STABILITY OF SHIPS WITH LARGE BREADTH-DRAFT RATIO IN FOLLOWING AND QUARTERING SEAS

Daeng Paroka and Metamagfirul Djadir, Hasanuddin University, Indonesia

SUMMARY

The International Maritime Organization (IMO) decided to revise its intact stability criteria from prescriptive based criteria to be the performance based one. The new criteria should be capable to investigate stability failure in seaways such as dead ship condition, pure loss of stability, parametric rolling and broaching. In case of pure loss of stability in following and quartering seas, delegation of Japan and USA proposed vulnerability criteria level one based on the hull form characteristics of ships. These proposed criteria have been tested by using several different hull forms. However similar characteristics with the Indonesian ro-ro ferries have never been used to validate the criteria. The main characteristics of Indonesian ro-ro ferries are small draught with large breadth or large ratio of breadth and draught. Therefore it is important to investigate the pure loss of stability in following and quartering seas in order to investigate effect of some variables.

This paper discusses about effects of wave direction, significant wave height and ship speed on roll motion characteristics of ships with large ratio of breadth and draught in irregular following and quartering seas. Two degree of freedom model is used to investigate the roll motion characteristics. The irregular wave is developed by using the ITTC wave spectrum and the linear and nonlinear damping coefficients of roll are estimated by using the Ikeda semi empirical method. The results show that the significant wave height has significant effect on the roll motion in following and quartering seas. Eventhought the ship may safely operate in the significant wave height of 2.25 meters with maximum roll angle of 0.545 radian or 31 degrees. In higher significant wave height, capsizing dangerous may occur due to pure loss of stability. The maximum roll angle does not significantly change due to alteration of the heading angle from wave direction. It means that the heading angle does not significant effect on roll motion in following and quartering seas.

When the initial forward speed increases, the maximum roll angle decreases. However in a certain initial forward speed, the maximum roll angle increases because occurrence of resonance. This phenomena show that dangerous condition due to pure loss of stability may be avoided by change the ship speed.

NOMENCLATURE

\(A_{ll} \) : Added mass in surge motion
\(A_{44} \) : Added inertia of roll motion
\(B_L \) : Linear damping coefficient of roll (\(s^{-1} \))
\(B_N \) : Nonlinear damping coefficient of roll (\(rad^{-1} \))
\(B(x) \) : Breadth of ship section (m)
\(D \) : Propeller diameter (m)
\(GZ \) : Righting arm in calm water (m)
\(GZ_w \) : Righting arm in wave (m)
\(J \) : Advance coefficient
\(K_d(J) \) : Trust coefficient
\(M_r \) : Roll excitation moment (N.m)
\(P \) : Propeller pitch
\(R(\omega,t) \) : Ship resistance (N)
\(S(\omega,t) \) : Wave spectrum
\(T(n,u) \) : Propeller trust (N)
\(V_A \) : Advance velocity (m s\(^{-1}\))
\(W \) : Ship weight (N)
\(X_W \) : Wave force in surge (N)
\(Z \) : Number of propeller blade
\(d(x) \) : Draught of ship section (m)
\(k \) : Wave number
\(n \) : Propeller revolution (rps)
\(\lambda \) : Wave length (m)
\(\rho \) : Density of water (kg m\(^{-3}\))
\(\phi \) : Roll angle (rad)
\(\psi \) : Wave phase angle (rad)
\(\chi \) : Heading angle from wave direction (deg)

1. INTRODUCTION

Since the International Maritime Oganization (IMO) decided to revise its intact stability criteria, some researches regarding the intact stability problem in seaways have been conducted by many researchers. The main focus of the researches is ship stability in waves such as in following seas, quartering seas, beam seas and head seas. Several informations about capsizing phenomena of ship due to ship stability in waves such as pure loss of stability in following and quartering seas, parametric rolling in following and head seas as well as roll resonance problem in bea mesas and surfriding following boaching in following and quartering seas have been obtained in last decade. In cases of pure loss of stability and parametric rolling, the dangerous condition arise due to large roll angle excited by alteration of restoring arm in waves. Based on these research results, the IMO decided to formulate the new generation of intact stability criteria in order to avoid possibility of dangerous condition due to those three phenomena. In other hand, the present intact stability criteria especially restoring arm characteristics namely area under the
The two proposals are calculated hydrostatically. They propose the maximum restoring arm be less than 0.75. The two proposals are similar because the nominal prismatic coefficient depends on waterline coefficient and regarding the minimum and maximum draught describe by the block coefficient of the ship. Regarding the vulnerability criteria level two for pure loss of stability in following waves, Bulian [6] proposed a probability approach under assumption that the roll damping coefficient is negligible small and applied the method to estimate probability of pure loss of stability of a container ship in irregular waves.

For ships with small draught or large ratio between breadth and draught, the possibility of negative metacentric height, significantly fluctuation of waterplane area and average of the vertical wall-sideness coefficient less than 0.75 when operating if following and quartering seas is very small. However, small alternation of restoring arm in waves may excite large roll angle due to initial heeling and very small damping coefficient of roll. Therefore a direct assessment for pure loss of stability in following and quartering seas for such ships is necessary in order to identify possibility of dangerous condition and effect of some variables on roll motion. An example of ships with small draught and large ratio between breadth and draught is ro-ro ferry used as inter islands transportation in Indonesia. These ships have also quite small freeboard in order to easily operate the ship regarding the port condition. As a result, most of Indonesian ro-ro ferry could not comply with the IMO general criteria especially heel angle with maximum restoring arm less than 25 degrees [7] and [8]. However those ships still safely operate even several capsizing occur within the last decade. Generally the Indonesian ro-ro ferry may safely operate in Indonesian seaways in dead ship condition (beam seas) with capsizing probability less than the minimum accepted capsizing probability for public facility [8]. In order to ensure the safety of Indonesian ro-ro ferry in seaways, advance research regarding dangerous condition in seaways especially in following and quartering seas as well as head seas should be conducted. This is also aim to follow the new generation of intact stability criteria as proposed by the ISCG in Figure 1.

Belenky et. al [5] proposed that the vulnerability criteria level one for pure loss of stability in following wave is described by the average of the vertical wall-sideness coefficient for the fore and aft section of the ship. The dangerous condition may occur when the average vertical wall-sideness coefficient of the after body and the fore body of the ship is less than 0.75. The two proposals are actually similar because the nominal prismatic coefficient depends on waterline coefficient and regarding the minimum and maximum draught describe by the block coefficient of the ship. Regarding the vulnerability criteria level two for pure loss of stability in following waves, Bulian [6] proposed a probability approach under assumption that the roll damping coefficient is negligible small and applied the method to estimate probability of pure loss of stability of a container ship in irregular waves.

This paper discusses stability of Indonesian ro-ro ferry with large rasio of breadth and draught in following and quartering seas. This is important regarding developing of the new generation of intact stability criteria and validates the proposal vulnerability criteria level one for pure loss of stability submitted by the delegations of some countries in the ISCG. Effect of some variables on pure loss of stability in following and quartering seas such as wave height and direction relative to the ship and ship velocity are also investigate in this paper. The ship is assumed to have an initial heeling angle due to cargo
shift in car deck. Several capsizing accident of Indonesian ro-ro ferry occurs due to cargo shift in the car deck because improperly lashing of the car.

2. ROLL MOTION OF SHIP IN FOLLOWING WAVES

When a ship operates in following seas, wave excitation moment of roll is negligible small. However the ship may be in dangerous condition due to large roll angle especially if the the ship has small average of vertical wall-sideness coefficient or the ship has very small damping coefficient. The roll motion in following and quartering waves excited by the restoring variation depending on ship position relative to the wave. The minimum restoring arm occurs in hogging condition in which the wave crest in the midship and the maximum restoring arm occurs when the wave crest in both the afterpeak and forepeak of the ship. If variation of restoring arm increases, the excited energy will increase. As a result, the roll angle due to restoring variation will also increase. If the ship body extremely change in vertical direction then the restoring variation may be significant even the wave height is small. This is because the waterline area of the ship in hogging dan sugging condition will significantly change. Therefore some researchers proposed the waterplan area and the average vertical wall-sideness coefficient as the vulnerability criteria level one for the pure loss of stability in following and quartering waves [4] and [5].

Roll motion equation for ships operating in following and quartering seas may be modelled as two degree of freedom model coupled with the surge motion equation following [9]. These equation are developed using the ordinat system shown in Figure 2.

![Figure 2. Ordinat system for modelling ship in following and quartering seas.](image)

Here the surge motion equation is necessary in order to obtain the ship position in a certain time so that the ship position relative to the wave can be obtained for calculating the restoring arm. The two degree of freedom model can be written as follows.

\[
(W + A_{11})\ddot{u} - R(u) + T(n, u) = X_w(\xi_G/\lambda, \chi)
\]

\[
(I_{xx} + A_{44})\dot{\phi} + B_{1}\dot{\phi} + B_{N}\phi + W(GZ_x(\phi) + GZ_w(\phi, t)) = M_w(\chi, t)
\]

The ship resistance as a function of surge velocity in the equation (1) are estimated by using the Holtrop Method for several surge velocities in calm water in order to obtain polynomial function of the ship resistance as function of forward velocity.

The propeller thrust as a function of propeller revolution and surge velocity is estimated using the following equation:

\[
T(n, u) = (1 - t_p)\rho n^2 D^4 K_T(j)
\]

where the thrust coefficient of propeller is estimated using the polynomial equation as shown in equation (4).

\[
K_T(j) = \sum_{n=1}^{39} C_n(j) x_n^a (t_p/D_1)^b (A_E/A_D)^u_n (Z)^{r_n}
\]

Value of each coefficient in the equation (4) is estimated based on statistical data of B Series propeller as a function of advance velocity [10]. Therefore, the coefficient thrust of propeller can be estimated for variation of ship velocity so that it can be modelled as polynomial equation in order to obtain propeller thrust in a certain ship velocity using the equation (3).

Surge wave force in the equation (1) may be estimated using the method developed by Umeda and Renilson [11] as follows:

\[
X_w(\xi_G/\lambda, \chi) = \rho g g c_w k \cos \chi \int_{AE}^{FE} C_1(x) S(x) e^{-k d(x)}
\]

\[\times \sin k(\xi_G + x \cos \chi) dx \]

Coefficient \(C_1\) in this equation for each ship section may be estimated using the following equation [12]:

\[
C_1(x) = \frac{\sin(k \sin \chi \cdot B(x)/2)}{k \sin \chi \cdot B(x)/2}
\]

If the surge velocity has been estimated using the equation (1), the ship position relative to the wave can be estimated. Based on this ship position, the restoring arm in calm water and wave may be estimated, respectively. Finally the roll angle can be obtained by solving the equation (2).

3. SHIP DATA AND CALCULATION METHOD

The ship data use in this paper is a ro-ro ferry 600 GT operating as intern island transportation in Indonesia.
This ship is designed and built by national shipyard. The main dimension and ratio of main dimension as well as her body plan respectively are shown in Table 1 and Figure 3 as follow.

Table 1. Principle dimension of a ro-ro ferry 600 GT

<table>
<thead>
<tr>
<th>Items</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Length between perpendicular (Lbp)</td>
<td>m 40.00</td>
</tr>
<tr>
<td>Breadth (B)</td>
<td>m 12.00</td>
</tr>
<tr>
<td>Draught (T)</td>
<td>m 2.15</td>
</tr>
<tr>
<td>Height (H)</td>
<td>m 3.20</td>
</tr>
<tr>
<td>Linear damping coefficient (B_L)</td>
<td>s^1 0.008</td>
</tr>
<tr>
<td>Nonlinear damping coefficient (B_N)</td>
<td>rad^-1 0.0005</td>
</tr>
<tr>
<td>B/T</td>
<td>- 5.58</td>
</tr>
<tr>
<td>H/T</td>
<td>- 1.49</td>
</tr>
<tr>
<td>L/B</td>
<td>- 3.33</td>
</tr>
<tr>
<td>L/H</td>
<td>- 12.5</td>
</tr>
</tbody>
</table>

Figure 3. Body plan of subject ship

Characteristics hydrodynamics such as added inertia is estimated by using the strip theory. The roll damping coefficient both linear and nonlinear is estimated by using Ikeda semi empirical method. The surge wave force and the restoring arm in waves are estimated using irregular waves with wave length the same as the ship length. In order to model irregular waves, the ITTC wave spectrum is used and the effective wave profile is modelled by using the Grim effective wave [13]. The wave elevation based on the Grim effective wave can be written as the following equation:

\[\xi_{eff}(x,t) = a(t) + \xi_{eff}(t) \cos \frac{2\pi x}{L} + Q \]

\[\xi_{eff} = \sqrt{2S(\omega,\lambda) d\omega d\chi} F_A \cos(\omega t - kx \cos \chi + \psi) \]

\[F_A = \frac{\sin Q}{Q} \]

\[F_c = \frac{2Q \sin Q}{(\pi^2 - Q^2)} \]

\[Q = \frac{\omega^2 \lambda}{2g \cos \chi} \]

In order to obtain effect of some variable on pure loss of stability in following and quartering waves such the wave height, the wave direction and ship velocity, numerical simulation in time domain is conducted with several different values of those variables. The ship velocity is determined by variated the propeller revolution with assumption that the power and the propeller characteristic are constant. This means that alteration of ship velocity only due to variation of the propeller revolution.

The range of ship velocity used for estimating the resistance is 6 – 15 knots. Based on the estimation results, polynomial equation of ship resistance as a function of ship velocity may be developed. Realationship between the ship velocity and ship resistance is shown in Figure 4 and its polynomial equation shown in the equation (8).

\[R(u) = 0.3904u^3 + 0.6525u \]

(8)

Using the equation (4) for the same variation of ship velocity as the estimation of ship resistance, the thrust coefficient as function of advance velocity can be estimated. Here, the number of propeller blade, propeller diameter and aspect ratio of propeller are assumed to be constant. Variation of ship velocity occurs due to alteration of the propeller revolution. The obtained thrust coefficient for each advance velocity is shown in Figure 5. The polynomial equation of the thrust coefficient as function of advance velocity is shown in the equation (9).
In order to obtain roll motion response, the equation (1) and (2) are solved in time domain using the second order Runge-Kutta method. The restoring arm in wave is calculated by considering the static trim with pressure due to both calm water and Froud-Krylov force. The subject ship is assumed to have an initial heel angle due to cargo shift on car deck. This condition is possible to occur in Indoensian ro-ro ferry especially when the ship operates in rough weather.

In order to investigate effect of wave, the calculation in condunded for wave height form 1.50 meters up to 2.25 meters. The heading angle from wave direction is simulated from 0 degrees up to 45 degrees with increasing of 15 degrees. The wave exciting moment for the heading angle greater than 0 degrees is neglected so that the roll motion only excited by the restoring arm variation in wave.

Effect of ship velocity on roll motion in following and quartering seas is investigated by changing the propeller revolution in order to obtain different ship velocity. Here three different propeller revolution are used which are propeller revolution for service speed, less than the propeller revolution for service speed. In order to obtain roll motion response, the equation (3) and (4) are solved in time domain using the second order Runge-Kutta method.

Effect of propeller revolution on roll motion is shown in Figure 5. The roll motion become unstable or the pure loss of stability occurs after several second simulation. The time history of the capsizing is shown in Figure 6. Here the heading angle from wave direction is 0 degrees.

4. RESULTS AND DISCUSSION

4.1 EFFECT OF SIGNIFICANT WAVE HEIGHT

The roll motion for each significant wave height with heading angle 0 degrees and the ship velocity the same as the service speed is shown in Figure 6. Here the simulation is conducted for time duration of 1500 seconds.

Figure 5. Thrust coefficient of propeller as function of advance velocity

\[K_f(J) = -0.1353J^2 - 0.2475J + 0.2979 \tag{9} \]

where

\[J = \frac{V_A}{nD} \]

Within the duration of simulation, occurrence of capsizing is not identified in all significant wave heights and the roll motion is still stable. However the large roll angle mainly when the significant wave height is 2.25 meters, deck edge of the ship may immersed in seawater. This condition could be followed by another dangerous condition such as decreasing the ship stability due to trapped water on deck. As mentioned before that the Indonesian ro-ro ferries mostly have small freeboard, large roll angle should be considered as a dangerous condition even the roll motion still stable.

Figure 6. Roll motion for three different significant wave heights. The heading angle is 0 degrees.

Figure 7. The restoring arm in calm water and wave. The significant wave height is 2.0 meters.
forward speed is 5.13 m/s. The roll angle increases with the exposure time and finally capsizes.

![Figure 8. Roll motion of the subject ship for significant wave height of 3.00 meters. The heading angle is 0 degrees and initial forward speed is 5.13 m/s.](image)

Regarding the vulnerability criteria level one for pure loss of stability in following and quartering wave proposed by delegations of some countries such as United States and Japan should be validated with different ships typology with the used topology when the criteria is developed. One variable should be considered in the new criteria is amplitude of restoring arm variation in wave as the factor induces roll motion in following and quartering seas. The dangerous condition may be identified when the difference of restoring arm in hogging and sugging condition exceeds a certain value which should be investigated in advance using several ship topology. This parameter may be combined with the roll damping coefficient as the one factor to avoid dangerous condition in following and quartering seas.

4.2 EFFECT OF HEADING ANGLE

Roll motion in following and quartering seas with heading angle from wave direction 0 degrees to 45 degrees with increasing of 15 degrees is shown in Figure 8. Here, the significant wave height is 2.25 meters and the time duration of simulation is 1500 seconds. The ship speed the same as the service speed of the subject ship. The sway motion and the wave exciting moment of roll are neglected. This means that the roll motion occurs purely due to the restoring arm variation in wave.

![Figure 9. Roll motion for several heading angle from wave direction. The significant wave height is 2.25 meter.](image)

The Figure 9 shows that maximum amplitude of roll motion is not significantly change due to variation of heading angle. This results show that alteration of heading angle from wave direction does not affect the restoring arm variation. Effect of the heading angle from wave direction may be identified when the effective wave length is larger than the ship length. It means that the effective length of wave for the heading angle will be the same as the ship length. The heading angle from wave direction affects only encounter frequency. Therefore the maximum amplitude of roll motion does not change but the maximum amplitude of roll occurs in different time for different heading angle from wave direction. In the initial time of simulation, the roll angle for all heading angle is relatively the same but different pattern of roll motion arises in the next duration time of simulation. Based on the above explanations, it can be concluded that the heading angle from wave direction has no effect on the amplitude of roll motion. In the real situation, the roll angle with larger heading angle is larger than that with smaller heading angle. This is because effect of wave exciting moment which will increase by increasing the deadening angle up to the heading angle of 90 degrees (beam seas condition). The resonance roll motion may be the other dangerous condition for the ship in this heading angle. In case of long wave, the surf-riding phenomena may occur followed by broaching. In order to investigate such dangerous condition, Uneda, et. al. [14] recommends a six degree of freedom mathematic model. Changing the ship direction relative to the wave is not recommended solution to avoid the pure loss of stability in following and quartering seas.

4.3 EFFECT OF SHIP SPEED

When a ship operates in following and quartering seas, the ship speed will affect the encounter frequency and the time spent by the ship in a position relative to the wave. The spent time in a relative position to the wave will directly influence the period of restoring arm variation as the particular variables induce the roll motion. Results of roll motion simulation for several initial forward speeds of the subject ship in significant wave height of 2.25 meters with the heading angle from wave direction of 0 degrees are shown in Figure 10.

![Figure 10. Roll motion of the subject ship for three initial forward speeds. The significant wave height is 2.25 meters and the heading angle is 0 degrees.](image)

The amplitude of roll angle tends to decrease when the initial forward speed increases. However in an initial forward speed the amplitude increases as the initial forward speed increases. This peak amplitude occurs in several initial forward speeds but the value of amplitude decreases for higher initial forward speed. The alteration
of roll motion amplitude due to variation of the initial forward speed is shown in Figure 11.

![Figure 10. The amplitude of roll motion for several initial forward speeds. The significant wave height is 2.25 meters and the heading angle is 0 degrees.](image)

In a low initial forward speed, the wave encounter frequency is high. As a result, the period of restoring arm variation in wave also increases. Therefore the amplitude of roll motion tends to increase. By increasing the initial forward speed, the wave encounter frequency decreases and the period of restoring arm variation decreases. The ship will run with the wave for a longer duration of time. In the duration of time, the restoring arm tends to be constant. The amplitude of roll angle decreases because of constant restoring arm when the initial forward speed increases. For a certain initial forward speed, the amplitude of roll angle increases due to increase of the initial forward speed. This is because of wave encounter frequency in such initial forward speed is the same as the natural frequency of roll. This means that the larger amplitude of roll angle due to resonance of roll motion. The resonance occurs when the wave encounter frequency is the same as multiple of the natural roll frequency. Eventhough, the resonance amplitude decreases when the resonance frequency decreases or the initial forward speed increases. This phenomena is also caused by period of restoring arm variation tends to be small in lower of resonance frequency. This fact shows that large roll angle or pure loss of stability in following and quartering seas can be avoided by change the ship speed. However, the other dangerous condition should be considered such as broaching phenomena in long wave cases.

5. KESIMPULAN

Based on the above calculation results and discussion, some conclusions can be remark as follows:

1. Capsizing dangerous due to pure loss of stability in following and quartering seas is not identified when the significant wave height smaller than 2.25 meters. However capsizing may occur if the significant wave height is larger than 2.25 meters. It means that the significant wave height significantly affects roll motion in following and quartering seas.
2. The maximum roll angle of the ship does not significantly change due to alteration of the heading angle from wave direction. It means that the heading angle form wave direction has no significant effect on roll motion in following and quartering seas. This fact shows that dangerous condition in following and quartering seas cannot be avoided by changing the heading angle from wave direction.
3. The initial forward speed has significant effect on roll motion in following and quartering seas because the period of restoring arm variation as the main factor affect the roll motion depends on the ship speed relative to the wave. The other reason is the ship may experience resonance roll motion when the ship speed induce encounter frequency the same as the natural frequency of roll. These facts shown that the large roll angle or dangerous of pure loss of stability in following and quartering seas can be avoid by changing the ship speed. Therefore vulnerability criteria of direct assessment and guidance operation are necessary in the new generation of intact stability criteria.

6. ACKNOWLEDGEMENTS

A part of this paper is results of research conducted by the authors during short visiting research in Osaka University of Japan supported by research grant from Project Implementetion Unit (PIU) of new campus of Faculty of Engineering Hasanuddin University. The authors sincerely thanks to the institution for it’s supporting.

7. REFERENCES

8. AUTHORS BIOGRAPHY

Daeng Paroka holds the current position of Head of Department of Naval Architect at Faculty of Engineering Hasanuddin University, Makassar. He is responsible for arrange the academic process and make planning for developing the department in the future. He holds PhD degree from Osaka University of Japan in 2007 in field of ship stability in waves. He has written some papers published in various international and national journals. He has also some experiences to attend in several international and international conferences such as Marine Technology Conference and national coference such Seminar Nasional Teori dan Aplikasi Teknologi Kelautan (SENTA). Several researchs in field of ship stability in waves have been also conducted especially in relation with the stability problem of Indinesian ro-ro passenger ferries.

Metamagfirul Djadir holds his undergraduate degree in field of Naval Architect on September 2012 in field of ship stability in following irregular waves. Apart of this paper is a result of his thesis.