Volume 7, No. 14, Agustus 2016

Keanekaragaman Jenis Pohon Ruang Terbuka Hijau di Kebun Raya Jompi Pare-Pare
Budiman Bachtir dan Resti Ura
1 - 7

Distribusi White Spot Syndrome Virus (WSSV) Pada beberapa Makroorganisme di
Saluran Pertambakan Budidaya Udang di Kabupaten Banyuwangi dan Probolinggo
Artiuddin Tempo dan Early Septiningsih
8 - 12

Keragaman Bentuk Stomata Daun Beberapa Jenis Pohon Tanaman Obat
Di Kabupaten Maros
Elis Tumbaru
13 - 18

Pemanfaatan Tanaman Celosia plumosa (Voss) Burv. Dalam Fitoremediasi
Tanah Tercemar Logam Berat Timbal (Pb)
Mir Alam dan Juhriah
19 - 24

Dinamika Kualitas Air Pada Tambak Aplikasi Bakterin dan Probiotik
Artiuddin Tempo Dan Early Septiningsih
25 - 33

Analisis Kandungan Senyawa Bioaktif dan Antibakteri. Ekstrak Daun Mangrove
Avicennia marina Terhadap Pertumbuhan Escherichia coli
Eva Johannes, Andi Ilham Lautara, Syefarfanah
34 - 38

Perbandingan Struktur Komunitas Moluska (Gastropoda Dan Bivalvia) Antara Kawasan
Tambak Dengan Hutan Mangrove di Kuri Caddi Kabupaten Maros Sulawesi Selatan
Muhammad Ikhsan, Magdalena Litayu, Dody Prasambodo
39 - 47

Pengaruhaktivitas Antimikroba Infus Tanaman Buah Apiaceae Terhadap Escherichia coli
Andi Fatmawati
48 - 54

Komparasi Beberapa Teknik Isolasi Dna Bakteri E. Coli Untuk Analisis Molekuler
Mustika Tuwo, Dirayah R. Husain dan A. Masniawati
55 - 63

Keragaman Jenis Tumbuhan Berkhiasat Obat Tradisional di Masyarakat Desa
Wattang Pulu Kecamatan Suppa Kabupaten Pinrang
H. Muhtadin A. Salam
64 - 68

Pengaruh Jenis Bioaktivator Pada Proses Dekomposisi Campuran Seresah Daun Angsana
Pterocarpus indicus Willd. Ki Hujan Samanea saman (Jacq.) Merr. dan
Bungur Lagerstroemia speciosa Pers
Fahruddin dan Elis Tumbaru
69 - 74

JURUSAN BIOLOGI
FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM
UNIVERSITAS HASANUDDIN
MAKASSAR

Jurnal ilmu Alam dan Lingkungan Volume 7 Nomor 14 Halaman 1-74 Makassar Agustus 2016
ISSN 2086-4604

Scanned by CamScanner
PEMANFAATAN TANAMAN *Celosia plumosa*(Voss) Burv. DALAM FITOREMEDIASII TANAH TERCEMAR LOGAM BERAT TIMBAL (Pb)

Mir Alam\(^1\) dan Juhriah\(^2\)

\(^1\)Guru Besar Ekologi Pertanika Universitas Indonesia Timur, Makassar
\(^2\)Departemen Biologi Fakultas MIPA Universitas Hasanuddin, Makassar
email: miralammunu@gmail.com

ABSTRACT

Phytoremediation is the removal or reduction of various pollutants on the environment by using plants. The technique is relatively cheap, and suitable for use in a variety of places with varying contaminants including heavy metals. Lead (Plumbum/Pb) is one kind of highly toxic heavy metals that can contaminate to soil, water, and air. The study aims to determine the ability of *Celosia plumosa* (Voss) Burv. to remediate heavy metals lead (Plumbum) in the soil. This study uses a randomized block design with 4 treatments (soil source) and 3 groups, 5 plants *Celosia plumosa* (Voss) Burv. for one unit of research. Analysis of Plumbum content from soil (before and after phytoremediation) and plant tissue using Atomic Absorption Spectrophotometer. The data obtained were processed statistically by Analysis of Varians (ANOVA) and a further test the Least Significant Difference (LSD). Statistical analysis showed that the content of Pb in different types of soil after phytoremediation are significantly different. The highest decrease in soil Plumbum content in paddy field soil 32.41 µg/g (74.44%) with 19 µg/g (58.62%) were accumulated in the plant tissue. *Celosia plumosa* (Voss) Burv. capable to reducing heavy metal lead (Plumbum) from the soil.

Key words: phytoremediation, soil, Plumbum (Pb), *Celosia plumosa*.

PENDAHULUAN

Kontaminasi pada tanah dan perairan diakibatkan oleh banyak penyebab termasuk limbah industri, limbah penambangan, residu pupuk, dan pestisida hingga bekas instalasi senjata kimia. Bentuk kontaminasi berupa berbagai unsur dan substansi kimia berbahaya (Wise, 2000). Berbagai logam berat secara alami terkandung di dalam tanah, terutama tanah yang berasal dari batuan induk. namun kegiatan manusia dapat meningkatkan level logam berat di dalam tanah dan perairan secara luar biasa. Daerah bekas industri pertambangan yang telah berhenti beberapa tahun masih menunjukkan tingkat pencemaran logam berat di tanah dan air tetap tinggi seperti daerah bekas pertambangan logam timbal (Pb) di Kansas AS. Pada bekas tambang yang telah ditutup 40 tahun pada timbunan batuan bisa penambangan, tailing dan slag ternyata meninggalkan sisa pencemaran yang tinggi, diantaranya 110 mg Pb/kg. (Pierzynski dan Schwab, 1993).

Kontaminasi oleh logam berat seperti kadmium (Cd), seng (Zn), plumbum (Pb), kuprum (Cu), kobalt (Co), selenium (Se), dan nickel (Ni) menjadi perhatian serius karena dapat menjadi potensi polusi pada permukaan tanah maupun air tanah dan dapat menyebar ke daerah sekitarnya melalui air, angin, penyerapan oleh tumbuhan bioakumulasi pada rantai makanan (Chaney et al. 1998).

Kandungan logam berat didalam tanah secara alamiah sangat rendah, kecuali tanah tersebut sudah tercemar...
Tabel 1. Kandungan logam berat dalam tanah secara alamiah (μg/g).

<table>
<thead>
<tr>
<th>Logam</th>
<th>Rerata Kandungan (μg/g)</th>
<th>Kisaran Non Populasi</th>
</tr>
</thead>
<tbody>
<tr>
<td>As</td>
<td>100</td>
<td>5-3000</td>
</tr>
<tr>
<td>Co</td>
<td>8</td>
<td>1-40</td>
</tr>
<tr>
<td>Cu</td>
<td>20</td>
<td>2-300</td>
</tr>
<tr>
<td>Pb</td>
<td>10</td>
<td>2-200</td>
</tr>
<tr>
<td>Zn</td>
<td>50</td>
<td>10-300</td>
</tr>
<tr>
<td>Cd</td>
<td>0,06</td>
<td>0,05-0,7</td>
</tr>
<tr>
<td>Hg</td>
<td>0,03</td>
<td>0,01-0,3</td>
</tr>
</tbody>
</table>

Timbal (Pb) yang juga sering disebut timah hitam (lead) merupakan salah satu logam berat yang cukup berbahaya bagi kesehatan manusia dan makhluk hidup lainnya. Masuknya Pb ke dalam tubuh manusia melalui air minum, makanan atau udara dapat menyebabkan gangguan pada organ seperti gangguan neurologi (syaraf), ginjal, sistem reproduksi, sistem hemopoitik serta sistem syaraf pusat (otak) terutama pada anak yang dapat menurunkan tingkat kecerdasan.

Dalam proses remediasi, tumbuhan dapat bersifat aktif maupun pasif dalam mendegradasi bahan polutan. Secara aktif tumbuhan memiliki kemampuan yang berbeda dalam fitoremediasi. Ada yang melakukan proses fitotransformasi, fitoekstraksi, rizofiltrasi, fitodegradasi, fitostabilisasi, fitovolatilisasi.

METODE PENELITIAN

Bahan dan Alat.

Bibit bunga *Celosia plumosa* (Voss) Burv., tanah dari empat sumber, ember, sprayer, neraca analitik, oven, pemanas, termometer, pH-meter, Spektrofotometer Serapan Atom (SSA), dan kertas saring.

Metode Kerja.

Penyiapan Bibit dan Penanaman Bibit.

Benih disemaikan, setelah bibit *Celosia plumosa* berumur 1 minggu dipilih tanaman dengan penampilan fenotipe hampir sama (akar, batang dan daunnya). Masing-masing unit penelitian berisi 5 individu tanaman *Celosia plumosa*.

Analisis Kandungan timbal (Pb) dalam Tanah.

Sampel tanah yang telah kering, dihaluskan dan diayak, lalu ditimbang 1 g dan dimasukkan dalam erlenmeyer, kemudian ditambahkan 5 ml HNO₃ dan 0,5 ml HClO₄, dipanaskan diatas hotplate, setelah itu didiamkan 1 malam kemudian di saring, hasil saringan dianalisis dengan SSA (Spektrofotometer Serapan Atom). Analisis kandungan Pb tanah dilakukan sebelum dan setelah perlakuan.

Analisis Kandungan Timbal (Pb) Tanaman.

Tanaman Jengger ayam *Celosia plumosa* (Voss) Burv. yang telah ditanam pada masing-masing unit perlakuan setelah berumur 6 minggu diperpanah dan dicuci bersih, kemudian dikeringkan dan dipotong kecil dan dilanjutkan pengeringan dengan oven pada suhu 30⁰ - 37⁰C. Sampel yang telah kering diblender sampai halus dan disaring menggunakan kertas saring sehingga didapatkan sampel berupa serbuk abu. Hasil saringan tersebut siap untuk dianalisis dengan SSA (Spektrofotometer Serapan Atom).

Analisis Data.

Data dianalisis dan dilakukan uji F. Hasil yang berbeda nyata dilanjutkan dengan uji BNT.
HASIL DAN PEMBAHASAN
Tanah yang diambil dari empat lokasi yaitu saluran pembuangan limbah rumah tangga (comberan), kebun, sawah dan tempat pembuangan sampah masing-masing dilakukan analisis awal untuk mengatasi kadar kandungan timbal dalam tanah sebelum perlakuan fitoremediasi. Hasil analisis dengan menggunakan Spektrofotometer Seratapan Atom menunjukkan adanya variasi pada masing-masing tanah tersebut. Hasil selengkapnya disajikan pada tabel 2.

<table>
<thead>
<tr>
<th>No</th>
<th>Kode perlakuan</th>
<th>Sumber tanah</th>
<th>Kadar Pb tanah (µg/g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>S1</td>
<td>Saluran pembuangan rumah tangga (comberan)</td>
<td>32,02</td>
</tr>
<tr>
<td>2</td>
<td>S2</td>
<td>Kebun</td>
<td>16,22</td>
</tr>
<tr>
<td>3</td>
<td>S3</td>
<td>Sawah</td>
<td>46,22</td>
</tr>
<tr>
<td>4</td>
<td>S4</td>
<td>Tempat Pembuangan Sampah</td>
<td>32,90</td>
</tr>
</tbody>
</table>

Secara alami kandungan Pb tanah sangat sedikit (tabel 1) yaitu hanya 10 µg/g. Hasil analisis empat sumber tanah pada tabel 2 menunjukkan bahwa tanah memiliki kandungan Pb berkisar 16,22 - 46,22 µg/g yang berarti Pb telah melebihi ambang batas. Ambang batas adalah ukuran batas atau kadar maksimal hidup, zat, energi, atau komponen yang ada atau yang harus ada dan atau unsur pencemar yang ditenggang keberadaannya di dalam media tercemar (PP.RI no 82, 2001). Pemanfaatan Celosia plumosa (Voss) Burv. sebagai agen untuk fitoremediasi Pb pada keempat sumber tanah tersebut memberikan hasil sehingga dapat menurunkan kadar Pb dalam tanah.

Kandungan Pb dalam tanah sebelum dilakukan fitoremediasi dengan tanaman Celosia plumosa (Voss) Burv. dibandingkan setelah perlakuan disajikan pada Gambar 1 sebagai berikut:

Gambar 1. Kandungan Timbal (Pb) pada empat macam sumber tanah sebelum dan setelah fitoremediasi menggunakan Celosia plumosa (Voss) Burv. selama 6 minggu.

Gambar 1 menunjukkan bahwa kandungan Timbal (Pb) tanah pada 4 sumber tanah tersebut setelah dilakukan fitoremediasi selama 6 minggu menggunakan tanaman Celosia plumosa ternyata dapat menurunkan kadar Pb dalam tanah secara signifikan tanpa membuat tanaman terganggu. Hal ini berarti tumbuhan Celosia plumosa berpotensi untuk dijadikan tanaman agen fitoremediasi karena kemampuannya menyerap Pb pada tanah tercemar. Hasil analisis data secara lengkap disajikan pada tabel 3 sebagai berikut:

<table>
<thead>
<tr>
<th>SK</th>
<th>db</th>
<th>JK</th>
<th>KT</th>
<th>Fhit</th>
<th>Ftab 5%</th>
<th>Fta 10%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kelompok</td>
<td>2</td>
<td>16,93</td>
<td>8,47</td>
<td>0,99</td>
<td>4,76</td>
<td>9,7</td>
</tr>
<tr>
<td>Perlakuan 3</td>
<td>240,38</td>
<td>80,13</td>
<td>9,38*</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Galat</td>
<td>6</td>
<td>51,23</td>
<td>8,54</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total 11</td>
<td>308,54</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Ket: Angka yang diikut lambang* berarti berpengaruhi nyata terhadap kandungan Pb tanah.

22
Konsentrasi timbal yang tinggi (100-1000 mg/kg) akan mengakibatkan pengaruh toksik pada proses fotosintesis dan pertumbuhan. Timbal hanya mempengaruhi tanaman bila konsentrasi Rena tinggi. Tanaman dapat menyerap logam Pb pada saat kondisi kesuburan dan kandungan bahan organik tanah rendah. Pada keadaan ini logam berat Pb akan terlepas dari ikatan tanah dan berupa ion yang bergerak bebas pada larutan tanah. Jika logam lain tidak mampu menghambat keberadaannya, maka akan terjadi serapan Pb oleh akar tanaman.

Setelah dilakukan uji lanjut BNT diperoleh hasil bahwa *Celosia plumosa* (Voss) Burv. yang tumbuh pada tanah yang berasal dari saluran pembuangan limbah rumah tangga atau comberan (S1) dan tanah sawah (S3) tidak memberikan pengaruh yang berbeda nyata, namun berbeda pada dua sumber tanah lainnya yaitu tanah kebun (S2) dan tanah tempat pembuangan sampah (S4). *Celosia plumosa* pada kedua sumber tersebut memberikan pengaruh nyata dalam penurunan kadar Pb. Hasil uji lanjut BNT selengkapnya disajikan pada tabel 4.

<table>
<thead>
<tr>
<th>Perlakuan</th>
<th>Nilai Pembanding BNT 5%</th>
<th>Rerata (µg/g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tanah Comberan (S1)</td>
<td>5,82</td>
<td>18,97*</td>
</tr>
<tr>
<td>Tanah Kebun (S2)</td>
<td></td>
<td>20,08*</td>
</tr>
<tr>
<td>Tanah Sawah (S3)</td>
<td></td>
<td>13,81*</td>
</tr>
<tr>
<td>Tanah TPA (S4)</td>
<td></td>
<td>26,40*</td>
</tr>
</tbody>
</table>

Ket: Angka yang diikuti lambang * berarti pengaruh berbeda nyatapada tingkat kepercayaan 95%

Hasil pengukuran kadar Pb tanaman setelah dilakukan analisis vriansi menunjukkan tidak ada pengaruh jenis tanah terhadap kadar Pb tanaman.

KESIMPULAN DAN SARAN
Tanaman Celosia plumosa (Voss) Burv. mampu menurunkan kadar logam timbal (Pb) pada tanah tempat pembuangan limbah rumah tangga, sawah dan tempat pembuangan sampah yang sudah tercemar. Penurunan kadar Pb tertinggi pada tanah sawah yaitu 32,41 μg/g (74,44%) dengan 19μg/g (58,62%) diantaranya terakumulasi pada jaringan tanaman.

Hendaknya dilakukan penelitian penggunaan tanaman Celosia plumosa (Voss) Burv. untuk fitoremediasi logam berat lain pencemar pada tanah.

DAFTAR PUSTAKA
Schnoor, J.L. 1997. Phytoremediation. The University of Iowa Departement of Civil and Environmental Engineering and Center for Global and Regional Environmental Research.