Journal of the Indonesian Tropical Animal Agriculture
Jurnal Pengembangan Peternakan Tropis

Chairman: V. Priyo Bintoro
[Dean of the Faculty of Animal Agriculture, Diponegoro University]

Editor in Chief: Edy Kurnianto
Vice Editor in Chief: Agung Purnomoadi

Subject Editors: Joelal Achmadi
Anang Mohamad Legowo
Edy Rianto
Bambang Sulistyanto
Yon Supri Ondho
Syailful Anwar
Eko Pangestu
Edjeng Suprijatna
Karno
Agus Setiadji
Limbang K. Nuswantara

Technical Editors: A. Nikmatullah Al-Baarri
Surono
Retno Adriwinarti

Production and Distribution Staff: Titik Ekowati
Aries R. Setyawati
Nuryati

Editorial Address:
Journal of the Indonesian Tropical Animal Agriculture
Faculty of Animal Agriculture, Diponegoro University
Campus Dhr. Soegiono Kroseomowardojo
Tembalang - Semarang 50275 INDONESIA
Phone/Fax: 022 - 7474730
JITAA E-mail: jppet.fpundlp@gmail.com;
 jppet@undlp.ac.id
ISAA E-mail: Isaa_in@yahoo.com
JITAA Website: www.fp.undlp.ac.id/jppet
ISAA Website: www.fp.undlp.ac.id/Isaa

The front cover illustrates the sketch of leaves and seeds of legume and grass forming a buffalo's horn
(designed by Agung Purnomoadi)
\[\theta_1 = 25 \times 0.5 = 15 \]

CONTENTS

Analysis on Alu-I Growth Hormone (GHAlu-I) Gene in Bali Cattle – Jakaria and R.R. Noor

77 - 82

Non Genetic Factors Effects on Reproductive Performance and Friesian Mortality from Artificially and Naturally Bred In Bali Cattle – A. Gunawan, R. Sari, Y. Parwoto and M. J. Uddin

83 - 90

The Effect of Glycerol Concentration in Tris Glucose Egg Yolk Extender on the Quality of Timor Deer Frozen Semen – W. M. M. Nalley, R. Handarini, T. L. Yusuf, B. Purwantara and G. Semardi

91 - 96

97 - 103

The Effect of Herbs on Milk Yield and Milk Quality of Mastitis Dairy Cow – E. Nurdin, T. Amelia and M. Makin

104 - 108

The Performance of Java and Ongole Crossbred Bull under Intensive Feeding Management – C.M.S. Lestari, R. Adiwarni, M. Alfin and A. Purnomoadi

109 - 113

Effects of Storage on Physical, Chemical and Microbiological Characteristics of Fish Waste Acidified using Fermented Vegetables Waste Extract – B. Sulistiyanto and K. Nugroho

114 - 119

The Effect of Fermented Oil Frieds in Diet on Body Weight Gain and Meat Quality of Goat – E. Musandar, A. Hamidah and R. A. Muthalib

120 - 125

Total Non-Structural Carbohydrate (TNC) of Three Cultivars of Napier Grass (Pennisetum purpureum) at Vegetative and Reproductive Phase – Budiman, R. D. Soetrisno, S. P. S. Budhi and A. Indrianto

126 - 130

The Dimension of Cooperativism and Dairy Cattle Farming in Getan Village, Semarang City, Central Java Province, Indonesia – S. Gayatri, J. T. Dizon, C. M. Rehancos and N. J. Y. B. Querijero

131 - 136

The Utilization of the Complete Rumen Modifier on Dairy Cows – A. Thalib, P. Situmorang, I. W. Mathius, Y. Widiaiati and W. Puastuti

137 - 142

Author Index

143

Acknowledgment

143

JITAA is jointly published by Faculty of Animal Agriculture-Diponegoro University and Indonesian Society of Animal Agriculture on March, June, September and December. All rights reserved.

JITAA is member of DOAJ and indexed by CABI international.

The journal receives original papers in animal agriculture which should not have been previously published or is not being considered for publication elsewhere.

The annual subscription is IDR 250,000.00 for domestics and US$ 30.00 for overseas per year included mailing cost.

TOTAL NON-STRUCTURAL CARBOHYDRATE (TNC) OF THREE CULTIVARS OF NAPIER GRASS (Pennisetum purpureum) AT VEGETATIVE AND REPRODUCTIVE PHASE

Budiman1, R. D. Soetrisno2, S. P. S. Budhi2 and A. Indrianto3

1Animal Science Faculty, Hasanuddin University, Tanalanrea Campus, Makassar 90245 - Indonesia
2Animal Science Faculty, University of Gadjah Mada, Jl. Fauna 3 Bulaksumur 55281 Yogyakarta - Indonesia
3Faculty of Biology, University of Gadjah Mada, Jl. Teknika Selatan, Sekip Utara Yogyakarta 55281 - Indonesia

Corresponding E-mail: budiman_ek58@yahoo.com

Received March 29, 2011, Accepted May 22, 2011

ABSTRACT

An experiment was conducted to determine Total Non-structural carbohydrates (TNC) of three cultivars of napier grass (Pennisetum purpureum) harvested at vegetative and reproductive phases. The cultivars tested were Taiwan (Gt), King (Gk) and Mott (Gm) and arranged in a 3 x 2 of treatments with four replicates following nested design. The results showed that the highest sugar content (P<0.01) was found in Gt cultivar and the lowest was in Gm cultivar. The highest starch content (P<0.01) was found in Gk cultivar and the lowest was in Gt cultivar. TNC content of Gt and Gk cultivars were not significantly different, but both were significantly higher (P<0.01) compared with the Gm cultivar. It can be concluded, that there were differences in TNC between cultivars, however, the TNC content in Gk cultivar was not different with Gt cultivar, while Gm cultivar have the lowest (P<0.01) TNC content. At reproductive phase all cultivars have higher (P<0.01) TNC and starch content than at vegetative phase.

Keywords: cultivar, napier grass, starch, sugar, TNC

INTRODUCTION

Napier grass (Pennisetum purpureum Schum) is a perennial grass, famous throughout the wet tropics because its high production capability. Several cultivars have been developed and were introduced to Indonesia such as cultivars of Africa, Hawaii, Trinidad, Merkeri, King, Taiwan and Mott. Although among cultivars of Taiwan, King and Mott are closely related, there are differences between cultivars morphology, growth rate and response to farming practices that lead to differences in production and non-structural carbohydrate content.

Plants product largely consisted of carbohydrates (Cook and Trlica, 2010). Reserved carbohydrate or total non-structural carbohydrates (TNC) is a product of photosynthesis that is needed for respiration, maintenance and new growth (Briske and Richard, 1994; Olson and Lacey, 1996). Plant non-structural carbohydrate (NSC), comprised of starch and sugars, is a products of carbon assimilation (C) that can be stored and used to meet the future demands for growth and metabolism (Sampson et al., 2001; Legros et al., 2009). TNC content in forages has been identified as three most important characteristics that require the attention of forage breeders (Wheeler and Corbett, 1989). The reasons mentioned above caused the main focus of grass breeders to produce grass with a high content of NSC (Humphreys et al., 2006).

A relatively new analysis used to evaluate grass forage quality is measurement of TNC (Downing, 2007). Determination of NSC composition and content is required to estimate the resources available for plant growth and to evaluate the energy value of feed (Zhao et al., 2010). TNC stored in various plant tissues varies according to species (Herbert, 1996) and cultivars (Shepherd et al., 2006). High levels of NSC may be found in very mature forage (Watts, 2008). The content of storage carbohydrates in plants are always changing, the content tends to rise in the morning, reaching a maximum in the afternoon and decrease at night (Longland et al., 2010).
NSC is a source of energy available for rumen microbes (Sophie et al., 2010). High sugar content in grass allows more efficient utilization of nitrogen in the rumen, preventing excess from being excreted that will cause environment pollution (Miller et al., 2001; Lovett et al., 2004). Increased non-structural carbohydrates content are fermented to give some energy to support N conversion into microbial protein (Hutington and Burns, 2007).

The use of the principles and objectives of efficient grazing management is the management practices that to produce plants that persistent, high quality of production, and to maintain sufficient leaf area and the level of NSC to store energy (Smith and Lacefield, 2009). Implementation of these strategies has the potential to maintain the stability of grassland ecosystem and enable sustainable livestock production (Manske, 1999).

Studies on the determination of NSC, such as total sugar and starch in vegetative and reproductive growth in different cultivars of napier grass is still very limited. Therefore, the research to determine TNC of three cultivars of napier grass at vegetative and reproductive phase have to be done.

The objectives of the studies were to determine TNC of three cultivars of napier grass at vegetative and reproductive phases.

MATERIALS AND METHODS

Plant Culture

The materials used were three cultivar of napier grass planted on 192 pots (18 x 35 cm with diameter 22 cm), filled with regosol soils and were planted with three different napiergrass cultivars, in which each cultivar required 64 vegetative planting materials.

This study consisted of three factors of cultivars G) and two factors of growth (P). Cultivar factor of consisted of Taiwan cultivar (Gt), King cultivar (Gk) and Mott cultivar (Gm). Meanwhile growth factor consisted of vegetative phase (P1) and reproductive phase (P2). Growth phase (P) nested within cultivar factor (G). Each treatment consisted of four replicates, therefore 192 pots were required. The pots then were divided according to the cultivar into 3 groups, and each groups were divided into 8 plots, each plot containing of 8 pots.

Pots were placed randomly following nested design (Steel and Torrie, 1980) in the pattern of randomization. The distance between each cultivar plots was 60 cm, and between plots P1 and P2 was 30 cm.

Vegetative planting materials (cuttings) napier grass cultivars (Gt, Gk and Gm) were planted in the pots using 3 cutting per pot. Thinning were done after 7 days of growth leaving one the best plant in each pot. Urea fertilizer (46% N), phosphorus (18% P2O5) and KCl (50% K2O) were given at days-3 after thinning at the rate of 100 kg urea/ha and 50 kgTSP/ha and 50 KCl/ha or equivalent to 0.52 g N/pot, 1.33 g P2O5/pot and 0.48 g K2O/pot.

Watering and weeding were done if necessary.

Data Collection

Data of production were obtained at 8 week after planting (8WAP) for the treatment of vegetative phase and 13 weeks after planting (13WAP) for treatment reproductive phase. Plants were harvested at 10 cm above the soil surface then were weighed to determine the fresh weight. Chopped fresh samples were then oven dried at 55°C for 3 days. Dried samples then were 1 mm grounded by Wiley mill. These samples were used to determine the dry matter (AOAC, 2005), total sugars by Nelson-Somogyi method (Apriyanto et al., 1989) and starch content by acid hydrolysis. The TNC or NSC were calculated by Longland and Byrd (2006) with the formula: NSC = TNC – stach (%).

Data Analysis

The effects of cultivars and growth phase were determined by analysis of variance (ANOVA) according to Steel and Torrie (1980). The differences between treatment means were determined using Duncan’s Multiple Range Test.

RESULTS AND DISCUSSION

Total Sugar

The results showed that there were differences in sugar content between cultivars of napier grass (Table 1). The highest (P < 0.05) sugar content was found in Gt cultivar, followed by Gk cultivar (P < 0.05) and the lowest (P > 0.01) was in Gm cultivar. The lowest of sugar content Gm cultivar because it was used as source of energy for tillering (Bartholomew, 1999) and also for respiration and maintenance (Briske and Richard, 1994; Olson and Lacey, 1996).
Table 1. Average Total Sugar, Starch and TNC in Cultivars Taiwan, King and Mott at Vegetative and Reproductive Phases

<table>
<thead>
<tr>
<th>Item</th>
<th>Phase</th>
<th>Total sugar (%)</th>
<th>Starch (%)</th>
<th>TNC (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cultivars</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Taiwan</td>
<td></td>
<td>5.28<sup>c</sup></td>
<td>14.99<sup>a</sup></td>
<td>20.27<sup>c</sup></td>
</tr>
<tr>
<td>King</td>
<td></td>
<td>4.03<sup>b</sup></td>
<td>16.61<sup>bc</sup></td>
<td>20.64<sup>e</sup></td>
</tr>
<tr>
<td>Mott</td>
<td></td>
<td>2.55<sup>a</sup></td>
<td>15.38<sup>ab</sup></td>
<td>17.93<sup>a</sup></td>
</tr>
<tr>
<td>Growth phase</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Taiwan</td>
<td>Vegetative</td>
<td>2.64<sup>a</sup></td>
<td>14.65<sup>a</sup></td>
<td>17.29<sup>a</sup></td>
</tr>
<tr>
<td></td>
<td>Reproductive</td>
<td>7.2<sup>c</sup></td>
<td>15.32<sup>a</sup></td>
<td>23.24<sup>c</sup></td>
</tr>
<tr>
<td>King</td>
<td>Vegetative</td>
<td>1.72<sup>a</sup></td>
<td>15.89<sup>a</sup></td>
<td>17.61<sup>a</sup></td>
</tr>
<tr>
<td></td>
<td>Reproductive</td>
<td>6.34<sup>c</sup></td>
<td>17.34<sup>c</sup></td>
<td>23.68<sup>c</sup></td>
</tr>
<tr>
<td>Mott</td>
<td>Vegetative</td>
<td>1.75<sup>a</sup></td>
<td>14.02<sup>a</sup></td>
<td>15.77<sup>a</sup></td>
</tr>
<tr>
<td></td>
<td>Reproductive</td>
<td>3.36<sup>b</sup></td>
<td>16.73<sup>c</sup></td>
<td>20.09<sup>c</sup></td>
</tr>
</tbody>
</table>

Superscript (a, b), (b, c) by column cultivars and growth phase significantly different at (P < 0.05) and (a, c) were significantly different at (P < 0.01).

the findings of Moran (2005) and Kozloski et al. (2003), that napier grass cultivars Gm (54 tillers/plot) has puppies over cultivars Gt (26 tillers/plot) and Gk (20 tillers/plot). Tas et al. (2006) reported that there were differences in water soluble carbohydrate (WSC) content of four perennial ryegrass cultivars. Wadi et al. (2004) found that the total sugar content (TSC) of napier grass, King grass and hybrid napier grass were 11.6%, 13.4% and 16.6%, respectively.

Total sugar at reproductive phase harvested at 13 weeks after planting (13WAP) were significantly higher (P<0.01) compared to the vegetative phase harvested at the 8 weeks (8WAP) for all cultivars tested. The high levels of sugar in the reproductive phase could be caused by decreasing growth rate, so energy use was reduced, but photosynthesis and sugars production still accured resulted in the sugar accumulation. According to Watts (2008) the accumulation of sugars occurs when growth is slowly such that the products of photosynthesis exceed demand for growth.

Starch

The results showed that there were differences in starch content among cultivars of napier grass. The highest (P<0.01) starch content was found in Gk cultivar, followed by Gm cultivar (P=0.05) and the lowest (P<0.01) was in Gt cultivar (Table 1). The high content of starch in Gk cultivar caused photosynthesis exceeds respiration activity. Starch is the main product of tropical grass photosynthesis, and deposited in the chloroplast. Starch reserve in the chloroplast is mobilized and utilized by plant in the darkness and at times of limited photosynthesis (Foyer, 1984). Wadi et al. (2004) found that the starch content of napier grass, King grass and hybrid napier grass were 3.12%, 3.58% and 5.67%, respectively.

Starch content in the reproductive phase at 13WAP were significantly higher (P<0.01) than that at 8WAP but not for Gt cultivar. The increased in starch content at in the reproductive phase can be attributed to the exceeding photosynthesis compared to the demand of energy because decreased of new shoots formation so that the result of photosynthesis partly only used for respiration. Maturity is the main factor affected TSC content of forage, but environmental conditions may override stages of growth, producing very mature forage with high NSC concentration (Watts, 2008). That phenomenon showed that the starch content increases with increasing maturity of the plant. According to Chatterton et al. (2006), the starch content in vegetative tissues (up to 10% DM) generally increased with increasing maturity.

Total Non-Structural Carbohydrates (TNC)

TNC in the tropical grass composed of the
total sugar and starch. The average TNC of napier grass Gt, Gk and Gm cultivar on vegetative and reproductive phase are presented in Table 1. The results showed that there were differences (P<0.01) in TNC content between cultivars of napier grass. The highest (P<0.01) TNC was found in Gk cultivar, followed by Gt cultivar (P<0.5) and the lowest (P<0.1) was in Gt cultivar. Wadi et al. (2004) found that the TNC content of napier. King grass and hybrid napier grass were 22.0%, 15.2%, and 22.3%, respectively.

TNC in the reproductive phase harvested at 13WAP were significantly higher (P<0.01) than 8WAP for all cultivars tested. The high content of TNC in the reproductive phase was attributed to the increase of total sugar and starch in all cultivars due to increased in maturity. The results of this study is in agreement with the report of Kozloski et al. (2005) that NSC content in napier grass cultivars increased with increasing of age. Mott cuts 30, 50, 70 and 90 days yields 108 g/kg DM, 117 g/kg DM, 141 g/kg DM, 144 g/kg DM, respectively. Study conducted by Villanueva-Avalos (2008) found that levels of TNC in WW-B Dahl grass 0.26 g/plant in the vegetative phase was increased to 2.22 g/plant at reproductive phase.

CONCLUSION

It can be concluded that there were differences in TNC content between cultivars of napier grass, however, the TNC content in Gk cultivar was not different with Gt cultivars, while Mott cultivar have the lowest TNC content. The reproductive phase showed that all cultivars have higher TNC and starch content than at vegetative phase.

ACKNOWLEDGMENT

REFERENCES

LEMBAR
HASIL PENILAIAN SEJAWAT SEBIDANG ATAU PEER REVIEW
KARYA ILMIAH : JURNAL ILMIAH

Judul Karya ILMIAH : Total Non-Structural Carbohydrates (TNC) of Three Cultivars of Napier Grass (Pennisetum purpureum) at Vegetative and Reproductive Phase

Penulis Jurnal Ilmiah : Budiman, R. D. Soetriono, S.P.S. Budhi and A. Indrianto
Jumlah : 4 (EMPAT) orang
Status Penulis Identitas : Pensilis Pertama

Journal of the Indonesian Tropical Animal Agriculture
pISSN : 2087-8272, eISSN : 2460-6278
Volume 16/No.1 Juni 2011
Joosly Published by Faculty of Animal Agriculture-Diponegoro University and Indonesian of Animal Agriculture (ISAA)
DOI artikel (jika ada) :
Alamat Web Jurnal : http://journal.unsoed.ac.id/index.php/ajajfa/issue/view/1366
terindeks di Scimagojr/ Thomson Reuters ISI Knowledge atau di

Kategori Publikasi Jurnal Ilmiah :

☐ Jurnal Ilmiah Internasional/Internasional bereputasi
☐ Jurnal Ilmiah Nasional Terakreditasi
☐ Jurnal Ilmiah Nasional Terakreditasi

(beri tanda V pada kategori yang tepat)

Hasil Penilaian Peer Review :

<table>
<thead>
<tr>
<th>Komponen yang dinilai</th>
<th>Nilai Maksimum Jurnal Ilmiah :</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Ineterasional/Internasional Beroepatasi</td>
</tr>
<tr>
<td>a. Kelengkapan unsur isi artikel (10%)</td>
<td></td>
</tr>
<tr>
<td>b. Ruang lingkup dan kedalaman pembahasan (30%)</td>
<td>7</td>
</tr>
<tr>
<td>c. Kecukupan dan komumatikran data/informasi dan metodologi (30%)</td>
<td>7,1</td>
</tr>
<tr>
<td>d. Kelengkapan unsur dan kualitas terbitan (30%)</td>
<td>7,5</td>
</tr>
<tr>
<td>Total (100%)</td>
<td>24,5</td>
</tr>
</tbody>
</table>

Nilai Pensial = BP x NP = 0,4 x 24,5 = 14,7

Ket. : Bobot Peran (BP) : Sendiri = 1; Ketua = 0,6; Anggota = 0,4 dibagi jumlah anggota

Catatan penilaian artikel oleh REVIEWER :

Makassar,
Penilai Sejahterai II (Lingkari salah satu)

NIP. Ismarjoyo
Univ Karja : Fakultas Peternakan
LEMBAR HASIL PENILAIAN SEJAWAT SEBIDANG ATAU PEER REVIEW

KARYA ILMIAH : JURNAL ILMIAH

<table>
<thead>
<tr>
<th>Judul Karya ILMIAH</th>
<th>Total Non-Structural Carbohydrates (TNC) of Three Cultivars of Napier Grass (Pennisetum purpureum) at Vegetative and Reproductive Phase</th>
</tr>
</thead>
<tbody>
<tr>
<td>Penulis Jurnal ILMIAH</td>
<td>Budiman, R. D. Soetrisno, S.P. Badhi and A. Indrianto</td>
</tr>
<tr>
<td>Jumlah</td>
<td>4 (EMPAT) orang</td>
</tr>
<tr>
<td>Status Penulis Identitas</td>
<td>Penerbit</td>
</tr>
<tr>
<td>Penerbit</td>
<td>Jurnal Ilmiah Internasional/Internasional bercakatan</td>
</tr>
<tr>
<td>Kategori Publikasi Jurnal Ilmiah</td>
<td>Jurnal Ilmiah Nasional Terakreditasi</td>
</tr>
<tr>
<td>(beri tanda V pada kategori yang tepat)</td>
<td>Jurnal Ilmiah Nasional Terakreditasi</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Komponen yang dinilai</th>
<th>Nilai Maksimum Jurnal Ilmiah</th>
<th>Nilai Akhir yang Diperoleh (NP)</th>
</tr>
</thead>
<tbody>
<tr>
<td>a. Kelengkapan unsur isi artikel (10%)</td>
<td>Internasional/Internasional Bercakatan</td>
<td>2.5</td>
</tr>
<tr>
<td>b. Ruang lingkup dan kedalaman pembahasan (30%)</td>
<td>Nacional Terakreditasi</td>
<td>2.0</td>
</tr>
<tr>
<td>c. Kecukupan dan kemutakhiran data/informasi dan metodologi (30%)</td>
<td>Nacional Terakreditasi</td>
<td>7.0</td>
</tr>
<tr>
<td>d. Kelengkapan unsur dan kualitas terbitan (30%)</td>
<td>Nacional Terakreditasi</td>
<td>7.5</td>
</tr>
<tr>
<td>Total (100%)</td>
<td></td>
<td>29.0</td>
</tr>
</tbody>
</table>

Nilai Penghasilan = BP x NP = \(16 \times 2 = \frac{32}{4} = 8\)

Ket: Bobot Peran (BP) : Sendiri = 1; Ketua = 0,6; Anggota = 0,4 dibagi jumlah anggota

Catatan penilaian artikel oleh REVIEWER :

Makassar,
Penilaian Sejawat Isi (Lingkari salah satu)

JUDIMAN BACO
NIP. 1961281960071025
Unit Kerja: Fakultas Pertanian