International Agriculture Congress 2014

AGRICULTURE INNOVATION
25-27 November 2014
Pullman Putrajaya Lakeside,
Putrajaya, Malaysia.

Organised by

Faculty of Agriculture
Universiti Putra, Malaysia
EDITORIAL BOARD

Izham Ahmad
Editor-in-Chief

Nur Azura Adam
Editor

REVIEWERS

Prof. Dr. Mohamed Hanafi Musa
Prof. Dr. Mohd Mansor Ismail
Assoc. Prof. Dr. Izham Ahmad
Assoc. Prof. Dr. Nur Azura Adam
Assoc. Prof. Dr. Wong Mui Yun
Assoc. Prof. Dr. Siti Aishah Hassan
Assoc. Prof. Dr. Muta Harah Zakaria@Ya
Assoc. Prof. Dr. Norsida Man
Dr Puteri Edaroyati Megat Wahab
Dr Samsuri Abd Wahid
Dr Nitty Hirawaty Kamarulzaman
Dr Nolila Mohd Nawi
Dr Anjas Asmara@Ab. Hadi Samsudin
Dr Khairulmazmi Ahmad

Disclaimer: The Editorial Board takes no responsibility for any content of the papers in this proceedings. Opinions expressed and arguments employed in the papers do not necessarily reflect the views of the organizers.
TABLE OF CONTENT

01: Urban Agri-Food Challenges And Opportunities
Yahya, A.

02: Allelopathic Effect Of Sunflower Parts Extract In Different Growth Stages On Germination And Seed Production Of Redroot Pigweed (Amaranthus retrorsus). Yamin Mehrdad and Khalilvan Behrouzyar Ebrahim

04: General And Specific Combining Ability Studies In Tropical Sweet Corn Kasbani, P., Saleh, G., Jothi, M.P. and Abdullah, N.A.P.

05: Efficiency Enhanced Fertilizer Urea For Crop Production And The Environment Khanif, Y.M., Rosmarina, A.K., Mahfuza, E., Muaz, H. and Nar Faizatulakma

06: Soil, Nutrients And Water Conservation Practices In Oil Palm Plantations On Sloping And Steep Lands In Malaysia Mohsen, B., T.B.S., Christopher, Husni, M.H.A. and A.R., Zaharah

08: Adoption Of Fragrant Rice Farming: Insights From Paddy Farmers In Malaysia Jamal, K., Kamarulzaman, N.H., Abdullah, A.M., Ismail, M.M. and Hashim, M.

09: Selection Of Red Pea (Lathyrus cicera L.) For Drought And Heat Tolerance Icoz, M., Ceylan, F.O., Inci, N.E., Canci, H. and Toker, C.

10: Physiological Response Of Sunflower (Helianthus annuus L.) To Methanol Foliar Application Under Water Deficit Stress Khalilvan Behrouzyar E.

11: Glutathione Functions In Nitrogen-Induced Rice Yield Jahan, M.S., Nozulaidi, M. and Khairi, M.

LP6: Effect Of Probiotic, Prebiotic And Synbiotic On Layer Performance, Caecal Microbial Community And Caecal Fermentative End-Products
Tang, S.G.H., C.C. Sieo, R. Kalavathy, W.S., Zuhainis, H.K., Wong and Y.W., Ho

LP7: Screening Of Lactobacillus Isolated From Broiler Chickens For Probiotic Characteristics
Fadhilah, W.N.S., Loo, S.S., Sieo, C.C., Kalavathy, R., Lim, S.M., Wan, K.L. and Ho, Y.W.

LP8: Effects Of Condensed Tannin Fractions Of Different Molecular Weights From A Leucaena Hybrid On Methane Reduction And Rumen Microbial Population
Saminathan, M., Sieo, C.C., Wong, C.M.L.V., Abdullah, N. and Ho, Y.W.

LP9: The Effects Of Feeding Low-Protein Diets With Constant Concentration Of Limiting Amino Acids On Physiological Response To Heat Challenge In Broiler Chickens
Ainil, F.A., Zulkifli I. and Soleimani, A.F.

LP10: Rumen fermentation characteristics and microbial population in goat and sheep
Candyrine, S.C.L., Jahromi, M.F., Ebrahimi, M., Liang, J.B., Goh, Y.M., Abdullah, N.

LP11: Artificial Insemination Delivery Systems For Goat: Bringing Quality Genetics To The Countryside Of Cagayan Valley, Philippines
Balbin, A.M. and Nayga, J.N.

LP12: Slaughter, Carcass Characterization And Sensory Qualities Of Native, Pure And Upgraded Goats Popularly Grown In The Philippines

LP13: Effects Of Moringa oleifera Leaves On The Onset Of First Postpartum Estrous In Baci Cattle

LP14: Inhibitory Activity Of Postbiotic Produced By Lab Using Reconstitute Media Suppiemented With Inulin
K.Y. Kareem, Loh, T.C., Foo, H.L., Asmara, A., Akit, H. and Abdullah, N.R.

LP15: Removal Of Vitamin And Mineral Supplement: From Broiler Chickens Finisher Diet
Mochamat, N., Zulkifili, I. and Soleimani, A.F.
Material and Methods

Forty (40) pregnant Bali (6-7 months of pregnancy) cows were used in this study. They were kept under a small holder (1-5 cows/farm) at South Sulawesi, Indonesia. The animals were fed with natural grasses and urea multinutrient molasses block (UMMB) 0.5 kg/head/day. The animals were divided into two groups of 20 cows. The first group was treated with moringa oleifera leaves 250 g/head/day and the second group was left without moringa oleifera treatment (control group). The treatment of moringa oleifera leaves was started at the 6th - 7th months of pregnancy until the animals showed the first postpartum estrus.

During the study, body weight and daily gain of the animals before parturition were recorded. At the time of parturition, body weight of the calf were measured. After parturition, the onset of first estrus was detected by visual observation twice a day. The mean interval of postpartum anestrus was significantly (P<0.05) in compared to that in control animals (210.05 vs 204.14 kg) and (0.48 vs 0.39 kg/head/day), respectively. Birth weight for the calf of the treated animals was significantly higher (P=0.05) in compared to that in the control animals (17.22 vs 14.50 kg). Mean interval of postpartum anestrus was significantly (P<0.01) shorter in compared to those in control groups (128.3 vs 148.7 days). It can be concluded that the supplementation of moringa oleifera leaves can induce a high daily gain of the pregnant cow, increase birth weight of the calf and shorten the interval of anestrus in the suckling Bali cows.
interval between parturition and the first post partum estrus was calculated. The means differences of body weight, calf birth weight and interval of postpartum anestrus between the two treatments were analyzed by Student t-test.

Results and Discussion
Table 1 shows the mean daily gain of the pregnant cows supplemented with moringa oleifera leaves were significantly higher (P<0.05) in compared to those in control cows (0.48 vs 0.39 kg/head/day). Birth weight for the calves of the treated animals was significantly higher (P<0.05) in compared to those in the control animals (17.20 vs 14.5 kg). Mean interval between parturition and the onset of first postpartum estrus was significantly (P<0.01) shorter in the treated animals in compared to that in control animals (128.3 vs 148.7 days). These results showed that moringa leaves is potentially used as animal feed, because the supplementation of Moringa oleifera leaves both before and after parturition of pregnant cows could increase body weight gain and shortened the duration of postpartum anestrus and increased birth weight of the calves born.

Table 1: Body weight, daily gain, birth weight and postpartum anestrus in pregnant Bali cows supplemented with moringa oleifera leaves

<table>
<thead>
<tr>
<th>No.</th>
<th>Parameter</th>
<th>With Moringa</th>
<th>Without Moringa</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Body weight (Kg)</td>
<td>210.05 ± 13.3</td>
<td>204.05 ± 6.6</td>
</tr>
<tr>
<td>2</td>
<td>Daily gain (Kg/kapita/day)</td>
<td>0.48 ± 0.04</td>
<td>0.39 ± 0.04*</td>
</tr>
<tr>
<td>3</td>
<td>Birth weight of the calves (kg)</td>
<td>17.22 ± 5.16</td>
<td>14.5 ± 3.3*</td>
</tr>
<tr>
<td>4</td>
<td>Postpartum anestrus (days)</td>
<td>128.3 ± 10.3</td>
<td>148.7 ± 10.0**</td>
</tr>
</tbody>
</table>

Absolute fetal weight increased rapidly during the later stages of gestation. In cows and ewes, about 90 % of birth weight is achieved during the later 40% of gestation (Ferrel, 1991). Lindsay, Martin and Williams (1993) stated that in the late pregnancy, during the period of rapid absolute growth of fetus, poor feeding results in smaller offspring than normal. This is probably a direct result of inadequate maternal supply of nutrients to the fetus. In this study, the supplementation of moringa oleifera leaves during the later stage of pregnancy could increase body weight of the animals. This indicated that the food supplement has high level of nutrients needed for fetal development. The leaves of Moringa oleifera contain high levels of protein, vitamins and minerals (Chawla uria.l., 1998, Dogra, et al. 1975). The higher birth weight for the treated animals in this study was supported by Topal, Aksoyali, Bayram and Yaganoglu (2010) who showed that the birth weight was affected by body condition score of the dam during birth.

Following parturition there is a period when the cows do not come to estrus. The duration of this postpartum anestrus is affected by several factors including season of the year, level of nutrition before and after parturition, suckling, and milk production (Terqui, Chupin, Gautier, Perez, Pelot, and Mauleon, 1982, and Peters and Ball, 1987). The shorter interval of postpartum anestrus in cows supplemented with high quality food in relation to the high body weight before parturition found in this study was similar to that report by Peters and Riley (1982), who showed a significant negative correlation between body weight at calving and the length of the acyclic period in beef cows.

It can be concluded that the supplementation of moringa oleifera leaves could increase body weight, shorten the postpartum anestrus, and increased the birth weight of the calves born. This indicating that Moringa oleifera leaves has a potential to be utilized as a food stuff for beef cows.

References