Characteristic evaluation of rice husk ash with chitosan high molecule nanoparticle as dentinogenesis material • The relationship determination between menarche and the peak of skeletal maturation using hand wrist and cervical vertebrae index • Application of social learning theory in the management of children dental fear and anxiety

Accredited No. 56/DIKTI/Kep./2012
EDITORIAL BOARD OF DENTAL JOURNAL (MAJALAH KEDOKTERAN GIGI)

SK: 059/UN3.1/2/2014
January 2nd – December 31st, 2014

Patron:
Dean of Faculty of Dental Medicine Universitas Airlangga

Advisors:
Vice Dean I, Vice Dean II, Vice Dean III

Chief Editor:

Managing Editors:
Prof. Dr. Arfan Ramaz, drg., MSc, Sp.Pros (Prosthodontics – Universitas Airlangga)
Prof. Dr. Ir. Lilief Moodusto, drg., M.S., Sp.KGK (Conservative Dentistry – Universitas Airlangga)
Prof. Dr. Minke Sylvia M.A.R., drg., MSc, Sp.Pros (Orthodontic – Universitas Airlangga)
Prof. Dr. Iniati Soehardjo, drg., MSc (Oral Biology – Universitas Airlangga)
Prof. Dr. Amila Yulianti, drg., M.Kes (Dental Material – Universitas Airlangga)
Prof. Dr. Ni Retno Padji Rahayu, drg., M.Kes (Oral Biology – Universitas Airlangga)
Prof. Dr. Ira Widjajatni, drg., MSc, Sp.KG (Conservative Dentistry – Universitas Airlangga)

Editorial Address:
Fakultas Kedokteran Gigi Universitas Airlangga
Jl. Mayjen. Prof. Dr. Soekarno No. 47 Surabaya 60132, INDONESIA
Telp: (031) 5039478/500255, Fax: (031) 5039478/5020236
E-mail: dental_journal@yahoo.com Website: www.jurnal.unair.ac.id

Cover photo purchased from: www.folia.com
Invoice number: 206780819-204235738
CONTENTS

1. Evaluasi karakteristik abu sekam padi dengan kitosan molekul tinggi nanopartikel sebagai bahan dentinogenesis
 (Characteristic evaluation of rice husk ash with chitosan high molecule nanoparticle as dentinogenesis material)
 Pretty Farida Sinta Silalahi, Trimurni Abidin, dan Harry Agustiar ... 63–66

2. The relationship determination between menarche and the peak of skeletal maturation using hand wrist and cervical vertebrae index
 Endah Mardiati, Soemantri ES, Haroen ER, Thahar B, and Sutrisna B ... 67–71

3. Maturasi dan erupsi gigi permanen pada anak periode gigi pergantian
 (The maturation and eruption of permanent teeth in mixed dentition children)
 Sri Kuswandari ... 72–76

4. Surgical exposure and perawatan ortodontik pada impaksi gigi insisifentral rahang atas
 (Surgical exposure and orthodontic treatment on labially impacted maxillary central incisor)
 Bingah Fitri Melati, Teguh Budi Wirboko, dan Betadion Rizki ... 77–81

5. Penurunan jumlah Streptococcus mutans pada saliva anak dengan ortodonti cekat setelah konsumsi yoghurt
 (Reduction of salivary Mutans Streptococi in children with fixed orthodontic appliance after yoghurt consumption)
 Dewi Anggreani Bibi, Udijanto Tedjosusanto, dan Irmawati ... 82–86

6. Aplikasi teori belajar sosial dalam penatalaksanaan rasa takut dan cemasan anak pada perawatan gigi
 (Application of social learning theory in the management of children dental fear and anxiety)
 Arlette Suzi Setiawan ... 87–91

7. Koreksi dimensi vertical okusal dengan modifikasi restorasi mahkota logam pada kasus severe-early-childhood-caries
 (Correcting occlusal vertical dimension with modified gold crown restorations in severe-early-childhood-caries case)
 Amrita Widyardarini dan Sarworin B Budiardjo ... 92–97

8. Koreksi gigitan terbaik posterior dan anterior dengan alat cekat rapid maxillary expansion dan elastik intermaksila
 (Correction of posterior and anterior crossbite using fixed orthodontic appliance with rapid maxillary expansion and intermaxillary elastic)
 Retno Dewati, Teguh Budi Wirboko, dan Masithah.. 98–102
9. Paparan zat besi pada ekspresi protein spesifik extracellular polymeric substance (EPS) biofilm Aggregatibacter actinomycetemcomitans
(Iron exposure to specific protein expression of extracellular polymeric substance (EPS) of Aggregatibacter actinomycetemcomitans biofilm)
Marchella Hendrayati
103–109

10. Topical applications effect of casein phospho peptide-amorphous calcium phosphate and sodium fluoride on salivary Mutans Streptococci in children
Fajarani and Aini Dwi Handini
110–114

11. Karakterisasi stem cell pulpa gigi sulung dengan modifikasi enzim tripsin
(The characterization of stem cells from human exfoliated deciduous teeth using trypsin enzyme)
Tri Wiyayanti Puspitasari, Tania Sasaki, dan Udijanto Tedjosasongko
115–119
Topical applications effect of casein phospho peptide-amorphous calcium phosphate and sodium fluoride on salivary Mutans Streptococci in children

Fajriani and Aini Dwi Handayani
Department of Pediatric Dentistry
Faculty of Dentistry, Universitas Hasanuddin
Makassar - Indonesia

ABSTRACT

Background: Dental caries is one of the major human diseases caused by Mutans Streptococci (MS). Topical application casein phospho peptide-amorphous calcium phosphate (CPP-ACP) and Sodium fluoride are often used in children and play a role in the caries prevention. Purpose: The aim of study was to determine the effect of casein phospho peptide-amorphous calcium phosphate (CPP-ACP) and Sodium fluoride topical applications to the number of salivary MS colonies in children. Methods: This study using cross-over design with quasi experiment time-series. The subjects were 30 children in range of age 6-12 years old that obtained with simple random sampling. The saliva samples of subjects were collected 3 times. First, saliva samples were taken before the treatment; second, after CPP-ACP topical application; third, after sodium fluoride topical application. Between the CPP-ACP and sodium fluoride treatments there was a one week wash-out period. After each treatment, saliva samples were taken twice, 15 and 30 minutes after topical applications respectively. After cultivation on specific agar, the colony number of salivary MS was determined by colony counting (Colony Forming Units-CFU). Results: There was no significant difference between topical application casein phospho peptide-amorphous calcium phosphate (CPP-ACP) and Sodium fluoride in reducing the number of Streptococcus mutans. But topical application of Sodium fluoride tended to show more reduction than CPP-ACP. Conclusion: The topical application of CPP-ACP and Sodium fluoride could reduce the number of salivary MS in children. The effect of Sodium Fluoride was somewhat greater than CPP-ACP.

Key words: Casein phospho peptide-amorphous calcium phosphate, sodium fluoride, Streptococcus mutans, saliva, children

ABSTRAK

INTRODUCTION

The prevalence of dental caries in children remains a significant clinical problem. In 2004 the caries rate in Indonesia is 90.05% of population, and in 2011 the most significant incidence occurs in children aged 3-5 years (81.2%) which mean most of the case is left untreated. So in Indonesia with population more than 225 million, fluoride compound has been applied extensively, and its efficacy has been recognized by researchers and dentists. Besides of sodium fluoride recently there are materials that have role in preventing dental caries. One of them is the agent that has the casein phosphopeptide-amorphous calcium phosphate (CPP-ACP). Several studies on CPP-ACP showed not only the increase of enamel remineralization, but also prevent bacterial adhesion of Streptococcus mutans on tooth surfaces. The aim of study was to determine the effect of casein phosphopeptide-amorphous calcium phosphate (CPP-ACP) and Sodium fluoride topical applications to the number of salivary Streptococcus mutans colonies in children.

MATERIALS AND METHODS

This study using cross-over design with group experiment time-series. The subjects were children in range of age 6-12 years old that obtained with simple random sampling. Oral hygiene examination in children aged 6-12 years were done by using the OHI-S index with the criteria sample of very bad OHI-S; did not have allergies or certain systemic diseases; and were not taking antibiotics. Sampling was conducted in SDI Tamalanrea of Universitas Hasanuddin, while laboratory procedure was conducted at the Microbiology laboratory Faculty of Medicine Universitas Hasanuddin. The saliva samples of subjects were collected 3 times. First, saliva samples were taken before the treatment; second, after CPP-ACP topical application; third, after sodium fluoride topical application. Between the CPP-ACP and sodium fluoride treatment there was a one week wash-out period. After each treatment, saliva samples were taken twice, 15 and 30 minutes after topical applications respectively. After 10^3 dilution, the saliva samples were cultured on Glucose Nutrient Agar (GNA). After the anaerob incubation 37°C for 24 hours, the colony number of salivary MS was determined by colony counting (Colony Forming Units-CFU).

Topical application of CPP-ACP (first treatment) and topical application of sodium fluoride (second treatment) were given to subjects with following manner: (a) dry the tooth surface with sterile cotton; (b) topical application of CPP-ACP (6C Tooth Mousse@-Recaldent) approximately 1 mg and 0.5 ml Sodium fluoride 5% (Floucal solute®- Septodont) were applied to the entire surface of the teeth; (c) after 15-minute the application of topical material, the second saliva collection was carried out; (d) 30 minutes later, the third saliva sample was taken; (e) all saliva samples were brought to the laboratory for evaluation of the number of MS colonies. Data obtained by the calculation of the bacteria and then noted in table form and subsequently statistically tested by using ANOVA and t-test pairs.

RESULTS

The subject distribution was 18 males (60%) and 12 females (40%) with mean age was 8.56 ± 2.02 years. The value of oral hygiene index was 3.53 ± 0.38 (Table 1). Topical applications of CPP-ACP and sodium fluoride showed the significant reduction of salivary Mutans Streptococci colonies in 15 and 30 minutes after treatment respectively (Table 2), based on ANOVA test results, the further test results for the number of salivary Mutans Streptococci colonies by interval of time after the intervention of topical application of CPP-ACP and sodium fluoride materials described the differences of each bacterial colony count (Table 3). The colonies number of MS from the pretest to 30 minutes after application topical of CPP-ACP and sodium fluoride decreased up to approximately 45 colonies. In addition, the decrease of colonies number based on each intervals showed significant results.

In the CPP-ACP group of materials, the number of colonies decreased to 40.00 CFU/ml whereas the number of colonies sodium fluoride group decreased to 35.73 CFU/ml. The result of statistical tests showed p = 0.014 (p > 0.05), it means that the difference was not significant (Table 4). Meanwhile, after 30 minutes Sodium fluoride
Table 1. Characteristics distribution of the research sample

<table>
<thead>
<tr>
<th>Characteristics of research sample</th>
<th>Frequency (n)</th>
<th>Percentage (%)</th>
<th>Mean ± SD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sex</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Female</td>
<td>12</td>
<td>40</td>
<td></td>
</tr>
<tr>
<td>Age</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Value of oral hygiene (OHF-S)</td>
<td></td>
<td></td>
<td>8.56 ± 2.02</td>
</tr>
<tr>
<td>Number of colonies of S. mutans before (Pre-test)</td>
<td></td>
<td></td>
<td>3.53 ± 0.38</td>
</tr>
<tr>
<td>CPP-ACP group</td>
<td>30</td>
<td>100</td>
<td>83.40 ± 22.63</td>
</tr>
<tr>
<td>Number of colonies in 15 minutes (1st Post-test)</td>
<td></td>
<td></td>
<td>40.00 ± 9.57</td>
</tr>
<tr>
<td>Number of colonies in 30 minutes (2nd Post-test)</td>
<td></td>
<td></td>
<td>18.73 ± 9.87</td>
</tr>
<tr>
<td>Sodium fluoride group</td>
<td>30</td>
<td>100</td>
<td>35.73 ± 9.83</td>
</tr>
<tr>
<td>Number of colonies in 15 minutes (1st Post-test)</td>
<td></td>
<td></td>
<td>12.93 ± 7.86</td>
</tr>
<tr>
<td>Number of colonies in 30 minutes (2nd Post-test)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 2. The differences effect between CPP-ACP and sodium fluoride based on times interval

<table>
<thead>
<tr>
<th>Topical application material group</th>
<th>CFU Pre-test Mean ± SD</th>
<th>CFU 15 minutes Mean ± SD</th>
<th>CFU 30 minutes Mean ± SD</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>CPP-ACP</td>
<td>83.40 ± 22.63</td>
<td>40.00 ± 9.57</td>
<td>18.73 ± 9.87</td>
<td>0.000*</td>
</tr>
<tr>
<td>Sodium fluoride</td>
<td>83.40 ± 22.63</td>
<td>35.73 ± 9.83</td>
<td>12.93 ± 7.86</td>
<td>0.000*</td>
</tr>
</tbody>
</table>

*Repeated analysis of variance (ANOVA) test: p < 0.05; significant

Table 3. Further test results based on the number of colonies of *S. mutans* time intervals after giving topical application materials CPP-ACP and sodium fluoride

<table>
<thead>
<tr>
<th>Topical application material type</th>
<th>CFU S. mutans Comparator</th>
<th>Mean difference</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>CPP-ACP</td>
<td>CFU pre-test</td>
<td>CFU 15 minutes</td>
<td>43.400</td>
</tr>
<tr>
<td></td>
<td>CFU 30 minutes</td>
<td></td>
<td>64.666</td>
</tr>
<tr>
<td>Sodium fluoride</td>
<td>CFU 15 minutes</td>
<td>CFU pre-test</td>
<td>43.400</td>
</tr>
<tr>
<td></td>
<td>CFU 30 minutes</td>
<td></td>
<td>70.466</td>
</tr>
<tr>
<td></td>
<td>CFU 15 ment</td>
<td>CFU 30 ment</td>
<td>22.800</td>
</tr>
</tbody>
</table>

*Post Hoc Test: Least Significant Difference (LSD) test; p<0.05: significant

Table 4. The differences effect of topical application of CPP-ACP and Sodium fluoride materials in time intervals 15 minutes and 30 minutes after treatment

<table>
<thead>
<tr>
<th>Topical Application Material group</th>
<th>CFU Pre-test Mean ± SD</th>
<th>CFU 15 minutes Mean ± SD</th>
<th>p-value</th>
<th>CFU 30 minutes Mean ± SD</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>CPP-ACP</td>
<td>83.40 ± 22.63</td>
<td>40.00 ± 9.57</td>
<td>0.214**</td>
<td>18.73 ± 9.87</td>
<td>0.611*</td>
</tr>
<tr>
<td>Sodium fluoride</td>
<td>83.40 ± 22.63</td>
<td>35.73 ± 9.83</td>
<td></td>
<td>12.93 ± 7.86</td>
<td></td>
</tr>
</tbody>
</table>

*Paired sample t-test: p>0.05; not significant
materials reduced the colony number of MS to 12.93, while the material of CPP-ACP reduced to 18.73. Based on the result of statistical tests, the value of \(p = 0.011 \) (\(p > 0.05 \)), which means that there was no significant difference.

DISCUSSION

The study used topical application of GC Tooth Mousse product of Recaldent16 which contain derive calcium phosphate compound or CPP-ACP that have been applied for approximately 1 mg. The study used container of topical application because it has already tested and reported by several literatures. Dr. Santosh18 from India stated that consuming products that had the same anti-caries CPP-ACP can give good effect on controlling caries at the age of children and adults. As for the comparison the study used 0.5 ml Floucal solute -Septodont19 fluoride compounds. It is based on the results of research on the role of fluoride reduces the ability of bacteria to form acid. In addition it also functions in the formation of fluoride mineral that will stop the caries process.4,5

The result showed the difference in the colony number of MS after topical treatments which were given to subjects after 15 and 30 minutes. The results between each treatment compared with each other to analyze which one was more effective in reducing the number of colonies of *S. mutans*. The data revealed that both topical application materials were indeed effective in reducing the number of *S. mutans*.4,5,6

Research by Reynolds in 2006 attracted public attention by revealing the fact that phosphopeptide casein amorphous calcium phosphate, which was one of the derivatives casein was able to get into the enamel surface and affect the caries process. CPP-ACP prevents the vicinity of MS to the tooth surface. Phosphopeptide bond casein (CPP) containing sequence group nano-complex chain was Ser (P)-Ser (P)-Glu-Glu had an ability to prevent bacteria. Phosphopeptide casein chain arrangement (CPP) binds to amorphous calcium phosphate (ACP) which can prevent the development of bacteria.4,6,7

In addition to preventing the vicinity of MS CPP-ACP also assist in the remineralization of tooth enamel. The effectiveness of a paste containing 10% CPP-ACP on the enamel surface in vitro, revealed that 10% CPP-ACP has a positive effect on enamel remineralization. Other research suggests the use of CPP-ACP with 0.1% mg/ml significantly reduced caries activity by 14%, whereas the levels of CPP-ACP with 1% mg/ml could reduce 55% of caries activity.8,9

Effectiveness of topical application of fluoride in reducing the number of colonies of MS has also been proved in the literatures and research. Fluoride works by inhibiting the metabolism of plaque bacteria that can ferment carbohydrates through changes hydroxyl apatite in enamel to fluoride apatite. Fluorine chemical reactions: $\text{Ca}_{10}(\text{PO}_4)_{6}(\text{OH})_2 + F \rightarrow \text{Ca}_{10}(\text{PO}_4)_{6}(\text{OHF})$ (OHF) produces the enamel more resistant to acid that can inhibit demineralization and enhance remineralization processes that trigger repair and termination of carious lesions.10,11

This study also showed a difference in the effectiveness fluoride. At the same materials at 15 minutes interval and 30 minutes after give the materials. At 15 minutes after the intervention materials, group topical application of CPP-ACP materials, number of colony decreased to 40.00 CFU/ml, while in the topical application of sodium fluoride materials decreased to 35.73 CFU/ml. After 30 minutes, the topical application of CPP-ACP materials capable of reducing the number of colonies to 18.73 CFU/ml whereas topical application of sodium fluoride materials have reduced to 12.93 CFU/ml. This shows that there is no significant difference between the effects of topical application of CPP-ACP materials and Sodium fluoride to decrease the number of colonies of MS at 15 minutes and 30 after give topical materials.

The study suggested that the two materials are effective in lowering the number of colonies of *S. mutans*, but the topical application of sodium fluoride materials lowered the number of colonies of *S. mutans* 30% compared with CPP-ACP materials at intervals of 15 and 30 minutes after topical treatment in saliva children aged 5-12 years. However, there was no significant difference between topical application of CPP-ACP and Sodium fluoride at 15 and 30 minutes after providing topical material. Fluoride when consumed in large amounts can give side effects to the body, i.e. acute toxicity, as well as the occurrence of fluorosis (mottled enamel). It is therefore not recommended for use at home, and would be better if applied by professionals in order to prevent that side effect.10,11 While topical application of CPP-ACP material is derived from casein (milk) safer for children.

The study suggested that topical application of CPP-ACP and Sodium fluoride could reduce the number of salivary MS in children. The effect of Sodium fluoride was somewhat greater than CPP-ACP.

References:

