Editorial Board

Editor in Chief
Dr. Kriti Gupta
(International Journal of Engineering Science and Innovative Technology)

Mr. Sanil Thomas
Quality Assurance Analyst at COX Media Group, LARGO, FLORIDA, US

Advisory Board Members:
Dr. Veda Sreenivasarao
Department of Computer and Information Technology, Defence University College, Debrezine, Ethiopia

Dr. Sukumar Senthilkumar
Department of Computer Science Engineering, University Sains, Malaysia

Dr. Sheddon Masupe
Head, Department of Electrical Engineering, Botswana

Dr. Umesh Kumar Singh
Director, Vikram University, India

Dr. Rajeshree Raut

Dr. Rajeshree Raut
Associate Dean Research & Development SRCEM College, Nagpur, India

Dr. Ahmed Rabih Zaki Rashed
Associate Professor, Dept. of Electronic Engineering, Menoufia University, Egypt

Dr. Sanjay B. Wankal
Associate Professor, Dept. of Electrical Engineering, PCE, Nagpur (Maharashtra), India

Dr. Sanjay Paipri
Department of Telecommunications, Raigum, India

Dr. R. Anil Moorthy
Department of Electrical and Electronics Engineering, Sona College of Technology, Salem, India

Dr. T.C. Manjunath
Principal, JVR College of Engg, Bangalore, Karnataka, India

Dr. Adnan Al Rabea
Department of Information Technology, Albasil University's Applied University, Jordan

Dr. Jigar Patel
Department of MCA, Katol Institute of Management, Gujarat, India

Dr. Karthik Seetharam
Senior Associate at Cognitive Technology Solutions, Noida, Tamilnadu, India

Announcement

Calling Papers For Volume 6, Issue 5, November 2016 Last Deadline for Paper Submission 30 November 2016

Downloads

PAPER TEMPLATE
COPYRIGHT FORM
PUBLICATION FORM
Download Certificate

Pay Online

For Indian Author
PAY NOW WITH PayUmoney

Statistical Report

Total Site Visits: 8217570
Dr. M. G. Jaybhaye
Department of Production Engineering, College of Engineering, Pune, India

Dr. Rishi Agarwal
Department of Computer Science Engineering, Thapar University, Patiala, India

Dr. G. N. K. Surush Babu
Department of MCA, GKN College of Engineering and Technology, Chennai, India

Dr. O. S. R. Murthy
Department of Information Technology, Sreenidhi Institute of Science & Technology, Hyderabad, India

Dr. K. M. L. Lakhtaria
Department of Computer Science Engineering, Sengania University, Udaipur, India

Dr. H. Sarapadi
Department of Computer Science Engineering, Little Heathwadi Institute of Technology, Bangalore, India

Dr. K. V. L. H. Acharyulu
Department of Mathematics and Science, Bapatla Engineering College, Bapatla, India

Dr. G. R. Ramakumar
Department of Mechanical Engineering, Muscat, Sultanate of Oman

Dr. K. K. Bame
Head, Research & Publication, SRII University, Gaziabad, India

Dr. Rama Prasad Angamparaju Bhutra
Principal & Head, Amaliol Chand Mohendrappa, Yentamal, India

Dr. Ajay Kumar Chakraborty
Dean, Department of Electrical Engineering, Agartala, Tripura, India

Dr. K. M. Mandal
Department of Power Engineering, Jadavpur University, Kolkata, West Bengal, India

Dr. K. S. Ziauddin
Dean Academic & Head, Department of Mechanical Engineering, PCE College, Nagpur, India

Dr. Mohammed Ali Hassan
Principal, Sri Sai Madhavi Institute of Science & Technology, Rajahmundry, A.P, India

Dr. Gaziem Mustafa Al-Malali
Department of Mathematical Sciences, United Arab Emirates University, UAE

Prof. B. T. P. Madhe
Department of Electronics and Communication, K. L. University, Vaddeswaram, Guntur, A.P, India

Prof. Hari Prasad Gollu
Department of Computer Science and Information Technology, S.D. College of Engineering & Technology, India

Prof. S. Anush Kumar
Department of Civil Engineering, Delhi College of Engineering, India
Prof. K. S M V Kumar
Department of Computer Science and Engineering, Siddhartha Institute of Engg. and Technology, Hyderabad, India

Editorial Reviewer Board
Prof. Prasenjit Chattopadhyay
Department of Mechanical Engineering, ICMR Institute of Engineering, West Bengal, India

Prof. Guaran Panchal
Department of Computer Engineering, Charotar University of Science and Technology, Changa, Gujarat, India

Prof. Ilma Jafari Nezamipoor
Department of Computer Engineering Science & Research Branch Islamic Azad University Tabriz, Iran

Prof. R. Saihu
Department of Computer Science and Engineering, Bharati University, India

Prof. Sanram Ray
Department of Computer Science and Engineering, Dhanbad, Jharkhand, India

Prof. Mamata S. Kalsa
Department of Computer Science and Engineering, JIT College of Engineering, Kolhapur, India

Prof. Mohammad Reza Safai
Department of Mechanical Engineering, University of Malaya, Malaysia

Prof. A. R. Deshmukh
Department of Electronics & Telecommunication Engineering, G H Raisoni College of Engineering, Nagpur, India

Prof. L. S Mawar
Department of Electronics, M V J College of Engineering, Bangalore, India

Prof. Shani S. I.
Department of Electrical Engineering, IIT Madras, Chennai, India

Prof. Most Uddin
Department of Information System, University of Technology, Malaysia

Prof. Ahmed Fares Mawas Saleem
Department of Computer Science, UAE, Dubai
<table>
<thead>
<tr>
<th>S.N.</th>
<th>Name of Research Article (Volume 3 Issue 2, August 2013)</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>A New Current-Mode Square Circuit For RMS-to-DC Converter (Authors: Mohammad Hadi Daresht, Ebrahim Mahmoudian, Amin Emami Farid)</td>
<td>1-4</td>
</tr>
<tr>
<td>2.</td>
<td>How to Improve Stability by Using Fuzzy Controller (Authors: K. Debnath, D. Bhattacharya, D.P. Mahanand)</td>
<td>5-11</td>
</tr>
<tr>
<td>3.</td>
<td>Performances Enhancement in Wireless Body Area Network (WBAN) (Authors: R. G. Balaee, P. R. Raghavendra, Dr. R. Arthy)</td>
<td>12-15</td>
</tr>
<tr>
<td>5.</td>
<td>Web-Based Gas Emission Level Monitoring of Diesel Power Plant using Multi-Sensors (Authors: Anurag Sajani)</td>
<td>21-25</td>
</tr>
</tbody>
</table>

84. Geopatial Simulation Based On Cellular Automata in Extrapolating Land Use Changes (Authors: P. R. Raghavendra, Dr. R. Arthy) | 440-446 |
87. Review Of Biometric Technologies Used for ATM Security (Author: A. K. Gupta, A. Sharma) | 460-465 |
88. Analyzing Planar Dipole Antenna with Different Arm Widths Operating at 1 GHz (Author: R. R. K. Srinivas, V. Rama Raju, Ch. Rama Krishna, D. N. Bhaskar Babu) | 466-469 |
89. Response Surface Methodology to Assess an Ecofriendly Approach for Utilization of Bhopal City Municipal Solid Waste (Author: L. L. Kishor Bisoyi, R. S. Swami and B. B. Hiremath) | 470-478 |
90. Risk Decision Support System for Public Private Partnership projects in Egypt (Author: A. S. El-Sayed, T. S. Badran) | 479-486 |
92. Patient Medical History Data Embedding in Stego Images using in Telemedicine (Author: B. Bhaskar, K. Rajesh Kumar Reddy, M. Prasad Kumar) | 492-493 |
93. Transmission System Reliability Cost Analysis in Deregulated Power System (Author: P. Srinivas Varma, V. Sankar) | 494-500 |
94. The Behavior of Polypropylene Fiber Reinforced Sand Loaded by Square Footing (Author: B. Dhanda, B. Shah, N. Zaman) | 501-508 |
96. Analysis and Application of Hydraulic Jump (Author: E. C. L. U. O.) | 519-524 |
98. Experimental and Finite Element Analysis on the Steel Fiber Reinforced Concrete Deep Beams with Web Openings (Author: H. A. Mohamed) | 529-538 |
99. Improvement of Power System Stability Using IPFC and UPFC Controllers (Author: V. S. Narasimha Raju, B. N. Ch. V. Chakravarthi, S. S. S. Seshagiri) | 539-543 |
Abstract—The dynamics changes of land-use and their impact are natural responses to human activities. These responses need to be understood in order to determine a proper management in the future. The aim of this research is to formulate the rules required for developing a Cellular Automata (CA) model so that the simulation of geospatial data are able to produce an extrapolation map of land-use changes from 2012 until 2037. This research employed CA-simulation and modeling. The input was in the form of spatial data of the multi-time use of existing land according to the condition in 2000 until 2012, and land physical factors in multi layer representation consisting of rainfall, slope, elevation, soil types, buffer zone regulation, and road accessibility. These spatial data were converted into ASCII format as Jeneberang sub-basin condition. The data were processed and analyzed by using Geographic Information System (GIS). The simulation was conducted in the condition of 2000 until 2012 with a time duration of every 3 years. Furthermore, the validation was conducted by using Kappa and Fuzzy Kappa algorithm. The results revealed that the formulated rules were able to develop a CA model to extrapolate the map of land-use change from 2012 until 2037. The validation of geospatial simulation revealed a very good accuracy level of more than 90%, it can be concluded as an excellent result.

Keywords: Cellular automata, Geospatial, Geographic Information Systems, Fuzzy Kappa, multi layer.

I. INTRODUCTION

The phenomenon of land-use change and their impacts are nature responses to human behavior. These responses need to be understood in order to determine the proper action for future management. One of the consequences of land use is its impact on the sustainability of natural resources. This impacts should be minimized for sustainable use [1], [2].

According to [3], the use of GIS is very useful in relation to the dynamic of land use, especially with the availability of applicable models that are able to describe aspects of spatial dynamic. Further, Karsidi argued that the principle of the Game of Life [4] refers to a spatial cell-based model where changes depend on the surrounding cells or nearby parcels. The principle became the underlying basis for the model named Cellular Automata (CA). [5] and [6] described a collection of cells that stained on a plot (grid) with a special form that evolved through a number of discrete time steps by a set of rules based on the state of its neighbour cells. A two-dimensional CA describes cells that change their color according to the color of the adjacent surrounding cells based on certain rules [7].

One simple rule to time change of the values of a state was formulated by [8] with the following factors: An arbitrary function that determines the rules of CA and a set of rules that indicates the value of the i-th state for one-dimensional CA at time step t. The values of a state will change after an iteration in the next period in accordance with the rules given.

CA application for land-use change and urban development have been implemented by various researchers [9], conducted a simulation of urban growth based on empirical knowledge with the idea that such simulation will follow a simple spatial rule. [10] introduced a method to analyze neighborhood characteristics of land use. [11] applied the Neural Network and the CA to describe the settlement growth. [12] simulated a land-use change by developing a model of Markov-Cellular Automata. [13] predicted the urban growth using Landsat satellite imagery based on comparison of three models: the St. Markov, CA Markov, and Markov MLP. [14] introduced the SVC (Support Vector Machine) which was based on the GIS cellular automata for land-use change.

Dynamic of land-use change may always take place at any time and location; due to driving forces factors such as population growth, economic growth, as well as influenced by physical factors such as topography, soil type, and climate [15]. Therefore, this research was designed to construct rules that may affect changes in land-use using CA model to extrapolate land-use changes by taking into account the physical factors of land that are represented by multi layers such as rainfall, elevation, slope, soil type, road accessibility, and buffer zone regulations.

II. MATERIALS AND METHODS

A. Location and Database

The research was carried out in Jeneberang sub-basin, a part of the Jeneberang Watershed South Sulawesi Province Indonesia as shown in Figure 1. Type of this research is simulation and modeling research.

Materials and tools used include: multi-temporal Landsat TM image Jeneberang catchment area (2000 – 2012), the SRTM data, data and supporting maps: Rainfall [16], RBI maps, map of land system by RePProT. Software includes: ArcGIS 9.3 and Arcview version 3.3 with necessary extensions, SpaCelle for CA simulation [9],[17],[18],[19]. ILWIS Open Source [20] for image processing, and Map Comparison Kit (MCK) version 3.2.2 for map validation [21]; [22].
B. Methods

This research employed CA-simulation and modeling of spatial data in the range of year 2000 to 2012. The physical factors of rainfall, slope, elevation, soil types, buffer zones regulation and road accessibility are represented in multi-layers as spatial data. The first stage of this research was started with the generation of maps of land physical factors, namely rainfall isohyet that was analyzed using Geographic Information Systems [23] [24] based on rainfall data documented by several stations around the Jeneberang sub-basin, road accessibility and the criteria of protected areas were based on Decree of President No.32/1990 to produce the map of buffer zone regulation, slope and elevation maps were generated by SRTM data, soil types were obtained using land system maps and field surveys, land-use interpretation from Landsat TM image from the year of 2000 to 2012 [25] [26].

The output was maps in from of grids with cell size of 30 m². The generated maps were then used as multi layers in the simulation [27] and converted to ASCII format. The simulation results were validated using the MCK program [21] [22] with Kappa algorithm [28], [29] and Fuzzy Kappa [21],[30],[31]. The results should be under categorized of good, very good or perfect to validated according to the level of accuracy of Kappa values proposed by [32].

III. RESULTS

A. The Rule of Simulation on Land-use Change

Figure 2a shows zonation of information of land-use changes that is used as a barrier layer; whereas Figure 2b to Figure 2h are multi layer of physical factors of land. These Layers are used as a reference for formulating the rules of change in the simulation program by considering the physical factors of land [7],[33],[34], regulatory factors of buffer zone, and road accessibility based on the conditions in the year of 2000 to 2012.

![Fig. 2. Multi layers of Land Physical Factors of Jeneberang Watershed](image)

Using multi layers maps into the simulation program, the transition rules of land use change were formulated as: (1) First line: Sb>Kc = PV(Kc;8;0.01;1) * EV(Ch0;2) * ZV(Ch1;1) * ZV(SbT;1)*ZV(Lsr;10), and (2) Second line: Sb>Kc = PV(Kc;6;0.05;1) * EV(SbU;1) * EV(Elv1+Elv2;5) * EV(jt0+jt5;3) * ZV(SbT;1) * ZV(jt6;10) * ZV(Lsr;20)

The symbols of *, +, and > used in formulating the transition rules are interpreted based on [35] which is defined as follows: symbol * refers to AND, symbol + means OR, and symbol > describes the change on type of the current spatial data to other spatial data, respectively [35].

B. Simulation of Land-use Change

Referring to Table 1, the period of 2000 to 2003 presents a difference of 6.03 ha for shrubs and -6.03 ha for mixed agriculture. Similarly, in the period of 2009 to 2012 shows insignificant differences for every type of land use.

<table>
<thead>
<tr>
<th>Land-use</th>
<th>Year, area and percentage of land-use</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Area (ha)</td>
</tr>
<tr>
<td>Forest</td>
<td>0.00</td>
</tr>
<tr>
<td>Shrub</td>
<td>0.00</td>
</tr>
</tbody>
</table>
C. Validation Simulation of Land Use Change

Table 2 describes the employed program that contain aggregate count on the nine categories of land-use. However, the program may also generate statistical values for each category. Fuzzy Kappa, as listed in Table 2, with a value of 1, is a type of land use that has not changed and, thus, the result of maps comparison came up with a perfect level. Whereas, the open land (Lt) was ended up with 0 in the comparison between reference map and simulation results for the year of 2006.

<table>
<thead>
<tr>
<th>Statistics & Land-use</th>
<th>Year - Fuzzy Kappa per Category of Land-use</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kappa</td>
<td>0.99902</td>
</tr>
<tr>
<td>KLocation</td>
<td>0.99924</td>
</tr>
<tr>
<td>KHisto</td>
<td>0.99978</td>
</tr>
<tr>
<td>Fraction correct</td>
<td>0.99928</td>
</tr>
<tr>
<td>Forest (Ht)</td>
<td>1</td>
</tr>
<tr>
<td>Horticulture garden (Kb)</td>
<td>1</td>
</tr>
<tr>
<td>Mix garden (Kc)</td>
<td>0.99646</td>
</tr>
<tr>
<td>Open land (Lt)</td>
<td>1</td>
</tr>
<tr>
<td>Residential (Pm)</td>
<td>1</td>
</tr>
<tr>
<td>Meadow (Pr)</td>
<td>1</td>
</tr>
<tr>
<td>Shrub (Sb)</td>
<td>0.99336</td>
</tr>
<tr>
<td>Rice field (Sw)</td>
<td>1</td>
</tr>
<tr>
<td>Dam (Wd)</td>
<td>1</td>
</tr>
</tbody>
</table>

D. Extrapolating the Land-use Change

In Table 3 and as spatially shown in Figure 3, it may note that each 5-year period, the type of land-use that decreased is the mixed agriculture, whereas the residential and horticulture are increase; other types of land-use remain unchanged.
As for the extrapolation of land-use change, the increase phenomena of the residential areas is associated with the growth of structures and infrastructures, including better road accessibility. In addition, population growth also plays a significant contribution in accelerating the residential development [36]. This is confirmed by [36] which states that the rate of population growth in Gowa per year over the last ten years, i.e. from the year of 2000 to 2010 reach 2.10% [36].

Development of horticulture was found at the upstream areas of Jeneberang river, Bulutana village, Tinggimonomcong subdistrict, a village near to Malino city and located on a plateau with an altitude of 2000-2500 meters above sea level. This is in line with the statement of the Head of Agriculture Department of Gowa Regency [37], that in the recent year production of vegetables from Gowa highlands reached 109,970 tons which harvested from nearly 5,000 hectares of planting area. A total of 18 kinds of horticultural commodities are grown in the highlands. Eight of these commodities are categorized as high commercial commodities, i.e. potato, fruit tomato, carrot, cabbage, green onions, green beans, tomatoes, and red pepper.

Development of vegetable production in 2010 for each commodity was also varies. Increasing commodities include onion (from 72 tons to 78 tons), beans (from 2,948 tons to 3,055 tons), tomatoes (from 1,669.6 tons to 8,616.8 tons). Other commodities such as potatoes, cabbage, mustard greens, carrots, peppers, eggplant, beans, cucumbers, kale, spinach, also increased production. While declining commodities include onion leaf (from 4,437 tons to 3,552 tons), squash (14,941 tons to 1,860.7 tons) [38].

V. CONCLUSION

The formulated rules have been proven to be successfully simulate the land-use change with results that approaching the initial conditions; this is supported by validation test that gives Kappa and Fuzzy Kappa values above 90% indicating a very good accuracy. Thus, it can be concluded that the model of CA is applicable to extrapolate land use changes from the year of 2012 to 2037.

To get a higher level of confidence towards the results of the formulation of land-use change simulation by CA model, the model needs to be tested for other sub-basins; in addition, the simulation process may also include social and economic factors and, thus, the making of change rules, with the presence of both factors, will provide more optimal results. Development of further research will be integrated in the application of land-use change associated with erosion and sedimentation class, with the result providing ease in watershed management.
ACKNOWLEDGMENT

My gratitude to the DIKTI for financial support through the scholarship program of BPPS and the opportunity to widen my horizon through “Program Sandwich” in Bremen, Germany.

REFERENCES

[38] Center Agency of Statistics, Gowa Regency. (2011). Gowa in Figure 2011. Province of South Sulawesi.

AUTHOR'S PROFILE

Paharuddin was born in Pinrang-Indonesia 1964. He received undergraduate school in Natural science, Hasanuddin University of Indonesia in 1990, Master degree in remote sensing Gadjah Mada University 2000, and Ph.D degree at Hasanuddin University 2012. His current research interest is landsuse modeling.

Muchtar Salam Solle was born in Makassar-Indonesia 1957. He received B.Sc and Ir. degree in soil science, Hasanuddin University of Indonesia in 1980 and 1983., Post Graduate Diploma at ITC-Netherland in watershed management 1988, and Master degree in Environmental Risk Assessment, Chiang Mai University in 1994. Now, He received Ph.D in Graduate school at Hasanuddin University Indonesia 1913. His current research interest is landslide and landuse.

<table>
<thead>
<tr>
<th>Co</th>
<th>Area and Percentage of Simulation of Land-use Change in 2012 - 2037</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Area and Percentage of Simulation of Land-use Change</td>
</tr>
<tr>
<td></td>
<td>Ha</td>
</tr>
<tr>
<td>Ht</td>
<td>8.01</td>
</tr>
<tr>
<td></td>
<td>1.5</td>
</tr>
<tr>
<td></td>
<td>Sb</td>
</tr>
<tr>
<td>-----</td>
<td>----</td>
</tr>
<tr>
<td>Kb</td>
<td>2.6</td>
</tr>
<tr>
<td>Pr</td>
<td>1</td>
</tr>
<tr>
<td>Kc</td>
<td>18.0</td>
</tr>
<tr>
<td>Sw</td>
<td>6.81</td>
</tr>
<tr>
<td>Pm</td>
<td>1</td>
</tr>
<tr>
<td>Wd</td>
<td>18.0</td>
</tr>
<tr>
<td>Lt</td>
<td>503</td>
</tr>
<tr>
<td>Ju</td>
<td>37.7</td>
</tr>
<tr>
<td>mlah</td>
<td>89.8</td>
</tr>
</tbody>
</table>

Note:
- Ht: Forest
- Sb: Shrub
- Kb: Horticulture garden
- Pr: Meadow
- Kc: Mix garden
- Sw: Rice field
- Lt: Open land
- Wd: Bili-Bili dam
- Pm: Residential

ISO 9001:2008 Certified
International Journal of Engineering and Innovative Technology (IJEIT)
Volume 3, Issue 2, August 2013

446