Correlation Between GATA-3, Ki67 and p53 Expressions to Histopathology Grading of Breast Cancer in Makassar, Indonesia

Syarif Ibrahim¹, Rosdiana Natzir², Andi Asadul Islam³, Tjakra Manuaba⁴, A. Benyamin Fachruddin⁵, Burhanuddin Bahar⁶, William Hamdani⁷, Husni Cangara⁸, Mochammad Hatta⁹,*.¹

1Department of Surgery, Wahidin Sudirohusodo General Hospital, Makassar, Indonesia
2Department of Biochemistry, Faculty of Medicine, Hasanuddin University, Makassar, Indonesia
3Department of Surgery, Neuro Surgery Division, Wahidin Sudirohusodo General Hospital/Faculty of Medicine, Hasanuddin University, Makassar, Indonesia
4Department of Surgery, Sanglah General Hospital/Faculty of Medicine, Udayana University, Denpasar, Indonesia
5Department of Internal Division, Wahidin Sudirohusodo General Hospital/Faculty of medicine, Hasanuddin University, Makassar, Indonesia
6Department of Epidemiology Faculty of Public Health, Hasanuddin University, Makassar, Indonesia
7Department of Surgery, Wahidin Sudirohusodo General Hospital, Faculty of Medicine, Hasanuddin University, Makassar, Indonesia
8Department of Pathology Anatomy, Faculty of Medicine, Hasanuddin University, Makassar, Indonesia
9Molecular Biology and Immunology Laboratory, Faculty of Medicine, Hasanuddin University, Makassar, Indonesia

Email address:
syarifibrahim57@gmail.com (S. Ibrahim), Rosdianaatriz@yahoo.com (R. Natzir), Andiasadul@yahoo.com (A. A. Islam),
Breastca04@yahoo.com (T. Manuaba), Andifach@yahoo.co.id (A. B. Fachruddin), Ninaisywaral4@yahoo.co.id (B. Bahar),
Williamhamdanin@yahoo.com (W. Hamdani), husnicangara@yahoo.com (H. Cangara), Hattaram@indosat.net.id (M. Hatta)
¹Corresponding author

To cite this article:

Received: February 2, 2016; Accepted: February 24, 2016; Published: April 1, 2016

Abstract: Background: During the last two decades, research about GATA-3, Ki-67, p53 expressions have been done, but it is still a debate on their use in predicting breast cancer patients’ prognosis and survival rate. Expressions of GATA-3 decreased with increasing of histopathology grading of breast cancer and increase with decrease of histopathology grading of breast cancer. The level expression of Ki-67 has a positive relation with breast cancer histopathology grading. p53 has no correlation with high grade differentiation of breast cancer. p53 is a transcription factor which is activated as a part of cellular stress response that can regulate genes’ cellular process, including apoptosis and senescence. Aim: To determine correlation between expressions of GATA 3, Ki-67 and p53 with histopathology grading of breast cancer in Makassar, Indonesia. Methods: Antibody monoclonal GATA 3, Ki-67 and p53 on the nucleus cell were detected with immunohistochemistry method. The positive and negative expressions of GATA 3, Ki-67 and p53 were assessed using scoring system according to the proportion of positive cell and coloring intensities. Results: There is no correlation between the higher positive expression of p53 and higher expression of histopathology grading of breast cancer (P = 0.089). While Ki-67 had positive association with higher grade malignancy (P = 0.03). However, there was no association between GATA-3 expression and histopathology grading. Conclusion: In our research we found there is no correlation between higher expression of p53 and low expression of GATA-3 with higher histopathology grading of breast cancer. High expression of Ki-67 have significantly statistic analysis with high expression of histopathology grading of mammary cancer.

Keywords: GATA-3, p53 and Ki-67, Histopathology Grading, Breast Cancer
1. Introduction

Breast cancer is a malignancy that occurs in the breast gland. Breast cancer ranks first of the ten types of cancer in women. It was reported incidence of breast cancer in all over the world increase twice, this is the highest level during the late 30 years. WHO predicted the incidence rate of all cancer will be 11 millions and every year the amount of breast cancer increase to 7 millions.

In the United States in 2005 reported the incidence of breast cancer by two hundred eleven thousand two hundred forty (211,240) new cases (ACS, 2006). In 2007 the incidence of breast cancer was reported increase to two hundred forty three thousand (243,000) with sixty two thousands (62,000) among them with Carcinoma In Situ (CIS). Breast cancer incidence has increased every year. Data from the American Cancer Society in 2010, stated that there are two hundred seven thousands ninety (207,090) new cases of breast cancer in women in the USA with the estimated number of deaths about thirty nine thousands eight hundred forty (39,840) cases [1]. This figure makes breast cancer as the second most common cause of death in women after lung cancer.

In Indonesia the incidence of breast cancer reported twenty thousands (20,000) new cases/year, around hundred (100) cases among one hundred thousands (100,000) women. 50% were hospitalized in late stages [2].

In Wahidin Sudirohusodo Hospital in Makassar, Indonesia the incidence of breast cancer in 2007 were 163 new cases and became 189 new cases in 2008. There is increasing cases of late stage of mammary cancer and metastatic stage from 69.9% in the year 2007 became 74.1% in the year of 2008 (Wahidin Sudirohusodo Hospital Information System).

Ki-67 expression as detected by immunohistochemistry is one of the most variable indicators of the proliferative status of cancer cells and is referred to as Ki-67. In 2009 at the St-Gallen breast cancer conference, Ki-67 was recommended as a biomarker for prognosis and sensitivity of cancers to endocrine therapy or chemotherapy [3].

Expression of transcription factor GATA-3 has been shown to be important for normal breast glandular cell development as well for maintaining the differentiated state of cells [4]. Expression of GATA-3 was significantly increased in breast cancer. Decreasing of GATA-3 expressions correlate with increasing tumor histological grade and high patient survival [5].

Expression of p53 in higher differentiated with high proliferation fraction may indicate greater tumor aggressiveness and high risk of relapse [6]. p53 is a critical tumor suppressor that maintains the genetic stability in mammals by having multiple roles in cells cycle arrest, apoptosis, senescence and differentiation. Loss of p53 functions is required for the progression of most cancers. The expression of mutant p53 is correlated with the poor prognosis. The aim of our study was to investigate the expression of p53, Ki-67 and GATA-3 in relation to histopathology grading among 50 nested sampling in pathological anatomy laboratory medical faculty in Makassar.

2. Methods

A total of 50 cases of breast cancer were studied in laboratory of anatomic pathology Wahidin Sudirohusodo general hospital Faculty of Medicine, Hasanuddin University Makassar, Indonesia. The research was performed from October 2015 to November 2015 in women from 27 to 73 years old. Fresh tissue from biopsy or tumorectomy was received in department of pathological anatomy and put in buffered formalin solution.

2.1. Histopathology Grading Characteristic

The histopathology grade was determined in sections stained with haematoxylin eosin according to the criteria established and histological type according to the WHO classification (1981).

2.2. Immunohistochemical Study Determination of Expressions of Ki-67 and p53

Immunohistochemical analyses were determined by the expression levels of Ki-67 and p53. Tissues were fixed in 10% formaldehyde for 24 hours, routinely embedded in paraffin and cut into 5-μm sections. Sections were adherent to APES coated slides and dried at 60°C for 2 hours [7, 8]. Immunohistochemistry was performed according to the manufacturer’s instructions, using Streptavidin-Peroxidase (SP-9000) kit, anti Ki-67 (ZM0166), p53 (ZM0408), C-erb2 (ZM0065), all from Zymed laboratories (San Francisco, CA, USA) with antigen retrieval performed according to the manufacturer’s instruction. The slides were scored by counting the number of positive cells regardless of the staining intensity versus the total number of cells and calculating the percentage of positive cells (positive cells/total cells in one field), as previously described, the positivity of several fields were averaged and expressed as the ratio of positive cells per field to total cells per field: <10%, negative, 10% - 20%: weakly positive, 26% - 50%: positive, >50%: strong positive. A cut-off point of 25% was used to distinguish between the categories of low and high proliferative tumors, a value similar to 20% or >20% [9-11].

2.3. Immunohistochemistry Staining Procedures of GATA-3

Tissue in paraffin blocks of size 5-μm was cut and glued on the slide poly-L-lysine and then carried. Immunohistochemical staining was using standard methods Avidin-Biotin peroxidase Complex (ABC). Slide that has not been colored was incubated in 0,1% trypsin solution in citrate buffer pH 6 for 10 minutes in the microwave with temperature 37°C. After that examination followed by standard procedure ABC. GATA-3 using GATA-3 monoclonal antibody, at a dilution of 1: 200 [12]. Results were evaluated by immunohistochemical staining using light microscope by 2 pathologists and researchers. The expression of GATA-3 is the accumulation of GATA-3 in the cell nucleus detected by immunohistochemical
methods. Expression of GATA-3 positive when there is a brown color in the cell nucleus that is seen with a light microscope. This expression is calculated using a scoring system based on the proportion of positive cells and the intensity of the color. Immunoperoxidase GATA-3 is expressed in a semiquantitative estimation of the scoring system percentage: 0: No stained cell nucleus, 1: 1-10% stained, 2: 11-20%, 3: 21-30%, 4: 31-40%, 5: 41-50%, 6: 51-60%, 7: 61-70%, 8: 71-80%, 9: 81-90%, 10: 91-100%. Intensity: 1+: weak intensity, 2+: moderate intensity, 3+: strong intensity. Last score obtained by multiplying the intensity of the presentation and the expression of GATA-3 in the cell nucleus to obtain a range of scores 0-30. Then was grouped again to Score 0-3 declared negative, Score 4-30 tested positive [13].

2.4. Statistical Analysis

All the data collection were recorded and then analyzed by using software SPSS 17.0 to compare score expressions of GATA-3, p53 and Ki-67 to scores of breast cancer histopathology grading. Statistical analysis was using chi-square test. P-value less than 0.05 was considered statistically significant.

3. Results

3.1. GATA-3, p53, Ki-67 Protein Expression Patterns in Breast Tissue

Figure 1. Positive expression of immunohistochemistry of GATA-3 (200 x).

Figure 2. Positive expression of immunohistochemistry of Ki-67 (200 x).

In table 1 the sample was mostly from more than 40 year patients with a percentage of 76% or 38 out of 50 samples. Low differentiated histopathology grading were 20% (10 cases) while high differentiated were 80% (40 cases). The amount of p53 protein positive expressions were 54% (27 cases) where the negative p53 expression levels were 46% (23 cases).

Ki-67 positive expressions were 66% (33 cases) and negative expressions were 34% (17 cases). GATA-3 positive expressions were 70% (35 cases), where negative expressions were 30% (15 cases).

Table 1. Characteristic Sampling of the Research

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>Total (N)</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age</td>
<td></td>
<td></td>
</tr>
<tr>
<td><40”</td>
<td>12</td>
<td>24%</td>
</tr>
<tr>
<td>>40”</td>
<td>38</td>
<td>76%</td>
</tr>
<tr>
<td>Histopathology</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Low Differentiated</td>
<td>10</td>
<td>20%</td>
</tr>
<tr>
<td>High Differentiated</td>
<td>40</td>
<td>60%</td>
</tr>
<tr>
<td>Grading</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Protein p53</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Negative</td>
<td>23</td>
<td>46%</td>
</tr>
<tr>
<td>Positive</td>
<td>27</td>
<td>54%</td>
</tr>
<tr>
<td>Protein Ki-67</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Negative</td>
<td>17</td>
<td>34%</td>
</tr>
<tr>
<td>Positive</td>
<td>33</td>
<td>66%</td>
</tr>
<tr>
<td>GATA3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Negative</td>
<td>15</td>
<td>30%</td>
</tr>
<tr>
<td>Positive</td>
<td>35</td>
<td>70%</td>
</tr>
</tbody>
</table>

Table 2. Correlation Between The Expression Of Ki-67 and Histopathology Grading of Breast Cancer.

<table>
<thead>
<tr>
<th>Histopathology Grading</th>
<th>Low</th>
<th>High</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Positive</td>
<td>3</td>
<td>27</td>
<td>30</td>
</tr>
<tr>
<td>6,0%</td>
<td>54,0%</td>
<td>60,0%</td>
<td></td>
</tr>
<tr>
<td>Negative</td>
<td>7</td>
<td>13</td>
<td>20</td>
</tr>
<tr>
<td>14,0%</td>
<td>26,0%</td>
<td>40,0%</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>16</td>
<td>40</td>
<td>56</td>
</tr>
<tr>
<td>20,0%</td>
<td>80,0%</td>
<td>100,0%</td>
<td></td>
</tr>
</tbody>
</table>
Correlation between positive expressions Ki-67 with high
differentiated histopathology grading were 54% or 27 cases
out of 50 cases. While in low differentiated positive
expressions of Ki-67 were found in 3 cases with a percentage
of 6%. The negative Ki-67 expressions were found in 13
cases (26%) with high differentiated histopathology grading.
While negative
Ki-67 expressions were found in 7 cases (14%) with low
differentiated histopathology grading.

Table 3. Correlation Between p53 Expression and Histopathology Grading of Breast Cancer.

<table>
<thead>
<tr>
<th>Histopathology Grading</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Low</td>
</tr>
<tr>
<td>Positive</td>
<td>3</td>
</tr>
<tr>
<td>6.0%</td>
<td>48.0%</td>
</tr>
<tr>
<td>Negative</td>
<td>7</td>
</tr>
<tr>
<td>14.0%</td>
<td>32.0%</td>
</tr>
<tr>
<td>Total</td>
<td>10</td>
</tr>
<tr>
<td>20.0%</td>
<td>80.0%</td>
</tr>
</tbody>
</table>

Correlation of positive p53 with high differentiated
histopathology grading were 48% (24 cases) while p53
negative with high differentiated histopathology grading
were 32% (16 cases). A positive p53 expressions were found
in 3 cases with low differentiated histopathology grading
(6%). The percentage of negative p53 expressions with low
differentiated histopathology grading is 14% (7 cases).

Table 4. Correlation Between GATA-3 Expression With Histopathology Grading Of Breast Cancer.

<table>
<thead>
<tr>
<th>Histopathology Grading</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Low</td>
</tr>
<tr>
<td>Positive</td>
<td>7</td>
</tr>
<tr>
<td>14.0%</td>
<td>56.0%</td>
</tr>
<tr>
<td>Negative</td>
<td>3</td>
</tr>
<tr>
<td>6.0%</td>
<td>24.0%</td>
</tr>
<tr>
<td>Total</td>
<td>10</td>
</tr>
<tr>
<td>20.0%</td>
<td>80.0%</td>
</tr>
</tbody>
</table>

Positive GATA-3 expressions were seen in high
differentiated histopathology grading with a percentage of
56%, 28 among the 50 cases, while GATA-3 negative
expressions found in high differentiated histopathology
grading with a percentage of 24% or 12 cases. GATA-3 is
only visible negative 6% (3 cases) in low differentiated
histopathology grading. In low differentiated histopathology
grading, we found 7 cases with positive GATA3 expressions
(14%).

3.2. Statistical Analysis

In the statistical test using chi-square test, turned out that P
value was less than 0.05 (P = 0.03). This showed that the
higher the expression of Ki-67 the higher differentiated result
in histopathology grading.

In the statistical test using chi-square test we found that P
was greater than 0.05 (P = 0.089). This shows that the higher
expression of p53 was not correlated significantly with the
higher histopathology grading in this research.

In the statistical test using chi-square test we found that P
was greater than 0.05 (P = 0.03). This showed that the low
negative expression of GATA-3 was not
significantly correlated with higher differentiated
histopathology grading in this research.

4. Discussion

The mutation of p53 gene is a common phenomenon in
numerous human tumors, leading to the accumulation of
nonfunctioning p53 protein in the cell nucleus, which can be
detected by Immunohistochemistry.

In breast cancer, it has been suggested that the over
expression of p53 protein in the nucleus is an indicator of
poor prognosis, which must be borne in mind in selecting
adjuvant treatment for each patient [14].

In our study we found a positive p53 expression in high
histologic grading is 48.0% among 50 cases and a negative
p53 expression in 16 cases (32.0%) where in statistical
analysis there is no correlation between a high expression of
p53 and higher histologic grading of tumor (P = 0.089).

Sirvent, Salvado et al. study about IHC analysis of p53
expression in 153 cases of breast cancer, correlating with
histological grade, axillary node status, hormone receptors,
cell proliferation fraction and expression of the c-erbB-2
oncoprotein. Of all the breast cancer tissue analyzed, 43.97%
were positive p53, over expression of this protein show direct
statistically significant relationship to histological grade, cell
proliferation faction and c-erbB-2, but had no statistically
significant relationship with axillary node status.

Mutation and the over expression of p53 protein are
directly related to histological grade [14].

GATA-3 is a nuclear of GATA-3 transcriptions regulatory
family and is important in directing cell fate. Development
and or differentiation in a member of cell types including
luminal epithelial cells of mammary gland. GATA-3 is
a member of the GATA-3 transcription regulatory family and is
important in directing cell fate, development, and or
differentiation in a number of cell types including luminal
epithelial cells of the mammary gland. Although we and
others have shown that GATA-3 levels were generally higher
in malignant cells compared with morphologically normal
epithelium, within malignant tissue, relatively lower levels of
GATA-3 portended a poorer outcome compared with
relatively higher expression. Consistent with the role of
GATA-3 in the development and differentiation of normal
mammary epithelium, we further observed that lower levels
of GATA-3 were generally associated with a higher-grade,
less differentiated malignancy [4].

In this study, we used a IHC to reassess associations of
GATA-3 expression with Histopathologic grading of 50
samples of breast cancer in Makassar. We found that positive
expression of GATA-3 had amount of 28 samples (28%) among
high histopathologic grading of breast cancer. Even
though the higher expression positive GATA-3 seen in high
histopathologic grading but there is no statistically
significant correlation between them. Negative (low) expression GATA-3 only had 12 samples among high level of histologic grading (20%) of the result.

Mehra et al. found low GATA-3 expression was associated with higher histologic grade (P < 0.001), positive nodes (P = 0.002), larger tumor size (P = 0.03), negative estrogen receptor and progesterone receptor (P < 0.001 for both) [5].

Ki-67 protein (also known as MKI67) is a cellular marker for proliferation. This nuclear protein is expressed in proliferating cells during G1 through M phases of the cell cycle, but is not detected in resting cells. The Ki-67 expression as detected by immunohistochemistry is one of the most reliable indicators of the proliferative status of cancer cells and is referred to as Ki-67 henceforward. In 2009, at the St-Gallen breast cancer conference, Ki-67 was recommended as a biomarker for prognosis and sensitivity of cancer cells to endocrine therapy or chemotherapy. In 2011, Ki-67 was regarded as one of the factors influencing molecular subtypes. Ki-67 expression is closely associated with the growth and invasion of breast cancer. Ki-67 positive breast cancers are more active in growth, more aggressive in invasion, and more metastatic [3, 7].

In conclusion, we found there is no correlation between higher expression of p53 and low expression of GATA-3 with higher histopathology grading of breast cancer. High expression of Ki-67 have significantly statistical analysis with high expression of histopathology grading of mammary cancer.

References

