Tables of Contents

Session 1: Cell structure and formation

<table>
<thead>
<tr>
<th>Title</th>
<th>Authors/Institutions</th>
<th>Country</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>A Database of the Microscopic Features of Chinese Woods and its Application</td>
<td>Takao Itoh, Dagang Li, Biao Pan, J. Luo, Yongzhi Cui and M. Mertz</td>
<td>China</td>
<td>1</td>
</tr>
<tr>
<td>A Case Study of Microfibril Angle in Bamboo (Gadua amplexifolia) by X-ray Diffraction</td>
<td>Jinmei Xu, Rongjun Zhao, Robert Evans, Benchua Fei</td>
<td>China</td>
<td>3</td>
</tr>
<tr>
<td>Basic Structure of * Daemonorops margarita * Rattan Cane</td>
<td>Wenhua L.0, Benchua Fei, Xinge Liu</td>
<td>China</td>
<td>5</td>
</tr>
<tr>
<td>Cellulose Fibril Reinforced Poly(Vinyl Alcohol) Nanocomposites</td>
<td>Qingzheng Cheng, Siqun Wang, Timothy G. Rials, Jingxin Wang, Yingtao Liu</td>
<td>USA</td>
<td>7</td>
</tr>
<tr>
<td>Deformation Induced by Ethanol Substitution in Normal and Tension Wood of Chestnut and Simarouba</td>
<td>Shanshan Chang, Bruno Clair, Joseph Grill, Guangjie Zhao and Hiroyuki Yamamoto</td>
<td>France</td>
<td>9</td>
</tr>
<tr>
<td>Diurnal Differences in Secondary Cell Wall Formation of Conifer Tracheids Corresponding to Changes in Light Strength</td>
<td>Yoshihiro Hosoo, Takanori Imai and Musato Yoshida</td>
<td>Japan</td>
<td>11</td>
</tr>
<tr>
<td>Estimation of Microfibril Angle by Near Infrared Spectroscopy</td>
<td>Rong-jun Zhao, Benchua Fei, Li Zhang and Xiaomei Huo</td>
<td>China</td>
<td>13</td>
</tr>
<tr>
<td>Growth Increment and Growth Stress induced by Artificial Inclination in Pinus taeda L.</td>
<td>Yamei Liu and Shengquan Liu</td>
<td>China</td>
<td>15</td>
</tr>
<tr>
<td>Growth Increment and Growth Stress induced by Artificial Inclination in Poplar I-107 (Populus euramericana cv. "74/76")</td>
<td>Yamei Liu and Shengquan Liu</td>
<td>China</td>
<td>17</td>
</tr>
<tr>
<td>Influence of Technical Parameters on Sound Absorption of Straw Board</td>
<td>Min Xu and Lei Chen</td>
<td>China</td>
<td>19</td>
</tr>
<tr>
<td>Investigations on Some of the Physical and Biometrical Properties of Planted Panioonia in North of Iran</td>
<td>H. Khademi-Eslam</td>
<td>Iran</td>
<td>21</td>
</tr>
<tr>
<td>Measuring Voids in Low-density Fiberboard</td>
<td>Lun A and Yan Ma</td>
<td>China</td>
<td>23</td>
</tr>
<tr>
<td>Microstructural Characteristics of larch wood treated by microwave</td>
<td>Mingli Liu, Chunfeng Li, Qingwen Wang, Heng Liao and Junhao Zhou</td>
<td>China</td>
<td>25</td>
</tr>
<tr>
<td>Micro-structure and Chemical Properties of Aerogel Structure Type of Wood</td>
<td>Xianglin Zhai, Chengyu Wang and Jian Li</td>
<td>China</td>
<td>27</td>
</tr>
<tr>
<td>Modelling Variation Pattern in MFA of Chinese Pine and Its Relationship to Wood Anatomical Features, Physical and Mechanic Properties</td>
<td>Youming Xu</td>
<td>China</td>
<td>29</td>
</tr>
<tr>
<td>Morphology Analysis on the Coarse Roots Fiber of Cassava</td>
<td>Huichuan Jiang, Pengliam Wei, Ning Li and Jianju Luo</td>
<td>China</td>
<td>31</td>
</tr>
<tr>
<td>Practice of Wood Identification of Southeast-Asian Timbers for Pallets</td>
<td>Tomoyuki Fujii, Hisashi Abe and Ken Ogata</td>
<td>Japan</td>
<td>33</td>
</tr>
<tr>
<td>Title</td>
<td>Authors</td>
<td>Country</td>
<td>Page</td>
</tr>
<tr>
<td>--</td>
<td>---</td>
<td>---------</td>
<td>------</td>
</tr>
<tr>
<td>Effects of Proanthocyanidin (Condensed Tannin)-rich Radiata Pine Bark Powder added to Plywood Binder Resins</td>
<td>Sang-min Lee and Sang-bum Park</td>
<td>Korea</td>
<td>449</td>
</tr>
<tr>
<td>Environmental Yellow Soil (Loess) Finishing Material with Water-based Adhesive for Building Interior Material</td>
<td>Bong-sun Baek, Ki-wook Kim, Jin-kyoung Oh, Hyun-joong Kim, Moon Jae Park</td>
<td>Korea</td>
<td>451</td>
</tr>
<tr>
<td>Fundamental Properties of Cement Board Made from Bamboo</td>
<td>Suhasman, Bakri and Muh. Yusram Massijaya</td>
<td>Indonesia</td>
<td>453</td>
</tr>
<tr>
<td>Influence of Nano Clay on Phenolic Resin for Wood Adhesive</td>
<td>Guanben-Du, Hong Lei, A.Pizzi, A.Cezard and Qun Fang</td>
<td>China</td>
<td>455</td>
</tr>
<tr>
<td>Investigation on the Utilization of Pomegranate Wood for Particleboard Production</td>
<td>Homayoun Soleymani Ashtiani and Abolfazl Kargarfard</td>
<td>Iran</td>
<td>457</td>
</tr>
<tr>
<td>Manufacture of Urea Formaldehyde Bonded Plywood from Trewia nudiflora and Dipterocarpus turbinatus in Bangladesh</td>
<td>Md. Ashaduzzaman, Md. Iftikhar Shams, Arifa Sharmin and Md. Hasan Shahrir</td>
<td>Bangladesh</td>
<td>459</td>
</tr>
<tr>
<td>Nutrient Solution Retention and Release by Three Wood Species</td>
<td>Sheikh Ali Ahmed and Su Kyoung Chun</td>
<td>Korea</td>
<td>461</td>
</tr>
<tr>
<td>Performance of Composite Board Manufactured from Stem and Branch of Tree</td>
<td>Suhasman, A Detti Yunianti, Muh. Yusram Massijaya, Yusuf Sudo Hadi</td>
<td>Indonesia</td>
<td>463</td>
</tr>
<tr>
<td>Pressure Effect of Nutrient Solution Retention in Different Woodchop</td>
<td>Sheikh Ali Ahmed and Su Kyoung Chun</td>
<td>Korea</td>
<td>467</td>
</tr>
<tr>
<td>Pre-treatment Effect on Wood Cement Particleboard Manufactured with Wood Species Growing in Turkey</td>
<td>Mustafa Aslan, Cenk Demirkir and Hilal Yugosl</td>
<td>Turkey</td>
<td>469</td>
</tr>
<tr>
<td>Research on Wettability of Bamboo and Chinese Fir Surface</td>
<td>Hongxia Ma, Zehui Jiang and Haiqing Ren</td>
<td>China</td>
<td>471</td>
</tr>
<tr>
<td>Strength of Acacia Wood with Polyurethane Adhesive</td>
<td>I. Sulistyawati, N. Nugroho, S. Surjokusumo and Y.S. Hadi</td>
<td>Indonesia</td>
<td>473</td>
</tr>
<tr>
<td>Structure Characteristics and Preparation of Carbon Fibers from Liquefied Wood</td>
<td>Xiaojun Ma and Guangjie Zhao</td>
<td>China</td>
<td>475</td>
</tr>
<tr>
<td>Study on Cure Characteristic of Magnesium-Phenol Formaldehyde Resin Resins</td>
<td>Liangjia He, Renlu Han, Yifan Zhang</td>
<td>China</td>
<td>477</td>
</tr>
<tr>
<td>Study on Poplar Laminated Composite Floor</td>
<td>Ruixiang Cheng</td>
<td>China</td>
<td>479</td>
</tr>
<tr>
<td>Study on the Manufacture of Veneer with Wooden Strip</td>
<td>Jun Qian, Pangli Sun, Yawei Zhang and Yan Wu</td>
<td>China</td>
<td>481</td>
</tr>
<tr>
<td>Synthesis and Adhesive Capacity of Polyvinyl Acetate Emulsion with Silica Nanoparticles</td>
<td>Haiying Liu, Jiyou Gu, Guoqi Mao and Xiaojun Xu</td>
<td>China</td>
<td>483</td>
</tr>
<tr>
<td>The Application of Plywood with Water-soluble Phenolic Resin Impregnated Linerboard Foamwork</td>
<td>Ki-wook Kim, Jin-kyoung Oh, Bong-sun Back, Hyun-joong Kim, Sung-hun Kim and Gwan-eui Kim</td>
<td>Korea</td>
<td>485</td>
</tr>
</tbody>
</table>
Performance of Composite Board Manufactured from Stem and Branch of Tree

Suhasman1), A Detti Yunianti1), Muh. Yusram Massijaya2), Yusuf Sudo Hadi3)

1) Study Program of Forest Products Technology, Faculty of Forestry, Hasanuddin University, Makassar, Indonesia. Email: suhasman@yahoo.com
2) Forest Products Department, Faculty of Forestry, Bogor Agricultural University, Bogor, Indonesia. E-mail: muhyusram@yahoo.co.id, yshadi@indo.net.id

Introduction

Nowadays, community forest in Indonesia is one of attractive raw material resources for wood based products. Its potency was 9.3 million cubic meters per annum [1], that mean the potency more extremely high compared to natural forest with potency 6.89 million per annum [2]. The potency that stated including only merchantable tree. For optimum utilization of these resources, the whole tree utilization of tree, include of its branch is very important to be developed. Results of the previous study showed that the branch potency for three community forest tree species were 18.09%, 31.99%, and 15.69% (the mean was 21.9%) based on stem volume for candlenut, gmelina, and sengon wood species respectively [3]. Thus, based on the data potency, estimated potency for branch of tree from community forest was 2.04 million cubic meters per annum. Since the very limited log supply for wood based product, the raw materials from branch of tree is very important to be utilized.

Furthermore, for effective utilization in composite board produced, we must be utilizing the raw materials in any shave including of wafer and shavings. As we know, particle with high slenderess ratio like wafer could be produce high strength board compared to other particle shave, like shavings. However, it not to be able produce wafer particle from all raw materials due to its limited dimension. For very small dimension raw materials, we can convert it to shavings particle. Based on these reason, we should be get information about the comparison properties of board produced from wafer or shaving particle. This study was conducted; to analyze the quality of composite board made of community forest tree species, to compare the board quality made of stem and branch of tree, and to compare the quality of board made from wafer and shavings particle.

Materials and methods

The materials used in this study were stem and branch from three wood species obtained from community forest area namely candlenut (Aleurites moluccana), gmelina (Gmelina arborea) and sengon (Paraserianthes falcataria L. Nielsen) taken from Bogor area, about 60 km from Jakarta. These materials were converted to wafer and shaving particle and dried to obtaining 2 – 4% moisture content. Dry particle then put in blender and was sprayed by melamine formaldehyde adhesive resin using spray gun. The resin solid content of the board was 10% based on oven dry particle and the target density was 0.7 gcm³. The manufacture condition was 25 kgcm⁻², 130°C and 10m for pressure, temperature, and pressing time respectively. The board then conditioned for two weeks before cut according to JIS A 5908-2003 standard [4]. Each board types were tested in four replications, totally 48 boards was produced in this study.

Results and discussion

The performance of composite board based on physical and mechanical properties were presented in Table 1. Data in the table showed that the performance of composite board made of gmelina and candlenut woods more superior compared to sengon wood. Good dimensional stability for gmelina boards was caused by the lower compaction ratio for he boards (1,63) compared to sengon (1,89) and candlenut (2,30). These value was obtained from calculation of ratio of board density to raw materials density. Its compaction ratio more higher compared to ideal compaction ratio for particle board namely 1.2 to 1.6 [5]. However, for maximizing utilization reason, the raw materials in any density must be utilize, even in high compaction ratio. Based on the phenomenon, some board types still needed to be improvement in dimensional stability.

The result of this study showed that, there are no special trend among of three wood species in term of modulus of rupture (MOR). For wafer particles, the board MOR made of gmelina wood stem more imperior compared to the hers, while in shavings particles, the board MOR made of gmelina wood stem particle more superior compared to the hers. In contrast, the board made from gmelina wood branch have lowest MOR for shavings particles, but in wafer particle its MOR was highest. Furthermore, in modulus of elasticity (MOE) parameter, the board made from wafer of gmelina wood have superior compared to the other wood species, while in shavings particles, the board made from gmelina wood species have lowest MOE, which mean the relation of MOR and MOE are linearly. This phenomenon