Skrining Aspergillus Antagonis Terhadap Phytophthora palmivora Butler. Penyebab Penyakit Busuk Buah Kakao di Sulawesi Tengah
Oleh: Fitriani Husain, Umrah, dan Muhammad Alwi ... 56-65

Studi Etnobotani Komparatif Tumbuhan Rempah yang Bernalai Sebagai Obat di Desa Tombi Kecamatan Ampibabo Kabupaten Pangi Moutong Sulawesi Tengah
Oleh: Hari Rusdwi Novitasiah, Eny Yuniati, dan Ramadhanil ... 66-77

Jenis Fungi Akuatik yang Dapat Menginfeksi Ikan Patin (Pangasius hypophthalmus Sauvage.) yang Dipelihara di Akuarium
Oleh: Atira ... 78-83

Struktur dan Komposisi Vegetasi Mangrove di Desa Lalombi Kecamatan Banawa Selatan, Kabupaten Donggala
Oleh: Endang P. Wahyuningsih, Samsurizal M. Suleman, dan Ramadhanil ... 84-100

Studi Komunitas Zooplankton Sebagai Gambaran Kualitas Perairan di Teluk Palu Sulawesi Tengah
Oleh: Eljonannah, Miswan, dan Ririn Prawita ... 101-112

Oleh: Mardiana Upara, Umrah, dan Muhammad Alwi ... 113-119

Bola Benih Sebagai Kiat Baru Dalam Rehabilitasi Hutan dan Lahan Kritis di Kecamatan Tinggimoncong, Sulawesi Selatan
Oleh: Muh. Restu, Syamsuddin Millang, Samuel Paembonan, Budirman Bachtiar, dan Gusmiat ... 120-134

DITERBITKAN OLEH
JURUSAN BIOLOGI
FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM
UNIVERSITAS TADULAKO
DAFTAR ISI

<table>
<thead>
<tr>
<th>Judul</th>
<th>Penulis</th>
<th>Halaman</th>
</tr>
</thead>
<tbody>
<tr>
<td>Skrining Aspergillus Antagonis Terhadap Phythophthora palmivora Butler. Penyebab Penyakit Busuk Buah Kakao di Sulawesi Tengah</td>
<td>Fitriani Husain, Umrah, dan Muhamad Alwi</td>
<td>56-65</td>
</tr>
<tr>
<td>Studi Etnobotani Komparatif Tumbuhan Rempah yang Bernilai Sebagai Obat di Desa Tombi Kecamatan Ampibabo Kabupaten Parigi Moutong Sulawesi Tengah</td>
<td>Hari Rusdi Novitasia, Eny Yuniati, dan Ramadhanil</td>
<td>66-77</td>
</tr>
<tr>
<td>Jenis Fungi Akuatik yang Dapat Menginfeksi Ikan Patin (Pangasius hypophthalmus Sauvage) yang Dipelihara di Akuarium</td>
<td>Atira</td>
<td>78-83</td>
</tr>
<tr>
<td>Struktur dan Komposisi Vegetasi Mangrove di Desa Lalombi Kecamatan Banawa Selatan Kabupaten Donggala</td>
<td>Endang P. Wahyuningsih, Samsurtal M. Suleman, dan Ramadhanil</td>
<td>84-100</td>
</tr>
<tr>
<td>Studi Komunitas Zooplankton Sebagai Gambaran Kualitas Perairan di Teluk Palu Sulawesi Tengah</td>
<td>Elijonahdi, Miswan, dan Ririn Prawita</td>
<td>101-112</td>
</tr>
<tr>
<td>Bola Benih Sebagai Kiat Baru dalam Rehabilitasi Hutan dan Lahan Kritis di Kecamatan Tinggimoncong, Sulawesi Selatan</td>
<td>Muh. Restu, Syamsuddin Millang, Samuel Paembonan, Budiman Bachtiar, dan Gusmiaty</td>
<td>120-134</td>
</tr>
</tbody>
</table>

ALAMAT REDAKSI:
Jurusun Biologi FMIPA
Universitas Tadulako
Kampus Bumi Tadulako Tondo
Jl. Soekarno-Hatta Km. 9 Palu – Sulawesi Tengah 94117
Telp. 0451-422611, Ext. 347. HP. 081354410504 // 081574144447
E-mail: alwimifpm@yahoo.co.id Fax: 0451-422644
Bola Benih Sebagai Kiat Baru dalam Rehabilitasi Hutan dan Lahan Kritis di Kecamatan Tinggimoncong, Sulawesi Selatan

Muh. Restu1,2,3,4,5, Syamsuddin Millang1,, Samuel Paembongan3,, Budirman Bachtiar3, dan Gusmiaty6,

1,2,3,4,5Fakultas Kehutanan Universitas Hasanuddin
Kampus Tamalanrea-Makassar, Sulawesi Selatan 90245
E.mail: smillang60@yahoo.com

ABSTRACT

Rehabilitate forest and farm critical must special attention and need of the new method that more practical, quick, and cheap. Method of seed ball is its alternative method, with consideration referred, then this research bent on for (1) know seed amount every seed ball that give percentage grows and plants growth sengon the best (2) know size of seed ball diameter the best to percentage grow and plants growth sengon; (3) know appropriate type of farm closing to percentage grow and plants growth sengon; (4) know interaction influence between seed amount every ball, level of seed ball, type of the best farm closing to percentage grow and plants growth sengon at the site. This research is executed start month September 2012 up to final December 2012 in district Tinggimoncong Gowa Regency. this research uses random design complete pattern factorial that consisted of 3 factor that is seed amounts every seed ball as first factor with 4 levels that is 5 seeds, 7 seeds, 9 seeds, and 11 seeds every seed ball, second that is large size factor its diameter of seed ball that consisted of 4 levels that is 2.5 cm, 4 cm, 5.5 cm, and 7 cm, third factor that is farm closing that consisted of 4 levels that is opened (grass), coppice, beams, and cleaned (disc with diameter 20 cm). The three of this treatment factor are combined until got counted 4 x 4 x 4 = 64 treatment units. Every treatment unit consisted of 3 seed balls and repeated 3 times until required 64 x 3 x 3 = 576 seed balls. Variable that perceived is time start germinate and percentage germinates every week during a month: first, plants growth (high and leaf amount) every month after second month for 2 month. Research result indicates that treatment of land cover has an effect on reality to germination percentage, leaf amount, and high plants as for seedball diameter, seed amount and interaction between land cover and seedball diameter have an effect on reality to percentage of germination and leaf amount. Treatment of grass land cover gives influence is done well by germination percentage, leaf amount, and high plants. Seedball diameter 7.0 cm and seed amount 11 seeds give influence is done well by germination percentage. Combination of grass land cover treatment and diameter of seed ball 7.0 cm give best influence.

Key words: Formulation, biological control agent, Aspergillus sp., and tablet.
PENDAHULUAN

Program rehabilitasi hutan dan lahan telah berlangsung sejak lama dan telah menghasilkan dana yang cukup besar. Setiap tahun kegiatan rehabilitasi hutan dan lahan dilakukan di seluruh Indonesia tak terkecuali Sulawesi Selatan. Fakta menunjukkan bahwa kegiatan rehabilitasi hutan dan lahan belum mampu mengatasi laju degradasi hutan. Untuk itu perlu dicari metode alternatif yang dapat memberikan hasil yang lebih baik dengan waktu yang lebih cepat.

Sengon (Paraserianthes falcata) adalah salah satu jenis tanaman yang memiliki sifat unggul dan kegunaan yang banyak sehingga digolongkan sebagai tanaman multiguna (multipurpose tree species). Selain sifatnya multiguna juga memiliki pertumbuhan cepat dan berkemampuan mengikat CO₂ yang cukup tinggi, sehingga menjadi salah satu jenis tanaman yang dipilih dalam program reboisasi dan penghijauan.

Metode rehabilitasi hutan dan lahan melalui cara dibuang dari udara atau meletakkan benih yang telah dicampur dengan media tanah liat dan pupuk kandang (seedball) merupakan salah satu metode yang potensial untuk dicobakan dalam rangka merehabilitasi lahan kritis di Sulawesi Selatan. Metode penanaman langsung (tanpa melewati pesemaian) baik dengan benih/biji yang ditabur langsung maupun dengan teknologi seedball telah digunakan pada berbagai upaya rehabilitasi hutan di wilayah Jepang, Canada, New Zealand dan Amerika dengan hasil yang memuaskan (Anonim, 1981; Viswanathan, 2003; Papworth, 2005), tetapi di Indonesia belum populer pelaksanaannya. Masyarakat belum banyak mengenal teknologi ini, juga belum diketahui besarnya bila benih, berapa banyak biji/benih yang ideal setiap bila benih, berapa jumlah pupuk kandang setiap bila, jenis-jenis tanaman yang cocok digunakan untuk bila benih, dan jenis-jenis perlakuan terhadap lahan yang menjadi sasaran rehabilitasi agar diperoleh persentase tumbuh dan pertumbuhan tanaman yang lebih baik. Untuk itu penelitian ini dilakukan untuk mengungkap (1) Jumlah benih setiap bila benih yang memberikan persentase tumbuh dan pertumbuhan tanaman sengon yang terbaik; (2) Ukuran besarnya diameter bila benih yang terbaik terhadap persentase tumbuh dan pertumbuhan tanaman sengon; (3) Tipe penutupan lahan yang sesuai terhadap persentase tumbuh dan pertumbuhan tanaman sengon; (4) Mengatasi pengaruh interaksi yang terbaik antara jumlah benih, besarnya bila benih, tipe penutupan lahan terhadap persentase tumbuh dan pertumbuhan tanaman sengon di lapangan.
METODE PENELITIAN

Waktu dan Tempat Penelitian
Penelitian ini dilaksanakan dari bulan September 2012 di Kecamatan Tinggimoncong Kabupaten Gowa.

Bahan dan Alat Penelitian
Bahan dan alat-alat yang digunakan dalam penelitian ini adalah:
1. GPS, untuk mengetahui letak dan posisi lokasi penelitian
2. Altimeter, untuk mengetahui ketinggian tempat dari permukaan laut lokasi penelitian.
3. Meteran roll, tali rapiah, dan patok kayu untuk pembuatan plot penelitian.
4. Mistar, untuk mengukur tinggi tanaman.
5. Suunto, untuk mengukur lereng lokasi penelitian.
6. Calipfer, untuk mengukur diameter tanaman dan bila benih.
7. Kamera, untuk dokumentasi penelitian.
8. Parang, cangkul, dan gunting tanaman untuk pembuatan plot penelitian.
10. Pupuk kandang yang telah difermentasi dan diayak.
11. Talang Plastik untuk media uji perkecambahan benih sebelum digunakan.
12. Paras steril untuk media perkecambahan.
13. Sprayer tangan untuk penyemprotan uji perkecambahan.
14. Tally Sheet dan alat tulis menulis untuk memudahkan mencatat dan merekam data hasil pengukuran dan keterangan lainnya dari lapangan.

Metode Penelitian
Penelitian ini menggunakan rancangan Acak Lengkap Pola Faktorial yang terdiri atas tiga faktor yaitu jumlah biji/benih setiap bola benih sebagai faktor pertama dengan empat taraju yaitu 5 benih, 7 benih, 9 benih, dan 11 benih setiap bola benih, faktor kedua yaitu ukuran besarnya diameter bola benih yang terdiri atas empat taraju yaitu 3 cm, 5 cm, 7 cm, dan 9 cm, faktor ketiga yaitu penutupan lahan yang terdiri atas empat taraju yaitu terbuka (rumpun), semak belukar, alang-alang, dan dibersih (pinginan dengan diameter 30 cm). Ketiga faktor perlakuan ini dikombinasikan sehingga diperoleh sebanyak 4 x 4 x 4 = 64 unit perlakuan. Setiap unit perlakuan terdiri atas tiga bola benih dan diulang sebanyak empat kali sehingga dibutuhkan sebanyak 64 x 3 x 3 = 576 bola benih. Jarak tanam (peletakan) bola benih antar unit perlakuan 2 x 2 meter, sehingga dibutuhkan lahan seluas ± 2.304 m². Variabel yang diamati adalah waktu mulai berkecambah dan persentase berkecambah setiap minggu selama satu bulan pertama, pertumbuhan tanaman (tinggi dan jumlah daun) setiap 2 minggu setelah bulan pertama selama 2 bulan.

Prosedur Pelaksanaan Penelitian:
Persiapan Lapangan
1. Penetapan dan Pengukuran lokasi penelitian dengan menggunakan roll meter.
2. Pemasangan ajar sebagai posisi tempat meletakkan bola benih. Ajar dibuat dari belahan bambu dengan penjag 100 cm dan dipasang pada jarak 2 x 2 m.

Persiapan Bahan Bola Benih
1. Tanah liat diperoleh dari pengrajin gerabah atau batu bata di Kabupaten Takalar.
4. Pengadaan peralatan pembuatan bola benih.

Uji Viabilitas Benih Sebelum di Gunakan
1. Benih yang diperoleh dari pengadaan benih perlu dilakukan uji viabilitas benih sebelum digunakan agar diketahui daya kecambahnya.
2. Pengadaan pasir sesuai kebutuhan dan diseterikan terlebih dahulu dengan cara disangrai dalam wajan panas sebelum digunakan.
3. Pasir steril dimasukkan dalam wadah perkecambahan lalu dibasahi secukupnya dengan diseprot memakai alat sprayer tangan.
4. Pasir basah yang berada dalam wadah ditaburi/ditanami benih sengon dengan jarak antara satu benih dengan benih lainnya ± 2 cm.
5. Penyiraman dilakukan setiap hari dengan cara disemprot dengan air dengan alat sprayer tangan secara hati-hati.
7. Benih dapat digunakan apabila persentase perkecambahan yang diperoleh ≥ 60 %

Pembuatan Bola Benih.
1. Tanah liat yang telah disiapkan, dibersihkan dari segala kotoran (bahan organik) lalu diberi air secukupnya kemudian dibuat adonan.
3. Adonan tanah liat tersebut diambil dan ditimbang sesuai dengan kebutuhan (sesuai besarnya bola benih yang dibutuhkan) agar besarnya bola benih seragam untuk setiap perlakuan yang sama.
4. Adonan tanah yang telah ditimbang lau digempangkan dengan menggunakan roller dari bambu secara merata.
5. Adonan tanah liat yang telah digempangkan tersebut lalu ditaburi pupuk kandang kering secara merata pada bagian permukaan.
6. Setelah ditaburi pupuk kandang dengan jumlah yang sama lalu diberi benih tanaman sengon sesuai perlakuan dan digulung secara perlahan.
8. Bola-bola benih tersebut diletakkan dalam wadah yang telah disiapkan lalu dijemur pada sinar matahari selama 1-3 hari tergantung cuaca.

Peletakan (Penanaman) Bola Benih.
1. Bola-bola benih yang telah siap tanam (diletakkan) tersebut diangkat ke lokasi penelitian dengan menggunakan rak-rak telur agar tidak mengalami keretakan atau pecah selama dalam perjalanan menuju lokasi penelitian.
3. Setiap perlakuan (bola benih) diberi label sebagai tanda pengenal.

Pengamatan dan Pengukuran
1. Pengamatan dan pengukuran persentase tumbuh tanaman sengon
dilakukan mulai minggu kedua sampai minggu keempat setelah tanam.

2. Pengamatan dan pengukuran pertumbuhan tanaman dilakukan setiap bulan selama 3 bulan, mulai pada akhir bulan kedua setelah tanam sampai akhir bulan keempat yaitu dengan menghitung persentase tumbuh, diameter, tinggi dan jumlah tanaman.

Analisis Data
Data hasil penelitian yang telah diperoleh dianalisis dengan menggunakan Rancangan Acak Lengkap Pola Faktorial. Untuk membedakan antar perlakuan yang satu dengan yang lainnya digunakan uji beda nyata jujur (BNJ) dengan bantuan program Excel dan SPSS for Windows.

HASIL DAN PEMBAHASAN
Perkecambahan
Uji Viabilitas Benih
Berdasarkan hasil uji viabilitas benih menunjukkan bahwa dari 270 benih yang dikecambahkan diperoleh rata-rata persentase perkecambahan sebesar 72%. Hasil uji tersebut dapat dijadikan sebagai dasar bahwa benih tersebut dapat digunakan dalam pembuatan bola benih karena persentase perkecambahan yang diperoleh ≥ 60%.

Persentase Perkecambahan Bola Benih
Hasil analisis ragam menunjukkan bahwa perlakuan penutupan lahan dan diameter bola benih berpengaruh sangat nyata terhadap persentase perkecambahan bola benih di lapangan, tetapi perlakuan jumlah benih dalam bola benih dan interaksi antara penutupan lahan dengan diameter bola benih hanya berpengaruh nyata, sedangkan perlakuan interaksi antara penutupan lahan dengan jumlah benih dalam bola benih dan interaksi antara diameter bola benih dengan jumlah benih dalam bola benih, serta interaksi antara penutupan lahan, diameter bola benih, dan jumlah benih dalam bola benih berpengaruh tidak nyata terhadap persentase perkecambahan bola benih.

Penutupan Lahan
Hasil penelitian menunjukkan bahwa perlakuan penutupan lahan rumput berbeda sangat nyata dengan perlakuan penutupan lahan piringan, semak belukar, dan alang-alang, sedangkan perlakuan penutupan alang-alang berbeda tidak nyata dengan perlakuan semak belukar dan piringan. Untuk lebih jelasnya dapat dilihat pada Tabel 1.

Tabel 1. Pengaruh perlakuan penutupan lahan terhadap persentase perkecambahan bola benih di lapangan

<table>
<thead>
<tr>
<th>Penutupan Lahan</th>
<th>Rata-rata perkecambahan (%)</th>
<th>Uji BNJ 0.05 = 6.15</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alang-alang</td>
<td>5.49</td>
<td>a</td>
</tr>
<tr>
<td>Semak belukar</td>
<td>5.83</td>
<td>a</td>
</tr>
<tr>
<td>Piringan</td>
<td>7.85</td>
<td>a</td>
</tr>
<tr>
<td>Rumput</td>
<td>26.25</td>
<td>b</td>
</tr>
</tbody>
</table>

Keterangan: Huruf yang sama berarti berbeda tidak nyata pada taraf 5 %.

Tabel 1 menunjukkan bahwa memberikan hasil persentase perperlakuan penutupan lahan rumput kecambahan terbaik yaitu 26.25%, dan
perlakuan penutupan lahan alang-alang memberikan hasil persentase perkecambahan terkecil yaitu 5,49%. Perlakuan terbaik (penutupan rumput) sebesar 26,25% masih lebih kecil apabila dibandingkan dengan hasil pengamatan percobaan aerial seeding di Sulawesi Selatan tahun 2011 sebesar 38,92% (Miliang dkk, 2011). Rendahnya persentase perkecambahan yang ditemukan mungkin disebabkan oleh tidak adanya perlakuan awal benih. Seperti yang dinyatakan oleh (Kosasih, 2013) bahwa jika penaburan dilakukan dengan tanpa diberi perlakuan pendahuluan, maka perkecambahan benih sengon akan terjadi sekitar 14 hari dengan persen kecambah hanya sekitar 20%.

Diameter Bola Benih

Hasil penelitian menunjukkan bahwa perlakuan diameter bola benih 7,0 cm berbeda sangat nyata dengan perlakuan diameter boa benih 2,5 cm, tetapi berbeda tidak nyata dengan perlakuan diameter bola benih 4,0 cm, dan 5,5 cm. Begitu juga perlakuan bola benih 2,5 cm berbeda tidak nyata dengan perlakuan bola benih diameter 4,0 cm dan 5,5 cm (Tabel 2).
Tabel 2. Pengaruh perlakuan diameter bola benih terhadap persentase perkecambahan bola benih di lapangan

<table>
<thead>
<tr>
<th>Diameter Bola Benih</th>
<th>Rata-rata perkecambahan (%)</th>
<th>Uji BNJ 0.05 = 1.22</th>
</tr>
</thead>
<tbody>
<tr>
<td>D1 (2.5 cm)</td>
<td>7.15</td>
<td>a</td>
</tr>
<tr>
<td>D2 (4.0 cm)</td>
<td>11.25</td>
<td>ab</td>
</tr>
<tr>
<td>D3 (5.5 cm)</td>
<td>11.46</td>
<td>ab</td>
</tr>
<tr>
<td>D4 (7.0 cm)</td>
<td>15.56</td>
<td>b</td>
</tr>
</tbody>
</table>

Keterangan: Huruf yang sama berarti berbeda tidak nyata pada taraf 5%.

Jumlah Benih Setiap Bola Benih

Hasil penelitian menunjukkan bahwa perlakuan jumlah benih 11 biji setiap bola benih berbeda sangat nyata dengan perlakuan jumlah benih 5 biji setiap bola benih, tetapi berbeda tidak nyata dengan perlakuan jumlah benih 7 biji dan 9 biji, sedangkan perlakuan jumlah benih 5 biji berbeda tidak nyata dengan perlakuan jumlah benih 7 biji dan 9 biji setiap bola benih. Untuk lebih jelasnya dapat dilihat pada Tabel 3.
Tabel 3. Pengaruh perlakuan jumlah benih setiap bola benih terhadap persentase perkecambahan bola benih di lapangan

<table>
<thead>
<tr>
<th>Jumlah benih dalam bola benih</th>
<th>Rata-rata perkecambahan (%)</th>
<th>Uji BNJ 0.05 = 5.24</th>
</tr>
</thead>
<tbody>
<tr>
<td>J1 (5 biji)</td>
<td>8.54</td>
<td>a</td>
</tr>
<tr>
<td>J2 (7 biji)</td>
<td>11.11</td>
<td>ab</td>
</tr>
<tr>
<td>J3 (9 biji)</td>
<td>11.12</td>
<td>ab</td>
</tr>
<tr>
<td>J4 (11 biji)</td>
<td>14.58</td>
<td>b</td>
</tr>
</tbody>
</table>

Keterangan: Huruf yang sama berarti berbeda tidak nyata pada taraf 5 %.

Tabel 3 menunjukkan bahwa perlakuan jumlah benih 11 biji setiap bola benih memberikan hasil persentase perkecambahan terbaik yaitu 14,58 %, dan perlakuan jumlah benih 5 biji setiap bola benih memberikan hasil persentase perkecambahan terkecil yaitu 8,54%. Hal ini terjadi karena semakin banyak jumlah benih dalam bola benih berarti semakin tinggi peluang untuk mendapat jumlah benih yang berkecambah. Namun, persaingan terhadap hara, air, dan cahaya belum terjadi. Hal ini dapat dimaklumi karena kebutuhan setiap benih untuk berkecambah terpengaruhi dan kebutuhannya relative sama untuk setiap biji, sehingga belum terjadi persaingan antar benih. Namun demikian, dari segi ekonomi jumlah benih yang lebih sedikit pada setiap bola benih lebih baik karena biayanya semakin rendah. Semakin sedikit jumlah benih maka semakin sedikit jumlah benih yang diperlukan, berarti semakin sedikit biaya yang dibutuhkan. Untuk itu jumlah benih 7 biji setiap bola menjadi pilihan karena secara statistik berbeda tidak nyata dengan jumlah benih 11 maupun jumlah benih 9 dan secara ekonomis menguntungkan.

Interaksi antara penutupan lahan dan diameter bola benih

Hasil penelitian menunjukkan bahwa perlakuan interaksi antara penutupan lahan rumput dengan diameter bola benih 7 cm berbeda nyata dengan semua perlakuan kecuali perlakuan interaksi rumput dengan diameter bola benih 4 cm dan 5,5 cm. Perlakuan interaksi antara piringan dengan diameter bola 7 cm berbeda tidak nyata dengan semua perlakuan kecuali perlakuan interaksi antara rumput dengan diameter bola 7 cm, alang-alang dengan diameter bola 5,5 cm, semak belukar dengan diameter bola 2,5 cm, dan piringan dengan diameter bola 2,5 cm. Untuk lebih jelas dapat dilihat pada Tabel 4.
Gambar 1. Persentase perkecambahan bola benih hubungannya dengan diameter bola benih dan penutupan lahan.

Pertumbuhan Jumlah Daun Tanaman

Hasil analisis ragam menunjukkan bahwa perlakuan penutupan lahan berpengaruh sangat nyata terhadap pertumbuhan jumlah daun tanaman sengon di lapangan, dan interaksi antara penutupan lahan dengan diameter bola benih berpengaruh nyata terhadap pertumbuhan jumlah daun tanaman sengon, sedangkan perlakuan diameter bola, jumlah benih setiap bola, interaksi antara penutupan lahan dengan jumlah benih dalam bola benih dan interaksi antara diameter bola benih dengan jumlah benih dalam bola benih, serta interaksi antara penutupan lahan, diameter bola benih, dan jumlah benih dalam bola benih berpengaruh tidak nyata terhadap jumlah daun tanaman sengon.
Penutupan Lahan
Hasil penelitian menunjukkan bahwa perlakuan penutupan lahan rumput berbeda sangat nyata dengan perlakuan penutupan lahan piringan, semak belukar, dan alang-alang, sedangkan perlakuan penutupan alang-alang berbeda tidak nyata dengan perlakuan semak belukar dan piringan. Untuk lebih jelasnya dapat dilihat pada Tabel 5.

Tabel 5. Pengaruh perlakuan penutupan lahan terhadap jumlah daun tanaman sengon di lapangan

<table>
<thead>
<tr>
<th>Penutupan Lahan</th>
<th>Jumlah daun (helai)</th>
<th>Uji BNJ 0.01 = 0.85</th>
</tr>
</thead>
<tbody>
<tr>
<td>Semak belukar</td>
<td>1.23</td>
<td>a</td>
</tr>
<tr>
<td>Alang-alang</td>
<td>1.59</td>
<td>a</td>
</tr>
<tr>
<td>Piringan</td>
<td>1.62</td>
<td>a</td>
</tr>
<tr>
<td>Rumput</td>
<td>5.05</td>
<td>b</td>
</tr>
</tbody>
</table>

Keterangan: Huruf yang sama berarti berbeda tidak nyata pada taraf 5 %.

Tabel 5 menunjukkan bahwa perlakuan penutupan lahan rumput memberikan hasil rata-rata pertumbuhan jumlah daun tanaman sengon terbaik yaitu 5,05 helai dan perlakuan penutupan lahan semak belukar memberikan hasil rata-rata pertumbuhan jumlah daun tanaman sengon terkecil yaitu 1,23 helai. Perlakuan penutupan lahan rumput memberikan hasil terbaik terhadap rata-rata jumlah daun tanaman sengon. Hal ini disebabkan oleh kondisi iklim mikro (suhu dan kelembaban) pada rumput sesuai dengan yang dibutuhkan oleh anakan sengon untuk tumbuh. Tanaman sengon pada tingkat semi (anakan) masih memerlukan naungan relatif ringan dan kelembaban yang cukup, dan sebaliknya pada perlakuan piringan jumlah cahaya yang sampai pada semi sengon berlebihan, sekali gus mengurangi air yang ada disekitar semi sehingga semi kekurangan kelembaban dan kelebihan cahaya yang mengakibatkan pertumbuhan semi terganggu. Begitu pula yang terjadi penutupan lahan alang-alang dan semak belukar, kondisi penutupan cahaya yang cukup tebal, sehingga jumlah cahaya yang masuk ke permukaan tanah tempat semi tumbuh sangat terbatas, sehingga kebutuhan semi akan cahaya tidak terpenuhi yang mengakibatkan pertumbuhan terganggu. Selain faktor cahaya, semi sengon juga bersaing dalam hal kelembaban, hara dan ruang gerak karena alang-alang dan semak belukar memiliki jumlah populasi yang cukup tinggi.

Interaksi Penutupan Lahan Dengan Diameter Bola Benih
Hasil penelitian menunjukkan bahwa perlakuan interaksi antara penutupan lahan rumput dengan diameter bola benih 7 cm berbeda nyata dengan perlakuan interaksi rumput dengan diameter bola benih 4 cm, 5.5 cm, 2.5 cm, dan piringan dengan diameter bola 7 cm, serta alang-alang dengan diameter bola 2.5 cm, tetapi berbeda tidak nyata dengan perlakuan lainnya. Untuk lebih jelas dapat dilihat pada Tabel 6.
Tabel 6. Pengaruh perlakuan interaksi penutupan lahan dan diameter bola benih terhadap jumlah daun tanaman sengon di lapangan

<table>
<thead>
<tr>
<th>Interaksi penutupan lahan dengan diameter bola benih</th>
<th>Jumlah Daun (helai)</th>
<th>Hasil Uji BNJ</th>
</tr>
</thead>
<tbody>
<tr>
<td>RPTD4</td>
<td>6.2222</td>
<td>a</td>
</tr>
<tr>
<td>RPTD2</td>
<td>5.2222</td>
<td>ab</td>
</tr>
<tr>
<td>RPTD3</td>
<td>4.4167</td>
<td>abc</td>
</tr>
<tr>
<td>RPTD1</td>
<td>4.3333</td>
<td>abc</td>
</tr>
<tr>
<td>PRND4</td>
<td>3.2727</td>
<td>abcd</td>
</tr>
<tr>
<td>ALD1</td>
<td>2.8889</td>
<td>abcd</td>
</tr>
<tr>
<td>SBD2</td>
<td>1.9444</td>
<td>bcd</td>
</tr>
<tr>
<td>PRND3</td>
<td>1.7775</td>
<td>bcd</td>
</tr>
<tr>
<td>ALD2</td>
<td>1.6944</td>
<td>cd</td>
</tr>
<tr>
<td>SBD3</td>
<td>1.5556</td>
<td>cd</td>
</tr>
<tr>
<td>ALD4</td>
<td>1.1389</td>
<td>cd</td>
</tr>
<tr>
<td>PRND2</td>
<td>0.9167</td>
<td>cd</td>
</tr>
<tr>
<td>SBD1</td>
<td>0.7778</td>
<td>d</td>
</tr>
<tr>
<td>SBD4</td>
<td>0.6389</td>
<td>d</td>
</tr>
<tr>
<td>ALD3</td>
<td>0.6389</td>
<td>d</td>
</tr>
<tr>
<td>PRND1</td>
<td>0.6108</td>
<td>D</td>
</tr>
</tbody>
</table>

Keterangan: Huruf yang sama berarti berbeda tidak nyata pada taraf 5%.

Tabel 8 menunjukkan bahwa perlakuan interaksi antara rumput dengan diameter bola benih 7 cm memberikan rata-rata jumlah daun terbanyak yaitu 6.22 helai dan perlakuan interaksi piringan dengan diameter bola benih 2.5 cm memberikan rata-rata jumlah daun terkecil yaitu 0.61 helai. Rata-rata pertumbuhan jumlah daun tanaman sengon pada masing-masing penutupan lahan ternyata tergantung pada diameter bola benih dan tidak ditentukan oleh jumlah benih dalam bola benih. Diameter bola erat hubungannya dengan jumlah pupuk kandang dan tanah liat, sehingga ada kecenderungan diameter boca yang lebih besar yang lebih baik. Hal ini sejalan dengan yang dinyatakan oleh Sutejo (1994) bahwa pupuk adalah bahan yang diberikan ke dalam tanah baik organik maupun anorganik dengan maksud untuk mengganti kehilangan unsur hara dari dalam tanah dan bertujuan untuk meningkatkan produksi tanaman dalam keadaan faktor lingkungan yang baik.

Pada perlakuan penutupan lahan piringan dan rumput memperlihatkan bahwa diameter bola benih 7 cm memberikan pertumbuhan jumlah daun tertinggi, sedangkan pada perlakuan penutupan lahan alang-alang dan semak belukar ternyata diameter bola benih 2.5 cm dan 4 cm memberikan rata-rata pertumbuhan jumlah daun tertinggi. Untuk lebih jelasnya dapat dilihat pada Gambar 2.
Gambar 2. Pengaruh perlakuan interaksi penutupan lahan dan diameter bola benih terhadap jumlah daun tanaman sengon di lapangan

Hasil penelitian juga menunjukkan bahwa pada tingkat pertumbuhan jumlah daun semai sengon perlakuan interaksi penutupan lahan rumput dengan diameter bola 4 cm dapat dianjurkan untuk dipilih karena secara statistik berbeda tidak nyata dengan diameter bola 5,5 cm dan 7 cm. Hal ini menjadi pertimbangan karena semakin besar ukuran diameter bola benih maka semakin besar biaya produksi bola benih dan biaya angkutan ke lapangan. Dengan kata lain semakin kecil ukuran bola benih maka semakin menguntungkan. Untuk penutupan lahan piringan ada kecenderungan bahwa semakin besar ukuran diameter bola maka jumlah daun sengon semakin banyak, sebaliknya pada penutupan lahan alang-alang dan semak belukar terlihat bahwa semakin besar diameter bola benih maka semakin sedikit jumlah daun sengon.

Tinggi Tanaman

Hasil analisis ragam menunjukkan bahwa perlakuan penutupan lahan berpengaruh sangat nyata terhadap rata-rata pertumbuhan tinggi tanaman sengon di lapangan, tetapi perlakuan ukuran diameter bola benih, jumlah benih dalam bola benih dan interaksi antara penutupan lahan dengan diameter bola benih, perlakuan interaksi antara penutupan lahan dengan jumlah benih dalam bola benih, dan interaksi antara diameter bola benih dengan jumlah benih dalam bola benih, serta interaksi antara penutupan lahan, diameter bola benih, dan jumlah benih dalam bola benih berpengaruh tidak nyata terhadap terhadap rata-rata pertumbuhan tinggi tanaman sengon. Untuk mengetahui perlakuan yang berbeda nyata dan memberikan hasil terbaik pada faktor penutupan lahan maka dilanjutkan dengan uji beda nyata jujur pada taraf nyata 0,05.

Penutupan lahan

Hasil penelitian menunjukkan bahwa perlakuan penutupan lahan rumput berbeda sangat nyata dengan perlakuan penutupan lahan piringan, semak belukar, dan alang-alang, sedangkan perlakuan penutupan alang-alang berbeda tidak nyata dengan perlakuan semak belukar dan piringan. Untuk lebih jelasnya dapat dilihat pada Tabel 7.
Tabel 7. Pengaruh perlakuan penutupan lahan terhadap pertumbuhan tinggi tanaman sengon di lapangan

<table>
<thead>
<tr>
<th>Penutupan Lahan</th>
<th>Rata-Rata Tinggi Tanaman (cm)</th>
<th>Uji BNJ 0.01 = 0.198</th>
</tr>
</thead>
<tbody>
<tr>
<td>Piringan</td>
<td>0.79</td>
<td>a</td>
</tr>
<tr>
<td>Semak belukar</td>
<td>1.02</td>
<td>a</td>
</tr>
<tr>
<td>Alang-alang</td>
<td>1.57</td>
<td>a</td>
</tr>
<tr>
<td>Rumput</td>
<td>3.90</td>
<td>b</td>
</tr>
</tbody>
</table>

Keterangan: Huruf yang sama berarti berbeda tidak nyata pada taraf 5 %

Tabel 7 menunjukkan bahwa perlakuan penutupan lahan rumput memberikan rata-rata pertumbuhan tinggi tanaman sengon terbaik yaitu 3,90 cm dan perlakuan penutupan lahan piringan memberikan hasil pertumbuhan tinggi tanaman sengon terkecil yaitu 0,79 cm. Perlakuan penutupan lahan rumput memberikan hasil terbaik terhadap rata-rata tinggi semai tanaman sengon. Hal ini disebabkan oleh kondisi iklim mikro (suhu dan kelembaban) pada rumput sesuai dengan yang dibutuhkan oleh anakan sengon untuk tumbuh. Tanaman sengon pada tingkat semai (anakan) masih memerlukan naungan relatif ringan dan kelembaban yang cukup, dan sebaliknya pada perlakuan piringan jumlah cahaya yang sampai pada semai sengon berlebihan, sekaligus mempercepat proses peng-upaan air yang ada disekitar semai sehingga semai kekurangan air dan kelebihan cahaya yang mengakibatkan pertumbuhan semai terganggu. Begitu pula yang terjadi penutupan lahan alang-alang dan semak belukar, kondisi penutupan tajuk semak belukar dan alang cukup tebal, sehingga jumlah cahaya yang masuk ke permukaan tanah tempat semai tumbuh sangat terbatas, sehingga kebutuhan semai akan cahaya tidak terpenuhi yang mengakibatkan pertumbuhan terganggu.

Selain faktor cahaya, semua sengon juga bersaing dalam hal kelembaban, hara dan ruang gerak karena alang-alang dan semak belukar memiliki jumlah populasi yang cukup tinggi. Hal ini didukung oleh pernyataan (Sutopo, 2002) bahwa benih yang berkecambah akan berkompetisi untuk hidup, persaingan akan cahaya matahari, persaingan ruang untuk tumbuh, dan persaingan dalam mendapatkan harta dan air di ruang tumbuh tersebut. Penyerapan air oleh benih dipengaruhi oleh sifat benih itu sendiri terutama kulit peindungnya dan jumlah air yang tersedia pada media di sekitarnya, sedangkan jumlah air yang diperlukan bervariasi tergantung kepada jenis benihnya, dan tingkat pengambilan air turut dipengaruhi oleh suhu.

SIMPULAN

Berdasarkan hasil penelitian dapat disimpulkan sebagai berikut:

1. Perlakuan penutupan lahan, diameter bola, dan jumlah benih, serta interaksi antara penutupan lahan dan diameter bola berpengaruh nyata terhadap persentase perkecambahan dan jumlah daun, tetapi pada tinggi tanaman hanya penutupan lahan yang berpengaruh nyata, perlakuan lainnya berpengaruh tidak nyata.
2. Perlakuan rumput, diameter bola 7,5 cm dan jumlah benih 11 biji memberikan persentase perlakuan tertinggi, begitu pula pada pertumbuhan jumlah daun dan tinggi tanaman perlakuan rumput yang terbaik.

3. Perkecambahan dan pertumbuhan jumlah daun sengon tertinggi diperoleh pada perlakuan teras antara penutupan lahan rumput dengan diameter bola 7 cm.

4. Terdapat kecenderungan semakin besar ukuran diameter bola maka semakin baik perkecambahan dan jumlah daun sengon pada penutupan lahan rumput, piringan, dan semak belukar, tetapi sebaliknya pada alang-alang.

DAFTAR PUSTAKA

Proinsi Sulawesi Selatan Departemen Kehutanan.

Viswanathan, L.N. Seed balls for greening India. [http://www.goodnewsindia.com/index.php/suplemen/article].