted at the greenhouse of the Faculty of Animal Science, Hasanuddin University, Makassar, Indonesia during the two months to investigate the effect of water stress treatments (W0 = Field capacity (FC), no water stress), W1 (50% FC, for 1 week), W2 (50% FC, for 2 weeks), and W3 (50% FC, for 3 weeks) on growth, yield, proline, and total soluble sugars contents of two grass species (Signal grass and Napier grass). Results showed that increasing water stress duration induced reduction in plant height, number of tillers, and dry matter yield but decreased the proline and total soluble sugars content. Prolonged water stress led to increases in the proline and soluble sugars both grass species. Species variation was observed were Signal grass species had the highest number of tiller and proline content compared to Napier grass species, while Napier grass species was higher in plant height, yield and soluble sugar contents. This indicates variation between the two species grass in growth, yield, proline and soluble sugars, could be altered by duration of water stress.

KEY WORDS
Grass species, proline, soluble sugars, water stress, yield

INTRODUCTION

One of the keys to increasing the productivity of livestock in pastureland are introduces and developing grass that is able to produce high forages. During the past few years Signal grass (Brachiaria decumbens) and Napier grass (Pennisetum purpureum) have been introduced and planted by farmers in South Sulawesi which utilizes of dry land. On dry land, the water is very limited so that the development of forage often experience water stress. Statement from (Mahdava Rao, K.S., 2006), that water deficits result from low and erratic rain fall, poor soil water storage and when the rate of transpiration exceeds water uptake by plants.

Water stress is considered as one of the abiotic stress factors that restrict the growth and plants production (Keyvan, S., 2010; Sarkhe, B.C. and M. Hara, 2011; Grand, K., et al., 2014), as well as physiological and biochemical processes of plants (Shinozaki, K. and K. Yamaguchi-Shinozaki, 2007; Anjum, S.A., et al., 2012). Plants respond and adapt to the pressure to defend against abiotic stress (Shinozaki, K. and K. Yamaguchi-Shinozaki, 2007). The reaction of plants to water stress significantly different at various levels depending on the intensity and duration of the stress itself, and also species, cultivars and growth stage (Claves, M.M., et al., 2002 Sofo, A., et al., 2004; Abbasi, A.R., et al., 2014). Plants adaptation mechanisms to cope with drought stress are with
the cell osmotic regulation. In this mechanism occurs synthesis and accumulation of organic compounds that can degrade osmotic potential resulting in lower water potential in cells without limiting enzyme function and maintain cell turgor (Wang, Z. et al., 1995). Water stress tolerance mechanisms can be attributed to the accumulation of osmo protectants such as proline and soluble sugars (Fitter, A.H. and R.K.M. Hay, 2002; Mohammadhiami, M. and R. Heidari, 2008). Proline can serve as a source of energy, nitrogen and carbohydrates and as osmotic, as a response to the drought (Hong, Z., et al., 2000). Accumulation of soluble carbohydrates increased resistance to the drought on the plant [14]. The role of carbohydrates may rather be as carbon sources for proline synthesis. The parallelism between the accumulation of soluble carbohydrates and proline accumulation may be a consequence of conjugation of the synthetic reactions of carbohydrates and proline with the accelerated hydrolytic reactions of insoluble sugars and protein (Fukutoku, Y. and Y. Yamada, 1982).

Plants that are suffered water stress caused decrease in leaf extension level and closure stomatal to reduce the water consumption through transpiration (Rhodes, D. and Y. Samaras, 1994), because of reduce turgor pressure, cell enlargement is reduce (Fales, S.L and J.O. Fritz, 2007) as well as reduce the magnification and leaf area with the accelerate the rate of leaf senescence (Begg, J.E., 1980). In wheat plants, water stress at tillering stage reduces the number of productive tillers (Nagarajan, S. and S. Nagarajan, 2010).

Although Signal grass and Napier grass has been widely cultivated in dryland South Sulawesi, but very little knowledge about the plant responses to water stress. Therefore, this study aims to study the effect of water stress on growth, proline, total sugars content of the two grass species.

MATERIALS AND METHODS

Plant Materials and treatments:

The material used were two species of Signal grass and Napier grass. The research was arranged based on completely randomized design factorial 2 × 4 with four replications. Two species of grass as the first factor and duration of water stress (W) as the second factors: W0 (Field capacity FC, no water stress), W1 (50% FC, 1 week), W2 (50% FC, 2 weeks), W3 (50% FC, 3 weeks).

Determination of treatment 50% of field capacity (50% KL) is calculated by using the examples of plants grown in pots, then placed on a bench underneath was given a bucket to accommodate the excess water can not be absorbed by the soil or plants. Plants watered with a certain volume preset (initial volume), then the volume of water that has been accommodated measured (final volume). The difference between the initial volume of the final volume is the amount of water supplied to the plant with 100% field capacity.

\[
50\% \text{ FC} = \frac{(\text{initial volume} - \text{Final volume})}{2}
\]

Plant culture:

Each grass species were planted in pots containing soil weighing 10 kg. In this study used 24 pots, each species requires 12 pots. Each species planted three seedlings in one pot. During the first three weeks all the plants receive enough water (field capacity) and then thinning the plants by eliminating partly the plant by means of leaving a one plant in the pot, then performed the cutting plants with the same high so that to grow a more uniformly. Application of water stress treatment performed after five weeks later growth uniformity and random placement of the pot. Application of treatment lasts up to three weeks, and then the plants were harvested.

Growth and yield:

Growth parameters (plant height and tiller number). Plant height was measured using a ruler. Measurement started from ground level in the pot until to the tip the plant. To determine number of tiller, we counted the numbers of tiller per pot at each replication. Fresh matter weight of harvested plants was recorded and dried at 70°C until reaching a constant weight to determine dry matter weight. Percentage dry matter was as dry matter weight divided by fresh matter weight x 100.

Proline content of the leaves was measured according to Bates (Bates, L.S., et al., 1993):

Proline was extracted from 0.5 g of leaf sample by grinding in 10 ml of 3% sulphosalicylic acid and the mixture was then centrifuged at 10000 g for 10 min. Two ml of the supernatant was then added into test tubes to which 2 ml of freshly prepared acid-ninhydrin solution and 2 ml of glacial acetic acid were mixed. The tubes were placed in a water bath for 1 h at 90°C and the reaction was terminated in ice-bath. The mixture was then extracted with 5 ml toluene and vortexed for 15 sec. After allowing standing at least for 20 min in darkness at room temperature to
separate the toluene and aqueous phase, the toluene phase was then carefully collected into test tubes and the absorbance of the fraction was read at 520 nm with a Shimadzu UV-1700. The proline content in the sample was expressed as $\mu \text{g } g^{-1} \text{FW}$. The standard curve was prepared by employing L-proline.

Total soluble sugars:

Total soluble sugars content was measured based on the Anthrone method (Irigoyen, J.J., et al., 1992). 0.5 g of the fresh leaf was crushed in a mortar and 5 ml of 80% hot alcohol was added to it. The mixture was centrifuged at 9000 g for 15 min (6000 rpm). The supernatant obtained was separated into another test tube and 12.5 ml of 80% alcohol was added to it. 1 ml of the solution was taken and 1 ml of 0.2% anthrone was added. The mixture was heated in a waterbath at 100°C for 10 min. The reaction was terminated by incubating the mixture on ice for 5 min. Total soluble sugars content was determined using a spectrophotometer at 620 nm. Calculation of the total soluble sugars content was done by creating a standard curve using a standard glucose and was expressed in $\mu \text{g/g}$ freshweight ($\mu \text{g/gFW}$).

Statistical analysis:

Different experimental treatment (for all parameters) were compared with the Univariate ANOVA followed by DMRT test for comparisons post hoc. A probability level of $P<0.05$ was considered to be statistically significant. The SPSS software package (SPSS Ver. 16.0, SPSS Inc., Chicago, Illinois) was used for all tests.

RESULTS AND DISCUSSION

Effect of water stress on plant growth and dry matter yield:

Water stress had a significant effect on plant height. Plant height in response to water stress was decreased to 19% compared to well-watered conditions (Table 1). A significant variation in plant height between species was obtained where Napier grass had more plant height than Signal grass species (Table 2). Plants were usually tallest when they were grown without water stress. The differences between species were decreased with the progress of water stress treatments (Fig. 1). The difference in plant height between the species could be due to effects of water stress on vegetative growth. Drought stress can be reduce the growth of stems and plant height (Prasad, P.V.V. and S.A. Staggenborg, 2008). Plant height decreased with increasing water stress (Bouazzi, B. et al., 2012; Hussein, M.M. and A.K. Alva, 2014) and related with a decrease in cell enlargement (Bhatt, R.M. and N.K. Srinivasa-Rao, 2005).

Table 1: Effect of water stress treatments on plants height, tiller, yield, proline, total sugars and crude protein contents Signal grass and Napier grass

<table>
<thead>
<tr>
<th>Parameter</th>
<th>FC (Control)</th>
<th>50%FC (Weeks)</th>
<th>(1)</th>
<th>50%FC (Weeks)</th>
<th>(2)</th>
<th>50%FC (Weeks)</th>
<th>(3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plant height (cm)</td>
<td>150.389</td>
<td>149.63</td>
<td>133.50<sup>a</sup></td>
<td>122.38<sup>b</sup></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Number of tillers (tillers<sup>plant</sup>)</td>
<td>30.61<sup>a</sup></td>
<td>49.88<sup>b</sup></td>
<td>46.38<sup>b</sup></td>
<td>44.13<sup>b</sup></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yield (g<sup>FW</sup>)</td>
<td>276.75<sup>a</sup></td>
<td>275.63<sup>b</sup></td>
<td>239.00<sup>b</sup></td>
<td>207.00<sup>b</sup></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Proline (μg<sup>FW</sup>)</td>
<td>4.95<sup>a</sup></td>
<td>11.68<sup>b</sup></td>
<td>6.12<sup>b</sup></td>
<td>9.68<sup>b</sup></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total soluble sugars (g<sup>FW</sup>)</td>
<td>3.08<sup>a</sup></td>
<td>4.98<sup>b</sup></td>
<td>4.98<sup>b</sup></td>
<td>6.12<sup>b</sup></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Means in each row followed by the same letter are not significantly different ($P \leq 0.05$).

Table 2: Plant height, tiller, yield, proline, total sugars and crude protein contents of Signal grass and Napier grass species

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Species</th>
<th>Signal grass</th>
<th>Napier grass</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plant height (cm)</td>
<td>130.06<sup>a</sup></td>
<td>147.89<sup>a</sup></td>
<td></td>
</tr>
<tr>
<td>Number of tillers (tillers<sup>plant</sup>)</td>
<td>71.82<sup>a</sup></td>
<td>23.69<sup>b</sup></td>
<td></td>
</tr>
<tr>
<td>Yield (g<sup>FW</sup>)</td>
<td>162.25<sup>a</sup></td>
<td>336.94<sup>a</sup></td>
<td></td>
</tr>
<tr>
<td>Proline (μg^FW)</td>
<td>11.75<sup>a</sup></td>
<td>5.70<sup>b</sup></td>
<td></td>
</tr>
<tr>
<td>Total soluble sugars (mg<sup>FW</sup>)</td>
<td>41.55<sup>a</sup></td>
<td>64.48<sup>a</sup></td>
<td></td>
</tr>
</tbody>
</table>

Means in each row followed by the same letter are not significantly different ($P \leq 0.05$).

The amount of tiller Signal grass was significantly higher compared to Napier grass (Table 1). Number of tiller were reduced by water-stressed treatments (Fig. 2). The reductions were 1%, 8% and 12%, respectively. Number of tillers been reduced because some tillers died as a result water shortages. Reduction in the number of tillers due to water stress has been reported by several researchers such as Bermudagrass and Kleingrass (Bade, D.H.,

The dry matter yield response to water stress of Napier grass and Signal grass is given in Tables 2. Dry matter yields for both grass species were affected by water-stressed. Under water stress conditions both grass species declining productivity. Dry matter yield were reduced by water-stressed treatments (Fig. 3). The losses in yield in response to water stress treatment were 0.5%, 15% and 26%, respectively. A decrease in dry matter yield of the plants grown under drought conditions is largely due to old leaves quickly die, and some tillers die and slow growth due to lack of water. Dry matter yield was sharply decreased as duration of drought stress increased. The results of this study supports results of (Bouazzama, B. et al., 2012; Hussein, M.M. and A.K. Alva, 2014; Kalamian, S., et al., 2006; Jasso de Rodriguez, D., et al., 2002), who also showed decreasing dry matter yield because of drought stress.

![Graph 1](image1)

Fig. 1: Effect of water stress on plant height of Signal grass and Napier grass

![Graph 2](image2)

Fig. 2: Effect of water stress on number tillers of Signal grass and Napier grass
Effect of water stress on proline and total sugars contents:

Proline content is another component of osmotic regulation in plants. Plants species and duration of the stress were found to affect proline contents (Table 1-2). Response of Signal grass and Napier grass to water stress was affected by duration of the stress. Interactions between grass species with water stress showed that the proline content of the Signal grass and Napier grass species increased (Fig. 4). The increase were 415% for Signal grass and 177% for Napier grass, respectively. Response of Signal grass on water stress were more greater than to Napier grass. A decreased in the accumulation of proline on both grass species on duration of water stress treatments for three weeks. This suggests that both of grass species have started adapt to water stress. Statements from (Heuer, B., 2011) that the plants are experiencing recovery after stress will decrease the accumulation of proline. Plants have the ability to accumulate non-toxic compounds such as proline which protects cells damage due to low water potential of cells (Umezawa, T., et al., 2006; Krzesenky, J. and C. Jonak, 2012). The accumulation of proline plays an adaptive role (Verbruggen, N. and C. Hermans, 2008) and the main strategy of plants to avoid detrimental effects (Vendruscolo, A.C.G., et al., 2007) and as well as is one of the key adaptations for successful growth under acute water stress (Akram, N.A., et al., 2007). Effect of water stress treatments increased proline accumulations was previously reported in several species such as Cynodon dactylon and Cenchrus ciliaris (Akram, N.A., et al., 2007), Festuca rubra and Lolium perenne (Bandurska, H. and W. Jozwiak, 2010). Wheat (Keyvan, S., 2010; bbsai, A.R., et al., 2014; Pireivatoli, J., et al., 2010; Nazari, H. and F. Faraji, 2011), Rice (Mostajeran, A., and V. Rahimi-Eichi, 2009), upland rice (Lum, M.S., et al., 2014), and in wild plants proline content increased about 80 mg proline/g of fresh leaves before stress to 3000 mg/g after stress (Kishor, P.B.K., et al., 1995).

Total soluble sugars:

Total soluble sugars in response to water-stress was increased by up to 126% compared to well-watered conditions (Table 1). A significant variation in total soluble sugars between species was obtained where Napier grass had more total soluble sugars than Signal grass species (Table 2). Interactions between grass species with water stress showed that the total sugars contents of the Signal grass and Napier grass species increased (Fig. 5). The increase were 42%, 53% and 70% for Signal grass and 81%, 141 and 181% for Napier grass compared to control, respectively. This suggests that sugars play an important role in Osmotic Adjustment in grasses (Homayouni, H. and V. Khazarian, 2014). Accumulations of soluble carbohydrates increase the resistance to drought in plant (Kameli A and D.M. Losel, 1993). Effect of water stress treatments increased soluble sugars was previously reported in several plants such as What cultivars (Al-Tabbal, J. A and O. M. Kafawin, 2005; Nazari, H. and F. Faraji, 2011). Rice cultivars (Mostajeran, A., and V. Rahimi-Eichi, 2009; Zain, N.A.M., et al., 2014). Corn (Homayouni, H. and V. Khazarian, 2014), Potato (Farhad, M.S., et al., 2011), Canola cultivars(Nosrati, S., et al., 2014).
Fig. 4: Effect of water stress on Proline contents of Signal grass and Napier grass

Fig. 5: Effect of water stress on soluble sugars contents of Signal grass and Napier grass

Conclusion:

All water stress treatments decrease to growth and yield for both species but increase of proline and soluble sugars contents. Signal grass species had the highest number of tiller and proline content compared to Napier grass species, while Napier grass species was higher in plant height, yield and soluble sugar contents.

ACKNOWLEDGEMENT

The authors thank to the Rector Hasanuddin University Makassar for funding this research through a Post Doctoral Grant.

REFERENCES

LEMBAR

HASIL PENILAIAN SEJAWAT SEBIDANG ATAU PEER REVIEW

KARYA ILMIAH : JURNAL ILMIAH

Judul Karya ILMIAH :
Effect of water stress on growth, yield, proline and soluble sugars contents of Signal grass and Napier grass species

Penulis Jurnal ILMIAH : Budiman Nohong dan Syamsuddin Nompo

Jumlah : 3 (tiga) orang

Status Penulis Identitas :

- b. ISSN : 1995-0748, EISSN: 1998-1077
- d. Penerbit : American-Eurasian Network for Scientific Information
- f. Alamat Web Jurnal : Google Scholar
- g. Terindeks di Scimagojr/Thomson Reuter ISI Knowledge atau di :

Kategori Publikasi Jurnal ILMIAH : ✓ Jurnal ILMIAH Internasional/Internasional bереputation

(beri tanda V pada kategori yang tepat)

- □ Jurnal ILMIAH Nasional Terakreditasi
- □ Jurnal ILMIAH Nasional Terakreditasi Terindeks DOAJ, CABI, COPERNICUS

Hasil Penilaian Peer Review :

<table>
<thead>
<tr>
<th>Komponen yang dinilai</th>
<th>Nilai Maksimum Jurnal ILMIAH : 100</th>
<th>Nilai Internasional/Internasional Bереputation</th>
<th>Nilai Nasional Terakreditasi</th>
<th>Nilai Nasional</th>
<th>Nilai Akhir yang Diperoleh (NP)</th>
</tr>
</thead>
<tbody>
<tr>
<td>a. Kelengkapan unsur isi artikel (10%)</td>
<td>9,0</td>
<td>✔</td>
<td>11,6</td>
<td>11,6</td>
<td>3,6</td>
</tr>
<tr>
<td>b. Ruang lingkup dan kedalaman pembahasan (30%)</td>
<td>19,0</td>
<td>✔</td>
<td>11,6</td>
<td>11,6</td>
<td>11,6</td>
</tr>
<tr>
<td>c. Kecukupan dan kemutakhiran data/informasi dan metodologi (30%)</td>
<td>29,0</td>
<td>✔</td>
<td>11,6</td>
<td>11,6</td>
<td>3,6</td>
</tr>
<tr>
<td>d. Kelengkapan unsur dan kualitas terbitan (30%)</td>
<td>29,0</td>
<td>✔</td>
<td>11,6</td>
<td>11,6</td>
<td>3,6</td>
</tr>
<tr>
<td>Total (100%)</td>
<td>96,0</td>
<td>96,0</td>
<td>96,0</td>
<td>96,0</td>
<td>38,4</td>
</tr>
</tbody>
</table>

Nilai Pengusul = BP x NP = 80 x 0,47 = 38,4

Ket : Bobot Peran (BP) : Sendiri = 1; Ketas = 0,6; Anggota = 0,4 dibagi jumlah anggota

Catatan penilaian artikel oleh REVIEWER :

Journal layak, mansetik ISSN.

Makassar, 17/6/2016

Penilai Sejawat : Lingkari salah satu: Fakultas Peternakan

[NP. 19520923 19703 7622]

Unik Kerja : Fakultas Peternakan
LEMBAR
HASIL PENILAIAN SEJAWAT SEBIDANG ATAU PEER REVIEW
KARYA ILMIAH : JURNAL ILMIAH

Judul Karya Ilmiah : Effect of water stress on growth, yield, proline and soluble sugars contents of Signal grass and Napier grass species

Penulis Jurnal Ilmiah : Budiman Nchong dan Syamsuddin Nomo

Jumlah Status Penulis Identitas
3 (tiga) orang

Kategori Publikasi Jurnal Ilmiah

(beri tanda V pada kategori yang tepat)

- Jurnal Ilmiah Internasional/Internasional bereputasi
- Jurnal Ilmiah Nasional Terakreditasi
- Jurnal Ilmiah Nasional Terakreditasi Terindeks DOAJ, CABI, COPERNICUS

Hasil Penilaian Peer Review:

<table>
<thead>
<tr>
<th>Komponen yang dinilai</th>
<th>Nilai Maksimum Jurnal Ilmiah : 60</th>
<th>Nilai Akhir yang Diperoleh (NP)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Internasional/Internasional Bereputasi</td>
<td>Nasional Terakreditasi</td>
</tr>
<tr>
<td>a. Kelengkapan unsur isi artikel (10%)</td>
<td>4</td>
<td>41</td>
</tr>
<tr>
<td>b. Ruang lingkup dan kedalaman pembahasan (30%)</td>
<td>12</td>
<td>11</td>
</tr>
<tr>
<td>c. Kecukupan dan kemutakhiran data/informasi dan metodologi (30%)</td>
<td>12</td>
<td>11</td>
</tr>
<tr>
<td>d. Kelengkapan unsur dan kualitas terbitan (30%)</td>
<td>12</td>
<td>11</td>
</tr>
<tr>
<td>Total (100%)</td>
<td>40</td>
<td>37</td>
</tr>
</tbody>
</table>

Nilai Pengusul = BP x NP = 326 x 0,7 = 228

Nilai Akhir = 37

Ket : Bobot Peran (BP) : Sendiri = 1; Ketua = 0,6; Anggota = 0,4 dibagi jumlah anggota

Catatan penilaian artikel oleh REVIEWER :

Makassar, 18 Oktober 2016
Penilai Sejawat

Prof. Dr. Ambar Akhy S.E.
NIP. 196412311989031026
Unit Kerja : Fakultas Peternakan