And whoso saveth the life of one, it shall be as if he had saved the life of all mankind.
- Al-Quran V:32
Editorial

Oral & Maxillofacial Surgery: Management of palatal fistula with modified alveolar extension palatoplasty - A promising technique — S Devakumar


Frequency and site distribution of oroantral fistula — A study — Zia-ur-Rahman Qureshi, Atta-ur-Rahman, Sartaj Khan & Shuja Riaz Ansari

Post extraction bleeding associated with long term maintenance dose of aspirin 75-150mg — Ahmad Shah, Syed Tahir Shah, Ibraheem Shah & Zia-ur-Rahman

Pattern and etiology of exodontia in Rawalpindi & Islamabad sample — Muhammad Aslam, Abdul Razzaq Malik & Saqib Sarfaraz Khan

Clinical characteristics and treatment of dry socket — A study — Umar Khitab, Ahmad Khan & S Masood Shah

Mucopidermoid carcinoma of the submandibular gland in a 6 year old boy — QA Adesina, HA Nogada, O James, HO Olawo, OO Adeyinka & AM Kusmi

Oral Medicine: Management of recurrent aphthous stomatitis with chlorhexidine gluconate mouthwash and vitamin B-complex — Nabihjan Athani, Ravikumar HR, Kullah BN & Chopra SS

Gabapentin for the treatment of trigeminal neuralgia — Jaaved Qazi, Wasar-ur-Rehman Qureshi & Abdul Hasseeb Qazi

Sialochemistry — A diagnostic tool — Mangala Kakaradu, Nabihjan Athani & Ravikumar Hl

Hereditary gingival fibromatosis diagnosis and treatment — Umar Khan, Sushristhi Mustafa, Zakia Saleem, Anum Azam & Zubair Ahmed Khan

Orthodontics: The dynamics of gene expression of matrix metalloproteinase-8 and tissue inhibitor metalloproteinase-1 in removable orthodontic appliance wearers — SaniKawati & Iman Mubbali

Current status of interproximal enamel reduction in orthodontic treatment — Shrish Charan Sivastava, Vineet Verma, Sujit Panda & G Anita

Dental arch widths in class I normal occlusion and class II division I malocclusion — Ch Rehan Qamar, Marryam Riaz & Sarah Mukhtar Awan

The role of vertical parameters in the development of lower incisor crowding amongst patients — Ghulam Rasul, Asfand Ali Khan & Fahad Qam

A survey on cross infection hazards associated with dental impression recording — Soad Asad, Zubair Awais & Fazleba Bokhari

Applicability of Tanaka and Johnston mixed dentition analysis in a contemporary Pakistani population — Ibad Ullah Kund, Farhan Dil, Anjil Shah & Ulfar Bashir

Paedodontics: Tubercular intranasal mesiodonts in oro-facial-digital syndrome — Pawandeep Kaur Sandhu Virk, Urvashi Sharma & Damanpreet Kaur

Feeding appliance for an infant with cleft lip and palate — Pooyaa Malik, Abhay Agarwal & Ravish Ahuja

Periodontology: Relationship between periodontal disease, smoking and diabetes in coronary heart disease patients visiting University College of Dentistry, Lahore, Pakistan — Muhammad Umar Dastgir Bhatti, Shamshul Ali, Muhammad Anwar Alam, Arooj UL Hassan Chaudhry & Nida Khawaja

Website: www.podj.com.pk
Medical and dental students are regularly taught about the recognition of the disease and its management but they are not taught a word about the links between culture and health including dental health.

Many people think of culture as being limited to traditional habits or customs or they may think that culture can be equated with taste of fine arts. Both ideas are quite erroneous. Looked at from a modern scientific point of view some of the customs may be positively harmful.

Traditional ideas, passed from one generation to another are now being modified by new experiences and new knowledge.

Yogurt is used in many countries including Pakistan, India and Indonesia. There are many ways of reducing the number of colonies of bacteria in the oral cavity. One method being developed now is the method of probiotics. This is an artificial method that aims to replace the pathogenic bacteria in the mouth with commensal bacteria which are not harmful to certain body parts including oral cavity.

Probiotics are used in the food industry and have been shown to inhibit the growth of cariogenic bacteria primarily using lactic acid. One probiotic product is yogurt. Indonesian young adults have the habit or culture of consuming lots of yoghurt. Dental scientists in Indonesia are experimenting whether yogurt can reduce the cariogenic bacteria.

Future medical and dental graduates should be informed not to over look the influence of habits/culture when making a diagnosis or when treating a patient. The study of relationship between culture and disease is interesting.

AHMAD IQBAL

Professor Ahmad Iqbal
Editor
19, Street 63, F-7/3
Islamabad – Pakistan
Tel: 92-051-2611138/2611187
E-mail: driqbal7@gmail.com
Website: www.podj.com.pk
CONTENTS

Vol 32, No 2  August 2012  Ramazan-ul-Mubarak 1433 H

Community Dentistry: Oral health status of the elderly in Lahore district of Pakistan — Ayma Syed, Bilal Abdul Qayyum Mirza, Faisal Ishaq & Ayyaz Ali Khan

Oral hygiene habits among patients attending tertiary care dental unit —
Kausoom Fatima Revi, Noureen Amna M & Romina Nazir

Prevalence of dental caries among 5-14 years old poor locality school children of Lahore — Shamsher Ali, Muhammad Umar Dastgir Bhatti, Ayma Syed, Arooj Ul Hassan Chandhry & Zunaira Iqbal

Oral hygiene practice & awareness in rural areas of Lahore — Nazli Gul Shujaat & Shujaat Hassan Idris

Improving quality of life of diabetic patients through non-surgical periodontal treatment — Bilal Abdul Qayyum Mirza, Ayma Syed, Faisal Ishaq & Ayyaz Ali Khan

Prevalence of self medication among dental patients — Qaiser Ali Baig, Danish Mazzafar, Ashar Afzaq, Sobha Bilal & Nazish Iqbal

Oral aspects and complications in type 2 diabetes mellitus — A study — Rehna Yasmeen Bangash, Abdul Ullah Khan, Khadid Mehmood Turqi & Aimal Yousaf

Patient's awareness about the risk factors and the prevention of dental diseases —
Abdul Razzaq Malik, Muhammad Ashlan & Saiman Malik

Restorative Dentistry: Effect of immersion media on sorption and solubility of different tooth-colored restorative materials —
Mohammed Quaid Ali-Qodrat, Salma Saleh Binsafayyan, Helayl Aawad At Al Shawabani & Hammad Gharaman E Amri

In-vivo evaluation of microleakage of nano-filled resin composite using two different restorative techniques —
Farha Naz, Shahid Mehmood & Bena Naqi

Dental restorations — reason for placement and replacement —
Mooseen Ud Din Ahmad, Shahid Mehmood, Amir Imtiaz Ali & Sajid Naeem

Accuracy of self-evaluation of crown preparations by second-year pre-clinical students —
Ahla Ahmed, Sana Jatti & Maria Sikander

Medical & Dental Education: Perception of ethical issues, encountered in undergraduate medical and dental education —
Shazia Tahir, Farhanda Ghafoor, Rukhsana Ayyub, Asif Ali Zaidi & Aman Ullah Khan

Learning preferences of dental students at Islamabad Medical & Dental College —
Khadi Mehmood Siddique, Haroon Shahid Qazi, Muhammad Saleem Kharram & Umar Farooq

Prosthodontics: The effect of curing cycle of denture base (PMMA) on microcolonization of candida albicans —
Rajique Moosa, Shahid Nazir & Abdul Hakin Arain

Body mass index before and after provision of complete dentures — Sheikh Shaikh, Faisal Azeem, Muhammad Umer Javed, M Humza Bin Saeed, Mahtab Shere & Azad Ali Azad

Correlation between intercondylar distance and mandibular intermolar distance for teeth arrangement —
Kheeran Qamar, Irfan Ahmed Shaikh & Sadik Naeem

The effect of age and gender on the prevalence of denture fissuration among complete denture wearers in the northern Jordanian population — A prospective study — Ayesha T Dweiri & Alwaseh Ahmad

A simple and quick technique of fabricating a space maintainer for avulsed primary maxillary incisors —
Muhammad Faheemuddin, Nazia Yazdanie & Muhammad Sohail Nawaz

Incisive papilla as a bio-metric guide in the arrangement of teeth —
Sums Karthigeyan, Seyed Ashraf Ali, Aziz Y Korutus & Kolarani Mohan

People & Events

Website: www.podj.com.pk
THE DYNAMICS OF GENE EXPRESSION OF MATRIX METALLOPROTEINASE-8 AND TISSUE INHIBITOR METALLOPROTEINASE-1 ON REMOVABLE ORTHODONTIC APPLIANCE WEARERS

1SUSILOWATI
2IMAM MUDJARI

ABSTRACT

The teeth will move if subjected to pressure through orthodontic appliances which causes a remodeling of periodontal ligament and alveolar bone. MMP-8 plays an important role in the remodeling process during orthodontic movement. The expression of MMP-8 gene is regulated by a natural inhibitor namely TIMP-1. The purpose of this study was to observe the MMP-8 and TIMP-1 gene expressions in the gingival crevicular fluid (GCF) of patients with removable orthodontic appliance.

A sample of 8 patients wearing removable orthodontic appliances was obtained. The finger springs were activated with 75 grams of force to produce canine distalization. GCF samples were collected from the distal side of upper canines before force application, 1-, 2-, 3-, and 4 weeks after application consecutively. The samples were analyzed by using RT-PCR. Statistical univariate analysis was used to show the distribution and percentages of the gene expressions.

The gene expression of MMP-8 at t0 was 28.1% but the force application elevated its expression to 62.5% at t1, and then decreased continuously at t2 (37.5%), t3 (34.4%), and t4 (31.3%). The gene expression of TIMP-1 at t0 was 40.6% but the force application elevated its expression to 59.4% at t1, and then decreased continuously at t2 (43.8%), t3 (40.6%), and t4 (37.5%).

In conclusion, there was a dynamic gene expressions of MMP-8 and TIMP-1 before and after force application and the pattern was similar, i.e. the highest level happened on the first week, but it declined continuously in the following weeks.

Key words: matrix metalloproteinase-8, tissue inhibitor metalloproteinase-1, gene expression, removable orthodontic appliance

INTRODUCTION

Orthodontic treatment need and demand at the present time is increasing in many countries around the world. The use of fixed orthodontic appliances is booming, but removable orthodontic appliances are still widely used, particularly in developing countries.1

Research on tooth movement began about 100 years ago, viewed from the aspects of cellular, histological, radiological, and more recently molecular biology and genetics. Profiles of various cytokines, growth factors, genes, and enzymes associated with orthodontic tooth movement have been widely studied, and the samples might be taken from gingival crevicular fluid (GCF) in the gingival sulcus.

1 Associate Professor at Department of Orthodontics, Faculty of Dentistry, Hasanuddin University, Makassar, Indonesia, Kompleks Dosen Unhas, Jl. Sunu CX-6, Makassar 90213, Sulawesi Selatan, Indonesia. Email: susmudjari@yahoo.co.id
2 Teaching at Department of Dental Public Health, Faculty of Dentistry, Hasanuddin University, Makassar, Indonesia
The teeth will move when subjected to pressure. Active orthodontic appliances, can provide the desired pressure in order to correct malocclusion. Pressure on the teeth will cause changes in periodontal tissue and alveolar bone, called remodeling. In the remodeling process, it needs activity of osteoclast and osteoblast in the extracellular matrix. To facilitate the mobility of these cells, an enzyme needed to break down collagen, which is the largest component of the extracellular matrix, called collagenase (matrix metalloproteinases/MMP), such as MMP-1, -8, and -13.

The action of MMP is regulated by specific inhibitors called Tissue Inhibitor of metalloproteinase (TIMP). There are four TIMPs, namely: TIMP-1, -2, -3, and -4. The most widely studied is TIMP-1, a glycoprotein synthesized by most connective tissue cells. TIMP inhibits the action of MMPs by binding to the active sites.2

Morphological and biochemical changes of periodontal ligament cells have been studied, but still a bit of research on gene expression of MMP-8 and TIMP-1 in gingival crevicular fluid (GCF) as a result of mechanical stresses originating from orthodontic appliances.3,4 Regarding the expression of genes, the studies conducted in western countries mostly used fixed orthodontic appliances, not the removable one. The data obtained also examined mostly the levels, not the expression of genes.

Therefore it needs to be investigated how the dynamics of gene expression of MMP-8 and TIMP-1 in the GCF during tooth movement of removable orthodontic appliance wearers works. The results of this study is expected to increase the understanding of paradental tissue response to orthodontic pressure in general and the role of MMP-8 and TIMP-1 in the biomechanics of tooth movement due to pressure from removable appliances in particular.

**METHODOLOGY**

The type of this research is clinical trial with time series design. The insertion of orthodontic appliances were carried out at a dental hospital, while the examination of gene expression (TIMP-1 and MMP-8) using RT-PCR tests were performed at the Laboratory of Molecular Biology and Immunology, Faculty of Medicine, Hasanuddin University, Makassar, Indonesia.

The study subjects were 8 (6 women and 2 men, aged 19-25 years old) wearing removable appliances who met the inclusion criteria as follows: complete teeth from upper left to right first molar, patient suffered from anterior crowded teeth or protrusion, based on the Kesling’s space analysis required removal of the upper teeth, good oral hygiene, there are no periapical/periodontal abnormalities, there is no root extreme anomaly in terms of shape and size (length), never undergone orthodontic treatment, and willing to participate in the research process to completion.

Exclusion criteria were as follows: suffering from systemic disease (Diabetes Mellitus), the position of the canine was extreme distoversion, mesioversion, or ectopic, the canine and/or the first molar was mobile, and gingival crevicular fluid was mixed with blood.

The orthodontic removable appliances were inserted into patients a week after the first upper premolar extractions. Gingival crevicular fluid collection was performed on the distal side of the upper canine teeth at the following times: prior to activation of the finger spring (t0), a week after activation (t1), two weeks after activation (t2), three weeks after activation (t3), and four weeks after activation (t4). The initial force given to activate the finger spring was 75 grams.

The gingival crevicular fluid collection was done as follows: the patient was asked to rinse his/her mouth and the tooth surface was cleaned and then dried with air and kept dry with cotton roll. Two paper points were inserted into the gingival sulcus, kept there for a minute and then discarded. The same activity was repeated, but the paper points were placed in the sulcus for one minute, then they were kept in a tube with transport buffer inside. Samples were stored in the refrigerator at a temperature of -20°C until analysis.

The gingival crevicular fluid samples were extracted to obtain total RNA. Analysis of RT-PCR (Reverse Transciptase-Polymerase Chain Reaction) was done by putting the following reagents into a microtube: 6 ml Reverse Transcription buffer (Primecript, Takara, Japan), 1.5 ml specific primers for MMP-8, i.e. sense primer:

$$\text{TGGACCCAATGGAATCCTTGC}$$

and antisense primer: ATAGCCACTCAGGCCCCAGTA that produce fragments of 544 bp, 1.5 ml enzyme mixtures, 19.5 ml H2O, and 1.5ml sample mRNA. Then the tubes were
incubated at temperatures 37ºC for 15 minutes, which allows reverse transcription work. The temperature was raised to 94ºC for 2 minutes, 60ºC for 2 minutes, and 72ºC for 3 minutes. Bands of DNA were seen after 37 cycles of PCR. GAPDH (Glyceraldehyde 3-phosphate dehydrogenase) was added to each sample which serves as an internal control. PCR products were passed through 2% agarose gel for electrophoresis and viewed under UV light.

All of the above procedures were repeated for TIMP-1 by using: sense primer: 5'-GGGGACACCAGAAGTCAACCAGA-3', and antisense primer 5'-CTTTTCAGAGCCTTGGAGGAGCT-34. Capturing images of DNA in agarose gel made with a digital camera. Laboratory test results with RT-PCR is expressed in a semi-quantitative score of 1-4 as follows:

- score 1 if the light from the light band is less than the control
- score 2 if the light of the band is the same as the control
- score 3 if the light from the band a little brighter than the control
- score 4 if the light of the band is much brighter than the control.

The data obtained from the study processed electronically using SPSS version 15.0, then statistically analyzed by using univariate analysis. Data were presented in graphic form of percentage to overview the distribution of gene expression of MMP-8 and TIMP-1 based on the length of time and pressure.

RESULTS

The research was conducted on 8 patients wearing removable orthodontic appliances, with a finger spring activated initially at 75 grams. Further observations were carried out over 4 weeks of gene expression of MMP-8 and TIMP-1 in the gingival crevicular fluid.

Fig 1 shows that the gene expression of MMP-8 before the given pressure was 28.1%. The pressure given in the first week up-regulated to 62.5%. Furthermore it declined in the second week to 37.5%. In the third week, it decreased to 34.4%, then decreased again during the fourth week to 31.3%.

Fig 2 provides information that before the given pressure, the percentage of TIMP-1 was 40.6%. By administering pressure for one week, increasing the percentage of TIMP-1 to 59.4%. In the second week was dropped to 43.8%. In the third week, it decreased to 40.6%. Furthermore decreased again to 37.5% in the fourth week.

DISCUSSION

In this study, all patients had good oral hygiene and did not suffer from gingivitis or periodontitis. The presence of food debris on the surface of the tooth can lead to gingivitis and periodontitis. Periodontitis is an inflammatory disease that may cause progressive damage of the supporting tissue attachment and alveolar bone. One possible cause is a bacterial infection. Bac-
The dynamics of gene expression of matrix metalloproteinase-8

teria in the plaque, including lipopolysaccharide (LPS) and lipoteichoic acid, interacts with toll-like receptor in epithelial cells, leukocytes and fibroblasts, stimulates the production of cytokines such as IL-1 beta, TNF-alpha, IL-6, IL-8, and prostaglandin E2 (PGE2). To facilitate the infiltration of leukocytes, fibroblasts are stimulated by IL-1 beta and TNF-alpha secreting MMPs that degrade ECM molecules including collagen. It has been observed that periodontitis may increase MMP-8 level in GCF.

Tooth movement induced by orthodontic force is characterized by changes in dental and paradental tissue remodeling, including pulp, periodontal ligament, alveolar bone, and gingiva. The tissue when subjected to a certain amount, frequency, and duration of pressure, shows the changes macroscopically and microscopically. Orthodontic pressure will change vascularization, resulting in local synthesis of important molecules such as neurotransmitters, cytokines, growth factors, colony stimulating factor, and arachidonic acid metabolites. These molecules can trigger cellular responses by various types of cells in and around the teeth, creating conditions suitable for tissue microresorption and deposition.

The pressure on the teeth due to orthodontic appliances resulting in increased levels of MMP-8 in gingival crevicular fluid. A study on orthodontic appliances wearers, the GCF was analyzed by IFMA (Immunofluorometric Assay) technique, proved that the concentration of MMP-8 in GCF increased 2-5 times compared to the baseline after 4 hours and increased 3-5 times after 6 hours.

Ingman et al examining levels and activity of MMP-1 and -8 in GCF of orthodontic fixed appliance wearers observed every day for a month also showed an increase in the average levels of MMP-8 by 12 times compared with controls. The techniques used were IFMA and Western Blot. Although the average levels of MMP-8 for a month has increased, the highest concentration of it was at the fourth week. Mantyla et al in his research proved that the presence of increased levels of MMP-8 derived from PMN and fibroblasts, showing a periodontal remodeling process.

In this study we examined the expression, not the levels of MMP-8 gene. Theoretically, the increased gene expression would increase the level of the encoded enzyme, and vice versa. The MMP-8 gene expression was increased sharply at week 1 (Figure 1) likely due to the recently activated finger spring. While the decline of expression due to the possibility that the force of the finger spring to move the canines distally, derived from the coil as energy deposits which is routed through the arm of the finger spring. When the finger spring being activated, it will gradually return to its original position.

TIMP-1 is a protein encoded by TIMP gene families, as a natural inhibitor of matrix metalloproteinase (MMP). It induces the proliferation of various cells, and has anti-apoptotic properties. TIMP-1 gene transcription is influenced by various cytokines and hormones.

The activity of MMP is controlled by TIMP, plays a very important role in the physiological remodeling of the periodontium as well as to respond to mechanical forces during orthodontic treatment. Inhibition of synthetic MMP has been shown reducing the orthodontic tooth movement. Orthodontic tooth movement tested in animals (usually mice), suggesting an increased expression of MMP-1, -2, -8, -9, and -13 and TIMP-1 and -3 in the PDL and alveolar bone. An increase in MMP and TIMP according to Bildt et al occurs in the resorption and apposition sides, but according to Garlet et al the increase in TIMP-1 only occurs in apposition side.

On the removable appliance wearers, TIMP-1 gene expression before the given pressure (baseline) was 40.6% (Graph 2). With the pressure given during the first week, raising the value of TIMP-1 to 59.4%. Then decreased at weeks 2, 3, and 4. This is in line with the increased expression of MMP-8. The increase in TIMP-1 gene expression could be as a compensation to suppress the increasing expression of MMP-8.

The proper balance between TIMP and MMP activity is important for the integrity of ECM components such as collagen, fibronectin, laminin, elastin, and proteoglycans. TIMP-1 inhibits all types of MMP except MMP-14. It has been believed by some researchers that TIMP useful to limit bone resorption/remodeling process so that it can restrict translationally orthodontic tooth movement. If the levels of TIMP-1 in the resorption side decreases, bone resorption will increase. In the apposition side, TIMP-1 levels increased so that resorption will decrease.
In a healthy periodontal tissue, TIMP levels are usually higher than in the inflamed periodontal tissue, and the MMP level exceeds the TIMP level. However, the MMP and TIMP levels in the apposition and resorption sides are higher than control.

CONCLUSIONS

1. The dynamics of gene expression of MMP-8 and TIMP-1 in GCF of patients wearing removable orthodontic appliances have the same pattern.

2. Before the appliances being activated, the expressions of MMP-8 and TIMP-1 were low.

3. Activation of the appliances increased the expression and reached the highest peak at the first weekend, then declined continuously in week 2, 3, and 4. Gene expression levels began to return to normal during the second week.

REFERENCES


