22nd International Grassland Congress, Organising Committee

President
Professor David Kemp, Charles Sturt University, Orange, New South Wales, Australia

Coordinator, Scientific Program and Chief Editor
Dr David Michalk, NSW Department of Primary Industries, Orange, New South Wales, Australia

Coordinator, Sponsorship
Dr Bob Clements, former Chair of the IGC Continuing Committee, Australian Capital Territory, Australia

Coordinator, Satellite Meetings and Tours
Emeritus Professor Ted Wolfe, Charles Sturt University, Wagga Wagga, New South Wales, Australia

Executive Officer
Dr Warwick Badgery, NSW Department of Primary Industries, Orange, New South Wales, Australia

Treasurer
Dr Karl Behrendt, Charles Sturt University, Orange, New South Wales, Australia

Committee Members
Dr Hugh Dove, CSIRO Division of Plant Industries, Canberra, Australian Capital Territory, Australia
Dr Anton Southwell, Charles Sturt University, Wagga Wagga, New South Wales, Australia
Dr Michael Friend, Charles Sturt University, Wagga Wagga, New South Wales, Australia
Dr Rex Stanton, Charles Sturt University, Wagga Wagga, New South Wales, Australia

International Fundraising
Dr James O'Rourke, Chardon, NE, USA

Many colleagues were called upon to aid in various ways, we thank them all.

Sponsors and Supporters

Platinum
New South Wales Department of Primary Industries
Australian Centre International Agricultural Research (ACIAR)
Howard Memorial Trust

Gold
Commonwealth Scientific & Industrial Research organisation
Future Farm Industries Cooperative Research Centre
Crawford Fund

Silver
Australian Wool International (AWI)
Meat & Livestock Australia (MLA)
Charles Sturt University
PGG Wrightson Seeds
US Bureau of Land Management
Dairy Australia
AusAID

Bronze
Global Development Group
Tropical Grassland Society
Noble Foundation
NZ Grassland Association
University of Sydney, Faculty of Agriculture & Environment

Supporters
University of Western Australia / Centre Legumes In Mediterranean Agriculture
University of Sydney, Dairy Research Foundation
Council of Australasian Weed Societies (CAWS)
Stapledon Memorial Trust
Harry Slobo's Memorial Fund
Xstrata Coal
AgResearch New Zealand
Philanthropists
Reviewers

All papers were reviewed by at least two referees and edited prior to publication.

Yohannes Alemseged
Jeremy Allen
Warwick Bagdery
Derek Bailey
Sue Baker
Len Banks
Lindsay Bell
Marie Bhanguopan
Suzanne Boschma
John Bowler
Alison Bowman
Catherine Broge
John Brooker
Joel Brown
Linda Cafe
Mark Callow
John Caradus
David Chapman
Edward Clayton
Bob Clements
Robert Colton
Justine Cox
Kendrick Cox
Jim Crush
Brendan Cullen
Richard Cullenor
Michael Curll
Reyn Deharry
Graham Denney
Robin Debos
Graham Donald
Hugh Dove
Zoey Durmic
Rod Dyer
Clare Edwards
Greame Eggleston
Jason Emms
Brett Emman
David Ferris
John Fisher
Myles Fisher
Michael Friend

Peter Gillespie
Paul Greenwood
Neil Griffiths
Belinda Hackney
Carol Harris
Kris Havstad
Richard Hayes
Rachelle Hegenham
Peter Horne
Geoff House
John Howieson
Ian Humne
Alan Humphries
Mike Ryder
Joe Jacobs
Richard Jane
Douglas Johnson
David Kemp
Warren King
Gaye Krebs
David Laub
Julia Lee
Guangdi Li
John Lacey
Malcolm McCaskill
Lester McCormick
Matt McDonagh
Donald Macdonald
John McIvor
Steve McLeod
Frank McRae
Richard Meyer
David Michalk
Paul Milham
Geoffrey Millar
David Mitchell
Meredith Mitchell
Andrew Moore
Derrick Moot
Geoff Moore
Brun Murphy
Paul Nichols

Hayley Norman
Mark Norton
Hutton Oddy
Peter Orchard
Nigel Phillips
John Piliz
Michael Priest
Barrie Purser
Margaret Radeside
Muhammad Moshtiar Rahman
Gavin Ramsay
Andrew Rawson
Daniel Rea
Clinton Revell
Dean Revell
John Ryan
Megan Ryan
Malay Saha
Graeme Sandall
Rainer Schmitte-Kraf
Kevon Sheridan
Kathra Sinclair
Alison Southwell
Paul Stanford
Rex Stanton
David Swan
Erol Thom
Dean Thomas
Katherine Tozer
Mark Trotter
Taneke Trotter
Graham Tupper
Cor Vink
Zengyu Wang
Cathy Waters
David Weaver
Lyle Winks
Peter Witschi
Ted Wolfe
Derek Woodfield
Hannen Wu
Ron Yates

Apologies for those referees not included, but in addition to those listed there were many other anonymous referees within CSIRO, NSW Department of Primary Industries, AgResearch and other agencies who reviewed papers as required by their organisational requirements for publication. The Editors thanks the Session Chairs for organising the referee and review process. We thank them all.
Table of contents

Revitalising grasslands to sustain our communities: Plenary papers

- **Feeding the World in 2050: trade-offs, synergies and tough choices for the livestock sector**
 Janney Smith, Shirley Tarawali, Delia Grace and Keith Sones
 1

- **Managing grassland systems in a changing climate: the search for practical solutions**
 Jean-François Scoussan, Luis-Gastón Barrienti, Tania Ben Ali, Rich Conant, Pierre Gerber, Petr Havlík, Alexandre Ickowicz and Mark Howden
 10

- **Diversity, trends, opportunities and challenges in Australian grasslands – meeting the sustainability and productivity imperatives of the future?**
 Lindsay W Bell, Richard C Hayes, Keith G Pemberton and Cathy M Womers
 28

- **New frontiers and perspectives in grassland technology**
 J Scheiberg and E Verburggen
 44

- **Does intensification of grassland and forage use lead to efficient, profitable and sustainable ecosystems?**
 Oona Omonua, Cecilia de Ruiu and Marta Altri
 56

- **Legumes, livestock and livelihoods in the Australian mixed farming system**
 EC (Ted) Wake
 67

- **Drivers of change for grassland and forage systems: A case study of China**
 YJ Zhang, LZ Zhang, MF Wang, XI Li, QC Yang, J Hanson and MA Jorge
 80

- **International R D & E Investment: Revitalising the skill base in grassland research and practice**
 Ralph van Kaarstma
 90

- **Australian grasslands research at the crossroads**
 Alan Bobson
 101

Theme 1: Improving production efficiency to revitalise grasslands

Advances in grass and forage physiology

- **Understanding stress physiology of grasses and forages**
 105

- **Designing resilient and sustainable grasslands for a drier future: adaptive strategies, functional traits and biotic interactions**
 Florence Volaitre, Karina Barkwood and Mark Norton
 105

- **Improved drought stress tolerance of white clover through hybridisation with Trifolium sativum L**.
 Shirley N Nichols, Rainer W Holzmann, Isabelle Merry and Warren M Williams
 115

- **Advances in improving tolerance to waterlogging in Brachystipa grasses**
 Juan A. Cardoso, Juan Jimenez, Josse Rincon, Edward Guevara, Rein van der Hoek, Andy Jarvis, Michael Peters, John Muus, Miguel Ayarza, Socorro Caja, Aiwara Rincon, Henry Mateus, Jaume Querol, Wilson Barragana, Carlos Lascano, Pedro Angel, Marta Mena and Luis Hortentina and Ihaupatapati Gao
 118

- **Mechanisms of stress tolerance in xerophyte Zygophyllum xanthoxylosum and their application in genetic improvement of legume forages**
 122

- **Soo-Min Wang, Ai-Re Bao, Qing Ma, Li-Jun Yue, Jia-Wen Zhang, Guo-Qiang Wu, Jie-Jun X and Yan-Wen Wang**
 122

- **Agronomic traits in tall fescue populations under irrigated and rain-fed conditions**
 126

- **M Anwarul Islam and Malay C Saha**
 126

- **Messina (Melilotus indicus) – a new pasture legume for saltland**
 Amanda I. Brown, Andrew D Craig, Ross A Ballard, Nigel Chapman AB, Philip GH Nichols, Clinton Rewell and Natasha L. Tolle
 129

- **The effect of salinity stress on seed germination of Agropyron elongatum**
 Ghasem Ali Dianati Tajiki, Anees Alizada and Behnam Nasernia Khubani
 131

- **Dissecting drought-response strategies of perennial ryegrass (Lotum pereneum L.)**
 Jean-Hugues B. Hackett, Lu Hsu, Marty J. Faville, Michael H Hickox, Chris S. Jones, Mohamed Z.Z. Jezieler and Gary Matthews
 133

- **Lucerne for acid soils: A field evaluation of early generation aluminium tolerant genotypes**
 Richard Hayes, Guoqiang Li, Shoko Venkataraman, Alvin Humphries and Ross Ballard
 135

© 2013 Proceedings of the 22nd International Grassland Congress
Effects of Se and Co combined fertilizer on production of alfalfa
Xiao Guo, Xiao-Fei Jie and Hua-Feng Hu

Effect of grazing on soil fertility and trace elements of temperate desert steppe in Northwestern China
T. Jian, J P Wu, W C Can, J Qi and S G Zhao

Dry matter yield of promising Panicum maximum genotypes in response to phosphorus and lime on Brazilian savannah
Gustavo José Braga, Giovani Alcântara Macedo, Adão Kerdar Braga Ramos, Marcelo Ayres Carvalho, Francisco Duarte Fernandes and Liliana Jarak

Effects of phosphorus fertilizer application on Verano stylo (Stylosanthes hamata) for fodder production in semi-arid Nigeria
BS Malani, B Usman, SA Mutagandi and A Stadh

Plant protection of grasslands: Integrated management of weeds, pests and diseases

Control and management of weeds and diseases of grass and forage systems
Using integrated weed management to minimize production and environmental impacts in grasslands: an Australian perspective
Andy Sheard

Strategies on poisonous plants problem in China
Xinka Gao, Mengli Zhao, Jing Wang, Bin Han and Walter Willms

Understanding the causes of bush encroachment in Africa: The key to effective management of savanna grasslands
Olakosinw E Kgosikoma and Kahlo Mogens

Development and validation of molecular markers for Phytophthora medicaginis resistance in lucerne
David J Armour, Karen S Atkinson and John AG Irwin

Unpalatable perennial grass invasion in central-east Argentina native grasslands: Processes, implications and recovery
Roberto A Distel

ForageMaxx® Herbicide – a new product for weed management in forage brassicas in Australia
Gregory S Wells and Peter J Nott

Methods for estimating seed production of two summer-active grass weeds, Setaria parvula and Digitaria sanguinalis, in New Zealand dairy pastures
Katherine N Toner and Catherine A Cameron

Aminopyralid + metribuzin-methyl for cost-effective control of hard to kill pasture weeds
Gregory S Wells, Christopher O Love, Natalie V Elmas, Colin L, Plater and Robert A Annetts

In search of an alternative to fire for manipulating bush encroachment in the arid Karoo region of South Africa
S Theron, JC Botta and A Marais

Integrating mechanical and cultural control treatments to manage the invasive shrub Chromolaena odorata in grassland areas
M Ready and F K Badimann

A guide to noxious plants as an educational resource of Veterinary Medicine students
M G Kitch, G Arez, R Asadulla, C Bussa, M Claassen, G Estevanot, B Fernandez, G Lucero, E Moscovik, S Pasha, B Shapay and D Valdity

Effectiveness of Tronador to control brittlebrush in buffalo grass pastures at central Sonora, México
Fernando Iturra, Martha Martin, Salomón Moreno, Fernando Iturra Jr, Jared Aando, Francisco Denogean, Alfredo Aguirre and Rafael Ríos

Effect of sample handling and storage on ergovaline concentration in fresh tall fescue samples
Krista L Cotten, Lori Smith, Cynthia Gaskitt, Robert Coleman and S Ray Smith

Towards effective management: toxicity, causal mechanism and controlling strategy of toxic rangeland weeds in western China
Wei He, Yongmei Liu, Hao Lu, Baoxin Zha, Chenghua Mo, Juyang Wu, Nengtai Du and Yalan Wu

Evaluation of spittlebug incidence on two grasslands from Mojui Dois Campos Para, Brazil
Andrea Krystina Vinente Guimarães, Daniel Carvalho Evangelista and Ademar Neves de Carvalho

Alteration of physiological parameters of milkvetch (Astragalus adenosep) by the pathogen Emblertia asragalli
Binhua Yu and Zhiliang Niu

© 2013 Proceedings of the 22nd International Grassland Congress
Grasslands are my home: An innovative primary school program developed for remote Chinese villages
Hua Limm, Victor Squires and Zhao Chengjiang
1918

Revitalising communities to sustain grassland research
Jacqueline Rowarth
1923

Farmers teaching farmers: What motivates volunteer farmer trainers?
Evelynne Ripot and Steven Fanzel
1928

The North Wyke Farm Platform: A new UK national capability for research into sustainability of agricultural temperate grassland management
Phil J Murray, Bruce A Griffith, Robert J Orr, Anna Shepherd, Martin SA Blackwell, Jane MB Hawkins and S Peacock
1931

Crops, rumps and woolly jumpers: An innovative extension approach enabling the complexities of mixed farming to be shared and understood
Geoff Cashmore, Helen M Burns, Michelle Anderson, Tony M Nugent, Patrick Sprague, Matthew Olsen and Richard C Hayes
1934

Creating an International Forage and Grasslands Curriculum
Brittania L Randow, David B Hartnaway, Kimberly Asplin, Phil Shaier, Chunhua Yang, Zhilua Li, Peter J Balkestedt, Alan S Cooper and Wang Xiangguo
1936

Master Grazer: Improving grazing management in Kentucky
S Ray Smith, Garry Luczakfield, Lyndsay Jones, Jeff Lahendra, Donna Amorat-Pollips and Kelly Kramer
1938

Engaging the next generation of grassland researchers and practitioners
Will intergenerational succession and our current educational systems be sufficient to provide the next generation of farmers and researchers?
Brian J Jewell
1940

Realising the potential of youth in the development of sustainable grasslands
J C Bidogazu and R von Kaudersn
1946

Empowering the next generation of tropical forage researchers: A new e-journal for the 21st Century
Reiner Schutte-Kraft, Lydie Winks, Changjun Bai, Robert J Clements, Assouah Larbi, Michael Peters and Coelho B de Valde
1950

Career management for early career scientists in developing countries - a South African experience
Lulandia Daba, Yolisa Ngwadi and Ntelo Mese
1953

Cultivating the next generation of pasture scientists in Australia
Sarita Jane Brummet
1957

Author Index

© 2013 Proceedings of the 22nd International Grassland Congress
Integrating mechanical and cultural control treatments to manage the invasive shrub *Chromolaena odorata* in grassland areas

M Rusdy and EK Budiman

Faculty of Animal Husbandry, Hasanuddin University, Jl. Pertinjauan Kemotokan Km. 10 Makassar, Indonesia
Contact email: mrusdy37@gmail.com

Keywords: *Chromolaena odorata*, integrated mechanical and cultural controls, weed suppression, botanical composition.

Introduction

Chromolaena odorata (L.) King and H. Robison, is a major invasive weed of pastures and plantation crops in many countries and has become one of the worst invasive plants in grassland areas in Indonesia. *Chromolaena* can grow rapidly and form infestations that can suppress pasture by competing for nutrients and water, and by shade and flowering. Its allelopathic effect lowers productivity of desirable forage species with a consequent loss of livestock production. *Chromolaena* leaves, especially when young, are toxic to animals due to high levels of nitrate (5-6 times above toxic levels) (Sajise 1974).

Control of *Chromolaena* is difficult due to its ability to thrive in a wide variety of soils, rapid attainment of reproductive maturity, large production of easily dispersed seed and a strong ability to regrow after burning (Witkowski and Wilson 2001). The present experiment was conducted to evaluate the efficacy of integrating mechanical and cultural control methods to suppress regrowth of *Chromolaena* and other weeds and to determine the influence of *Chromolaena* management on botanical composition.

Materials and Methods

This study was conducted during the dry season in a grassland in South Sulawesi, from July to November 2012. The treatments were: T1 slashing of *Chromolaena* every month, T2 digging up of *Chromolaena* and left on the soil surface (trailing), T3 digging up of *Chromolaena* followed by burning, T4 digging up of *Chromolaena* followed by burning and sowing with *Centrosema peregrinum*, and T5 digging up of *Chromolaena* followed by burning and planting with *Brachiaria decumbens*. Efficacy of treatments was measured by dry weight of weeds produced. The experiment was conducted in plots measuring 5.0 x 5.0 m, with all treatments replicated three times.

Results and Discussion

The dry yield of dominant plants during the study are shown in Table 1. Dry yield of *Chromolaena* after digging up integrated with other treatments was negligible, but dry yield of other weeds increased. This indicates that digging up is more effective in controlling regrowth of *Chromolaena* but not other weeds. The negligible regrowth of *Chromolaena* in this study may be attributed to the low germination of this weed as affected by a limited available water in the soil as most of this study occur in heavy drought in which total rainfall during the study (August to November) was only 229 mm. The low germination of *Chromolaena* during the dry season was also noted by McFadyen (2003), although some seed appears to remain dormant for several years.

Burning of *Chromolaena* followed by planting with *Brachiaria decumbens* was the most effective in suppressing weeds. This is in line with Rencan and Xuqun (2012) in southern China who reported that in the first two years of establishment, *Brachiaria decumbens* in pasture effectively prevented germination and seedling growth.

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Month 1</th>
<th>Month 2</th>
<th>Month 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>T1</td>
<td>151.33</td>
<td>143.55</td>
<td>105.54</td>
</tr>
<tr>
<td>T2</td>
<td>161.75</td>
<td>234.65</td>
<td>200.50</td>
</tr>
<tr>
<td>T3</td>
<td>244.65</td>
<td>241.65</td>
<td>249.50</td>
</tr>
<tr>
<td>T4</td>
<td>285.60</td>
<td>189.35</td>
<td>140.65</td>
</tr>
<tr>
<td>T5</td>
<td>301.15</td>
<td>261.35</td>
<td>216.90</td>
</tr>
</tbody>
</table>
of Chromolaena. The high efficacy of Brachiaria may be attributed to the vigorous nature of Brachiaria growth and its ability to extract growth resources from the soil.

Botanical composition was shifted with treatments. In monthly slashed plots the dominant plants were Chromolaena and Stachyuraphis jamaicensis and in mowed plots, the dominant species were C. pseudogigantea and Stachyuraphis. In burnt plots, the dominant species was Mansoa pudica, indicating that burning stimulated germination and seedling growth of this plant. This is in line with reports of De-Menezes and Rosel (2011) that burning of Mansoa seeds can kill surface seeds but not buried seeds and may stimulate seeds germination due to removal of seed coat. In contrast, in this study the botanical composition of Stachyuraphis in burnt plots was lower compared to that of unburnt plots. This may be attributed to destruction of Stachyuraphis seeds at the soil surface by burning, which is the optimum depth for germination and emergence (Díaz-Pilho 1993).

Conclusion

From this study, it can be concluded that digging out of Chromolaena, followed by burning and planting with Brachiaria decumbens is the most promising method to control this weed in grassland area. It needs further study how this grass can control this weed in the rainy season and how to manage this grass in order to get high animal production while continuing to control this weed.

References

