GROUP TOPIK TEKNIK ELEKTRO (LANJUTAN...)

\begin{itemize}
\item Analisis Peluang Penetrasi WiMAX (Worldwide Interoperability for Microwave Access) pada Program USO (Universal Service Obligation) Daerah Rural di Sulawesi Selatan \hspace{.5cm} TE5 (1-2)
\item Optimalisasi Pengaliran Daya Reactif pada Sistem Sulawesi Selatan \hspace{.5cm} TE6 (1-8)
\item Studi Perbandingan Teknologi Broadband WiMAX Dan WiFi \hspace{.5cm} TE7 (1-8)
\item Aplikasi Algoritma Genetika untuk Menentukan Lokasi Capacitor Bank pada Sistem Interkoneksi Sulawesi Selatan \hspace{.5cm} TCB (1-8)
\item Pengontrolan Motor Induksi Tiga Fase dengan Inverter Berbasis Mikrokontroler AT89C51 \hspace{.5cm} TE9 (1-8)
\item Pembuatan Multi-Konverter untuk Mengefektifkan Pemakaian Tenaga Listrik Pada Beban Listrik Dinamik Dan Listrik Statis \hspace{.5cm} TE10 (1-8)
\end{itemize}

GROUP TOPIK TEKNIK GEOLOGI

\begin{itemize}
\item Studi Karakteristik Fisik dan Mineralogi Endapan Zoleti Deraah Batubusa Kabupaten Mamasa Propinsi Sulawesi Barat \hspace{.5cm} TG1 (1-4)
\item Analisa Cutting dan Pengukuran Elektrikal Logging pada Pemboran Air Tanah untuk Irigasi Sawah di Daerah Garongkong Desa Lempung Kecamatan Tanete Rijia Kabupaten Barru Propinsi Sulawesi Selatan \hspace{.5cm} TG2 (1-6)
\item Penyelidikan Geolistrik Resistivity pada Penentuan Titik Sumur Bar untuk Penerangan di Daerah Garongkong Desa Lempung Kecamatan Tanete Rijia, Barru \hspace{.5cm} TG3 (1-8)
\item Zonasi Tambah Galian Golongan C di Sungai Puna Kab. Poso Subwesi Tengah \hspace{.5cm} TG4 (1-6)
\item Prediksi Kebutuhan Marmer di Provinsi Sulawesi Selatan dengan Menggunakan Model Ekonomi \hspace{.5cm} TG5 (1-6)
\item Presisi Lapisan Endapan Nikel Laterit Berdasarkan Model Geokimia \hspace{.5cm} TG6 (1-4)
\end{itemize}

GROUP TOPIK TEKNIK MESIN

\begin{itemize}
\item Studi Strukturmikro Pengikatan Resin Epoksi pada Beton \hspace{.5cm} TM1 (1-6)
\item Perancangan Sistem Uji Getar Dua Denerated Kebebasan \hspace{.5cm} TM2 (1-6)
\item Memodelan Matematik Sistem Rotor Bearing \hspace{.5cm} TM3 (1-6)
\item Desain Mesin Pengumpul Gabah Kering Kapasitas 1 Ton/Jam \hspace{.5cm} TM4 (1-4)
\item Analisis Metode Kerja dan Ergonomis untuk Meningkatkan Produktivitas Kerja Penggrain Batu Bata \hspace{.5cm} TM5 (1-6)
\item Thermoeconomic Analysis Of Gas Turbine Power Plant (GE MS 6001 B PLTG-PLN-Sektor Tello Makassar) \hspace{.5cm} TM6 (1-10)
\item Pengaruh Perluasan Permukaan Serat Alam Rami [Bothermeria Nivea] terhadap Wettability dan Kemampuan Rekat Matrik Epoxy Resin \hspace{.5cm} TM7 (1-6)
\item Analisa Ciri Kerusakan Roda Gigi Berdasarkan Spektrum Getaran \hspace{.5cm} TM8 (1-6)
\item Desain Sudut Chip Breaker Pahat Potong pada Pembubutan Baja Karbon Rendah \hspace{.5cm} TM9 (1-4)
\end{itemize}
<table>
<thead>
<tr>
<th>Grup Topik Teknik Mesin (Lanjutan...)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Irmadi Rapi</td>
</tr>
<tr>
<td>Studi Pengukuran Kualitas Jasa Perkuliahan pada Program Studi Teknik Industri Unhas dengan Pendekatan Model Service Quality</td>
</tr>
<tr>
<td>(1-4)</td>
</tr>
<tr>
<td>Darwis Djafar,</td>
</tr>
<tr>
<td>Assmyani Amaliah,</td>
</tr>
<tr>
<td>LK. Barata &</td>
</tr>
<tr>
<td>R. Aik</td>
</tr>
<tr>
<td>Analisis Termoekonomi Pemasakan Kompor Briket, LPG dan Minyak Tanah</td>
</tr>
<tr>
<td>(1-6)</td>
</tr>
<tr>
<td>Hana Arsyad &</td>
</tr>
<tr>
<td>Ahmad S. Hakim Arma</td>
</tr>
<tr>
<td>Kaji Ekspimen Pembentukan Retak pada Logam Aluminium dengan Metode Pengujian Impak</td>
</tr>
<tr>
<td>(1-6)</td>
</tr>
<tr>
<td>A. Manglekau &</td>
</tr>
<tr>
<td>Sasmiy Djafar</td>
</tr>
<tr>
<td>Pemanfaatan Kutil Pisang sebagai Sumber Bahan Bakar Gasoloh [Etanol]</td>
</tr>
<tr>
<td>(1-4)</td>
</tr>
<tr>
<td>Rithu H. Pirah</td>
</tr>
<tr>
<td>Experimental Study of Roughness Surface Influence to Drag Coefficient at the Sphere</td>
</tr>
<tr>
<td>(1-4)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Grup Topik Teknik Perkapalan</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yuldi Haris Muhammad,</td>
</tr>
<tr>
<td>Musti Lalief Had &</td>
</tr>
<tr>
<td>Numan Terti</td>
</tr>
<tr>
<td>Studi Ekspimenal Perancangan Turbin Air Terapung Tipe Helical Blades</td>
</tr>
<tr>
<td>(1-4)</td>
</tr>
<tr>
<td>Ahmaduddin &</td>
</tr>
<tr>
<td>Amaiul Ardi</td>
</tr>
<tr>
<td>Analisa Kebutuhan Material Pelat Lambung Kapal</td>
</tr>
<tr>
<td>(1-5)</td>
</tr>
<tr>
<td>нель Mading Sitepu</td>
</tr>
<tr>
<td>Analisis Biaya Operasional Kapal Penyeberangan di Wilayah Pulau Tertinggal</td>
</tr>
<tr>
<td>(1-10)</td>
</tr>
<tr>
<td>Dedyka Kurniuddin,</td>
</tr>
<tr>
<td>Dasly F. Yusuf &</td>
</tr>
<tr>
<td>Ikram Rantetosasak</td>
</tr>
<tr>
<td>Analisis Perawatan Berbasis Keandalan Sistem Distribusi Minyak Lumar ke Mesin Utama KMP. Bontoharu</td>
</tr>
<tr>
<td>(1-10)</td>
</tr>
<tr>
<td>Muhammad &</td>
</tr>
<tr>
<td>Harnyadi Rival</td>
</tr>
<tr>
<td>Analisis Kelayakan Tarif Angkutan Penyeberangan Kapal Ferry</td>
</tr>
<tr>
<td>(1-6)</td>
</tr>
<tr>
<td>Hadi Lalief Had</td>
</tr>
<tr>
<td>Studi Ketersediaan Alat dan Perlengkapan Keselamatan Kapal Ferry</td>
</tr>
<tr>
<td>(1-6)</td>
</tr>
<tr>
<td>S. Muryad Alwi &</td>
</tr>
<tr>
<td>Hamzawanya Hasan</td>
</tr>
<tr>
<td>Manajemen Perawatan Sistem Permesinan Kapal dengan Pendekatan Reliability Centered Maintenance</td>
</tr>
<tr>
<td>(1-6)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Grup Topik Teknik Sipil</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ni LSudarmad Y. Lando</td>
</tr>
<tr>
<td>Teknik Perataan Parameter dalam Menentukan Koordinat Titik</td>
</tr>
<tr>
<td>Suatu Jaringan Kuadrilateral</td>
</tr>
<tr>
<td>(1-8)</td>
</tr>
<tr>
<td>A. Aid Abdurrahman</td>
</tr>
<tr>
<td>Studi Penerapan Standaar Keselamatan Kerja Konstruksi terhadap</td>
</tr>
<tr>
<td>Perubahan deri Kecelakaan Jatuh</td>
</tr>
<tr>
<td>Alina Aroayad</td>
</tr>
<tr>
<td>Pengaruh Penyediakan Tanah Terbatas pada Perkiraan Bearing</td>
</tr>
<tr>
<td>Stratum untuk Besain Pondasi Tiang</td>
</tr>
<tr>
<td>(1-8)</td>
</tr>
<tr>
<td>Anuarrio</td>
</tr>
<tr>
<td>Studi Karakteristik Geoteknik Pemadatan Tanah Kompos</td>
</tr>
<tr>
<td>(1-6)</td>
</tr>
<tr>
<td>(1-6)</td>
</tr>
<tr>
<td>H. Muhammad Wihardi Tjaronge</td>
</tr>
<tr>
<td>Kajian Ekspimenal Sifat Mekanik Beton yang Menggunakan Porland Kompos Semen pada Umur 14 Hari</td>
</tr>
<tr>
<td>(1-6)</td>
</tr>
<tr>
<td>H. Hisvarie Nur</td>
</tr>
<tr>
<td>Studi Kepadatan Tanah Lempung Anorganik dengan Media Lightweight Fill (Sekam Padi dan Serbuk Kayu)</td>
</tr>
<tr>
<td>(1-6)</td>
</tr>
</tbody>
</table>
STUDI EKSPERIMENTAL PERANCANGAN TURBIN AIR TERAPUNG TIPE HELICAL BLADES

Andi Haris Muhammad, Abdul Latief Had & Wayan Terti
Prog. Studi Teknik Sistem Perkapalan Fakultas Teknik Universitas Hasanuddin
Jl. Perintis Kemerdekaan Km. 10 Tamalanrea Makassar 90245, Telp/Fax: 0411-586373
e-mail: andi_hars@st.unhas.ac.id

ABSTRACT

This research describes the design of floating helical water turbine for electric power generation in free flow and low head water operation. The design involves the use of strips attached to the blades of turbine. The efficiency of turbine (η) investigation was carried out using empirical formulas. The rotation of turbine (n) of the calculation with variation strips angles (45°, 90°, and 135°) were obtained through captive model tests carried out in towing tank. The result indicated the efficiency of turbine with variation strips at horizontal shaft is 45° = 0%, 90° = 35%, and 135° = 34% respectively. The main parameter of the turbine that has influence on efficiency can be identified as: type of turbine blade, cross section of the turbine (A) and water flow velocity (V).

Keywords: Helical water turbines, strips, power and efficiency.

PENDAHULUAN

Indonesia merupakan negara maritim dengan luas laut dua per tiga dari total laut wilayahnya. Laut adalah sangat produktif termasuk energi akan sangat berguna jika dimanfaatkan seoptimal mungkin, namun sebagian besar luas laut ini dimanfaatkan sebagai lahan pertanian atau industri. Dalam usaha menentukan energi alternatif, sebagian besar energi latihu, energi laut, dan sumber energi lainnya, yang potensial untuk dimanfaatkan khususnya oleh masyarakat yang memanfaatkan lahan pantai dan pesisir yang luas ini baru saja mulai dikenal.

Paper ini menampilkan studi perancangan turbin air terapung sebagai sumber energi alternatif untuk jenis turbin yang dikembangkan adalah jenis turbin aliran alang (cross flow turbine) dengan dua (Gorlov Helical Turbine). Dengan pemahaman strip pada dampak aliran dapat meningkatkan kecepatan kecepatan aliran untuk mengetahui pengaruh yang ditimbulkan akibat pemasangan strip tersebut, uji model pada tangki airik dikalkulasi dengan menggunakan model turbin berdiameter 0.27 m (skala) pada kecepatan arus 0.55 m/s.
2. TINJAUAN PUSTAKA

Turbin air adalah suatu alat untuk mengubah energi air menjadi energi pintar. Energi air yang melalui energi potensial terus musk rapat dan kecepatan aliran air yang terkandung didalamnya menjadi energi kinetik untuk menunut turbin. Energi puntr yang dihasilkan selanjutnya diubah menjadi listrik melalui generator [20, 2008]. Dalam proses perubahan energi, pemurnahan nada elevasi antara permukaan air yang dinamakan tinggi terjun atau head umumnya juga digunakan khususnya pada dan ketinggian hal ini sangat berperan dalam meringatkan efisien turbin [11, 2006]. Untuk menghambat energi secara turun komponen turbin terdiri dari poros dan sudu-sudu serta sudu tetap (Stationary Blade) tidak keberupat, berfungsi hanya untuk menggerakan aliran fluida sedangkan sudu putar (Rotating Blade) mengubah arah dan kecepatan aliran fluida sehingga meningkatkan gaya yang memutar poros [20, 2006].

Gambar 1. Jenis turbina air dan efisiensi (%).

Penentuan daya turbin secara sederhana dapat ditentukan berdasarkan hukus dan turbina (A) kecepatan aliran relatif (V) turbin diopersikan tetap secara fakultatif penentuan daya dilakukan melalui pengukuran langsung (pengujian laboratorium), sejumlah variabel yang diukur meliputi kecepatan aliran V, tori poros rotor (T), dan kecepatan angular turbin (ω). Persamaan penentuan daya digambarkan set berikut:

Daya rancangan,
$$P_a = \frac{1}{2} \rho A V^3$$

Daya pengukuran,
$$P_t = T \omega$$ dan $\omega = 2 \pi n$

Efisiensi atau prestasi kerja turbin diperoleh berdasarkan rasio perbandingan antara persamaan 2 dan 1 di atur:
$$\eta = \frac{P_o}{P_a}$$
MODEL DAN PENGUJIAN

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Turbin *</th>
<th>Model</th>
</tr>
</thead>
<tbody>
<tr>
<td>jarak, L (m)</td>
<td>0,83</td>
<td>0,25</td>
</tr>
<tr>
<td>diameter, D₁ (mm)</td>
<td>1,01</td>
<td>0,27</td>
</tr>
<tr>
<td>diameter tubuh, Ar (m²)</td>
<td>0,84</td>
<td>0,061</td>
</tr>
<tr>
<td>diameter, D₂ (mm)</td>
<td>0,4</td>
<td>0,1</td>
</tr>
<tr>
<td>Skala, λ</td>
<td>1</td>
<td>3,7</td>
</tr>
</tbody>
</table>

*Helical Turbine Dimension (Gorlov, 1998)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Pengapung</th>
<th>Model</th>
</tr>
</thead>
<tbody>
<tr>
<td>jarak, L₂ (m)</td>
<td>2,0</td>
<td>0,6</td>
</tr>
<tr>
<td>diameter, D₃ (mm)</td>
<td>0,35</td>
<td>0,1</td>
</tr>
<tr>
<td>Skala</td>
<td>1</td>
<td>3,7</td>
</tr>
</tbody>
</table>

Gambar 2. Desain turbin tenggur jenis turbin aliran silang.

HASIL DAN PEMBAHASAN

Gambar 3. Hubungan sudut kemiringan strip pada blade turbin terhadap putaran turbin (rpm).

Gambar 4. Hubungan sudut kemiringan strip pada blade turbin terhadap efisiensi kerja turbin (ε).

Tabel 3. Hasil perhitungan efisiensi dan putaran rotor.

<table>
<thead>
<tr>
<th>Kemiringan</th>
<th>Efisiensi (ε)</th>
<th>Putaran (n)</th>
</tr>
</thead>
<tbody>
<tr>
<td>45°</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>90°</td>
<td>0,35</td>
<td>5,65</td>
</tr>
<tr>
<td>135°</td>
<td>0,349</td>
<td>5,27</td>
</tr>
</tbody>
</table>

5. SIMPULAN

Pengujian laboratorium yang digunakan dalam penelitian adalah sangat baik digunakan untuk memprediksi fenomena putaran dan efisiensi kerja turbin tipe jenis aliran silang (cross flow turbine) dan aliran rotor silang (Gorlov Helical Turbine). Selanjutnya berdasarkan hasil pengujian pembahasan kemiringan strip pada blade rotor memiliki pengaruh terhadap putaran dan efisiensi kerja turbin.

DAFTAR PUSTAKA

Himran, S., 2006, Dater-Dater Mereancana Turbin Air, Bintang Lantumpat, Makassar.
Paryaino, W., 2007, Turbin Air, Jilid 1, Graha Ilmu, Yogyakarta.
PROSIDING
HASIL PENELITIAN FAKULTAS TEKNIK
Oktober 2009
DAFTAR ISI

1. Alaman Sampul
2. Pangantaran Editor
3. Bimtatan Dekan Fakultas Teknik
4. Terarisi

GROUPTOPIKTEKNIK ARSITEKTUR

<table>
<thead>
<tr>
<th>Nama Penulis</th>
<th>Judul Karya</th>
<th>Halaman</th>
</tr>
</thead>
<tbody>
<tr>
<td>Taufan</td>
<td>Tipologi Ruang Wudhu Masjid di Kecamatan Tamalanrea Kota Makassar</td>
<td>TA1 (1-4)</td>
</tr>
<tr>
<td>Arifin</td>
<td>Studi Revitalisasi Pembangunan Lapangan Syekh Yusuf Kabupaten Gowa Berdasarkan Filosofi Bentuk Arsitektur Lokal</td>
<td>TA2 (1-8)</td>
</tr>
<tr>
<td>Sri Valentia Patandian &</td>
<td>Pengendalian Banjar di Kawasan Perumahan Bumi Tamalanrea Permal (BTP) Makassar</td>
<td>TA3 (1-5)</td>
</tr>
<tr>
<td>Sri Arifin &</td>
<td>Pengaruh Kondisi Bangunan dan Lingkungan Perumahan Rumah Sewa terhadap Prestasi Belajar Mahasiswa (Studi Kasus Rumah Sewa Sekitar Kampus Unhas Tamalanrea)</td>
<td>TA4 (1-8)</td>
</tr>
<tr>
<td>Yanti</td>
<td>Pengaruh Sosial Ekonomi Masyarakat di Pinggir Kanal Kota Makassar terhadap Kebersihan Lingkungan Kanal</td>
<td>TA6 (1-6)</td>
</tr>
<tr>
<td>Mustari &</td>
<td>Evaluasi Ketersediaan Prasarana Lingkungan pada Perumahan Kumuh di Kelurahan Lette Kecamatan Mariso Makassar</td>
<td>TA7 (1-6)</td>
</tr>
<tr>
<td>Anara Lantang</td>
<td>Identifikasi Pemanfaatan Ruang Terbuka Hijau sebagai Ruang Publik di Makassar (kasus kecamatan Wajo Kota Makassar)</td>
<td>TA8 (1-5)</td>
</tr>
<tr>
<td>Hidut</td>
<td>Arsitektur Arsitektur Tradisional Bugis</td>
<td>TA9 (1-8)</td>
</tr>
<tr>
<td>Kurnia</td>
<td>Evaluasi Ketersediaan Prasarana Lingkungan pada Perumahan Kumuh di Kelurahan Lette Kecamatan Mariso Makassar</td>
<td>TA10 (1-6)</td>
</tr>
<tr>
<td>Heryanto &</td>
<td>Karakteristik dan Peran Ojek Sebagai Moda Transportasi Kota Alternatif</td>
<td>TA11 (1-6)</td>
</tr>
<tr>
<td>Hehanusa P.</td>
<td>Daya Tampung Parkir di Komplek Ruko Perlintis Kemerdekan Makassar</td>
<td>TA12 (1-5)</td>
</tr>
<tr>
<td>Arifin</td>
<td>Wujud, Makna dan Keberlanjutan Ruang Kolong (Siring) pada Arsitek Makassar</td>
<td>TA13 (1-6)</td>
</tr>
<tr>
<td>Ammad Mochsen Sir</td>
<td>Estetika sebagai Hasil Perjumpana Manusia dengan Lingkungan Bina</td>
<td>TA14 (1-8)</td>
</tr>
</tbody>
</table>

GROUPTOPIKTEKNIK ELEKTRO

<table>
<thead>
<tr>
<th>Nama Penulis</th>
<th>Judul Karya</th>
<th>Halaman</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tobby Raharjo</td>
<td>Pelepasan Beban Ustrik untuk Menghindari Padam Total pada Sistem Kelistrikan Sulawesi Selatan dan Barat</td>
<td>TE1 (1-4)</td>
</tr>
<tr>
<td>Sutarjo</td>
<td>Analisis Penggunaan Jaringan Kabel Temba Akses Broadband di STO 1 Makassar</td>
<td>TE2 (1-6)</td>
</tr>
<tr>
<td>Ywar Said</td>
<td>Pelepasan Beban Menggunakan Under Frequency Relay pada Pusat Pembangkit Telko</td>
<td>TE3 (1-8)</td>
</tr>
<tr>
<td>Nani &</td>
<td>Analisis Implementasi PN Planning Network CDMA (Studi Kasus Starone Indosat Makassar)</td>
<td>TE4 (1-12)</td>
</tr>
</tbody>
</table>
