INVESTING IN FOOD QUALITY, SAFETY & NUTRITION

Editor:
Lilis Nuraida
Purwiyatno Hariyadi
Ratih Dewanti-Hariyadi
Harsi D. Kusumaningrum
Desty Gita Pratiwi
Nelis Immaningsih

SEAFAST CENTER
Southeast Asian Food & Agricultural Science & Technology (SEAFAST) Center
Bogor Agricultural University
CONTENT

Preface.. iii
Keynote Speech of The Minister of Agriculture, Republic of Indonesia xi
Welcome Speech of Rector of Bogor Agricultural University xvii
Welcome Remarks of SEAFAST Center... xxi
Organizers .. xxiii

Lessons Learned from the Current Food Crisis

Food Science and Technology: Challenges and Opportunities as a
Response to the Current Food Crisis .. 1
Ken Buckle

Avoiding the Double Burden of Over and Under Nutrition in the Current
Food Crisis ... 17
Rosemary Walzem

Assuring Nutritionally Adequate & Safe Food Supply

Current Situation of Food Security in Indonesia.. 33
Achmad Suryana

Nutrition Security: What Next After the National Food and Nutrition
Workshop? .. 43
Soekirman

Partnership for Technology Transfer to MSMEs: Improving Food Quality
and Safety .. 55
Purwiyatno Hariyadi

Roles of Food Industries

R&D Strategy to Overcome Food Crisis .. 67
Don Sullins

Kraft’s Supply Chain Approach to Food Safety .. 69
James Andrade

Food Quality, Nutrition and Safety in Food Service Industry: Challenges
and Opportunities .. 77
Mahmood A. Khan
Investing In Food Quality, Safety and Nutrition

Roles of Consumers
Consumer Behavior towards Choices & Its Consequences on Nutritional Status .. 87
John Palmer

Improving Food Safety & Quality
Food Safety Policy in Indonesia ... 95
Dedi Fardiaz
Improving of Food Safety and Quality of SMEs in Indonesia: lesson learned .. 103
Steven Gregory
Assuring Indonesian Seafood Quality and Safety: Lessons from the past for a better future .. 105
Achmad Poernomo
Use of Simple Micro-titer Plate Assay for Assessment of Biofilm-Forming Bacteria in High Risk Area of Frozen Seafood Plant .. 115
Damkerng Bundidamorn and Sudsai Trevanich
Isolation and Identification of Coliforms and Escherichia coli in Frozen Ready to Eat Food under Long Term Storage .. 121
Pornrujee Suppadit and Sudsai Trevanich
Growth Inhibition of Contaminated Microbial Spores in Pasteurized Milk by Tea Polyphenol Extract .. 127
Ornurach Uasiriphan and Arunsrir Leejeerajumnean
Migration and Contamination of Polyglycerol Acetate as Alternative Plasticizers in Polyolefin Thermoplastic Matrices in Contact with Water and Olein-Oil Media .. 139
Basuki Wirjosentono, Hankelman Sarumaha and Marpongahut
The Role of Cisadane – Serpong Water Treatment Plant to Ensure 24–Hour- Drinking Water Supply .. 149
Audrey Coran Rumamby
Using Organic Acids, Sodium Hypochlorite And Ozone For Listeria monocytogenes Reduction In Fresh-Cut Carrots .. 161
Phunnathorn Phuchivatanapong and Arunsrir Leejeerajumnean
Influence of Combination of Alginate, Carrageenan, and Guar Gum as Stabilizing Agents on Ice-Cream Quality .. 167
Murdinah, Liana Etika Sari, and Anna Muawanah
Analysis and Planning of Garbage Treatment in a Drinking Water Treatment Plant .. 179
Lidia Khosmatika

A Study of Cisadane River Based on the Trace Result of PT. Tirta Cisadane) ... 193
Hartini Adjam

Role of Students in Sustaining Food Safety in Campus: A Case Study in “Food Sellers Mentoring” Program in Bogor, Indonesia 203
Galih Nugroho and Komalita Pertiwi

Inhibition of Aspergillus parasiticus Growth and Reduction of Aflatoxin by Yeast Isolated from Ragi, an Indonesian Traditional Culture Starter ... 211
R. Dewanti-Hariyadi, D. S. Raharjanti, C.C. Nurwitri and E. Kusumaningtyas

Improving Competitiveness of Traditional Foods

Policy on Development of Traditional Foods .. 227
Arman Moenek

Empowerment of Farmers and SMES of Traditional Foods: Lesson Learned ... 233
Mary Astuti

Product Development of Traditional Food “Yangko” through Value Engineering ... 247
Nur Edi Nomalis, Wahyu Supartono, Darmawan Ari Nugroho, and Anggoro Cahyo Sukartiko

Sanitation and Hygiene of “Cincau” (Indonesian Traditional Food) Manufacturer .. 255
Dina R. Pangestuti, Laksmi Widajanti, and M. Zen Rahfiludin

Irradiation to Ensure The Safety and Shelf-Life Extension of Traditional Ready to Eat Meals: Arem-Arem .. 265
Z. Irawati, C. M. Nurcahya, and I. Lubis

Effect of Turmeric Extracts (Curcuma domestica L.) on Water Activity Value, Total Microbe and the Number of Coliform of Oven-dried Abon During Storage .. 277
Priyo Bintoro V., Sutaryo and Warsiti

Application of Herbs and Spices Extracts As Preservatives for Wet Noodles .. 285
Lilis Nuraida, Nuri Andarwulan, Meiilina Sukmawati, and Elvina Yohana
Improving Food Security

Research Policy on Food Diversification in Indonesia 313
Amin Soebandrio

Local Economy Empowerment and Food Security: Lesson Learned 315
Dahrul Syah

Optimizing Food Security through Bioavailability Indices 331
Indah Epriliati

Improvement of Sago Competitiveness for Food Security in Maluku 343
Wardis Girsang and Eddy Ch. Papilaya

Development of Instant Corn as Raw Material for Traditional Corn-
Based Foods: an Effort to Support the Food Diversification Program 361
Meta Mahendra Datta, Abu Bakar Tawali, Amran Laga

Research and Development in Processing Technologies of Corn
Noodle to Support National Food Security Program 371
Feri Kusmandar

Industrialization of Modified Cassava Flour (MOCAL/MOCAF)
through Cluster Industrial Concept: from Opportunity Identification
to Market Development .. 379
Achmad Subagio, Wiwik Siti Windrati, and Yuli Witono

Study On Noodle Making From Corn and Sago Flours 387
Mariyati Bilang

Development of Non-Oilseed Legumes as a Source of Protein to
Strengthen Food Security in Marginal Areas 397
Achmad Subagio, Wiwik Siti Windrati, Yuli Witono and A. Naf’

Consumption and Preference Survey on Maize Based Food Product
in Sub-Urban Area and Production area of Maize: Case Study in
Bogor and Bojonegoro .. 405
Harsi D. Kusumaningingrum and Aldilla S. Utami

Improving Nutrition

Public-private Partnership Initiatives to Improve Community
Nutritional Status ... 415
Hardinsyah

Control of Blood Glucose Level by Green Tea and or Mullberry Leaf
Tea on Diabetic Rats .. 417
Evy Damayanti, Rusman Efendi, Lilik Kustiyah, and Nastiti Kusumorini
The Impact of Supplementary Feeding Program on Nutritional Status & Academic Performance of University Students .. 425
Budi Setiawan, Dodik Briawan, Rizal Damanik, Tjahja Muhandari, Dias Indrasti

Evaluating the Stability of Lutein as a Functional Ingredient in reconstituted UHT Milk.. 457
Dase Hunaefi, Hilton Deeth and Sapna Kamath Voderbet

Potency of Pegagan (Centella asiatica) as Braintonic to Improve Intelligence of Young Generations in Indonesia.. 465
Astrisya Artanti and Diana Lo

The Effect of Food-Based Micronutrient Intervention on the Body Weight Gain, Anemia Prevalence, Ferritin Depletion and Vitamin A Deficiency of Pregnant Woman... 473
Nurheni Sri Palupi, Made Astawan, Hadi Riyadi, Ahmad Sulaeman, Prihananto
Study On Noodle Making From Corn and Sago Flours

Mariyati Bilang

Food Science Department, Faculty of Agriculture, Hasanuddin University, Makassar, Indonesia

Abstract

Non-rice commodity has been increasingly discussed as food alternative commodity. Type of processing food applied on this research is noodle making from mixed sago and corn flours.

The aim of this research was to investigate the quality of noodle made from sago and corn flours, as well as to observe the impact of the addition of preservative materials towards the noodle's shelf life. Treatments implemented in the research are the mixture of sago and corn flours with the proportion of 50%-50%; 60%-40%; 40%-60%. The noodles were then treated with and without potassium sorbat (0.005%), and stored for four days. Parameters observed were the water contents, protein contents, ash contents, fiber contents, total microbe, organoleptic tests towards its texture, color, flavor and taste.

The best technique to prepare noodle from sago and corn flours was to steam the mixture after homogenization followed by molding. Salts 1.3%, 30% fresh egg, 0.3% sodium carbonate and 60% water were added to the formula. The most acceptable treatment was mixture of 60% sago and 40% flours for desirable physical characteristic, nutrition value and added by potassium sorbat (0.005%) for 2 days storage.

Introduction

Rice has become the food staple in Indonesia. The changes of global climate have affected the plant session and the variability of plant crop cultivated in Indonesia included rice. However, several communities on certain region of Indonesia are not significantly affected with that because they had local plant crops such as corn, sweet potatoes, sago and others as their alternative food staple.

The efforts have been pursued by the Indonesian government to not depend on rice or imported products (wheat products) as the source of food staple. The anticipation must be found to solve this food supplies problem by
educate people to learn how to make others food staples prepared from their local crops.

The changing trend food in Asian countries is driven by number of factors i.e. the increasing of population, GDP and the evolution in trade practices which lead the manufactures to create more kind of trend food such as noodle. The noodle manufacturing for some people stay in far from the city was not easy to find, so they can prepare their food by them self at home or on scale home industry (Owen, 2001).

The commercial standard noodles currently are prepared using wheat flours and mixed it with water to form dough. The dough requires 30 – 35 percent of the mixing time which is restricted less than 20 minutes (Owen, 2001). This paper will present the preparation of alkaline noodle using corn and sago flour as base materials on home industry. The wheat flour is rich on gluten (viscoelastic protein) which will affect the noodle texture and elasticity. It also affects the sufficient noodle dough strength to cope with multiple sheeting processes without tearing it thus the excessive shrinkage after rolling could be avoided. In contrast on the noodle made from corn and sago flours, it structure and texture associated with high swelling and sticky properties of two flours because of the high amyllose and amylpectin contents and the addition of water on the dough during steaming. The noodle preparation was characterized in alkaline noodle (Owen, 2001).

Material and Methods

Materials

The yellow corn flour was prepared from rice corn obtained from local market. First, the corn was cleaned by eliminating husk and bran and then soaked on warm water for 1 hour. After draining, the rice corn was dried by sun drying until the weight of corn rice become constant. The dry corn rice was milled (80 mesh) and the flour obtained was dried again to be very dry and the weight became constant. The sago (original extract stem of sago plant) also obtained from local marked, washed many time with water to get clean and white flour. After draining, the extract sago then sun-dried until dry and the weight was constant.
Other materials were Sodium carbonate (Na$_2$CO$_3$), e.g. potassium sulfite (K$_2$SO$_3$), sodium hydroxide (NaOH), chloride acid (HCl), sulfuric acid (H$_2$SO$_4$), salt (NaCl), egg (Khouryieh et al. 2006) and yellow coloring (Food grade)

Noodle Preparation

Each noodle sample was prepared by the combination of three variable treatments arranged on Randomized Complete Design and Factorial model as described below.

The combination of two flours described above as the first variable (A1, A2, A3 variables). The ratio of the corn flours and sago flour were 5:5 (A1), 4:6 (A2) and 6:4 (A3) respectively. The second variable was adding the preservative (potassium sorbate) as B variable; Addition of 0.005% potassium sorbate (B0) without or non preservative (B1) respectively and third variable was storage: 2 days of storage (C1), 3 days of storage (C2) and without storage (C0). From the combination of three variables implied on noodle preparation above, it was obtained 18 variations of noodle; each noodle treatment was repeated twice. The parameter of noodles measured were water content (AOAC, 2000); crude fiber (AOAC, 2000); total microbial count (AOAC, Method 991.14.), and sensory (texture, taste, color and aroma) by hedonic scale test (Meilgaard et al. 1999).

The combination of two flours (1000 Gram), salt 3% (w/w), egg 30% (w/w) to improve dough texture and color, as well as to stabilize and enhance the nutritional value of food products (Bringe and Cheng, 1995). Sodium bicarbonate 0.3% (w/w), Sodium tripolyphosphate 0.25% (w/w), Potassium sorbate 0.005% (w/w), zero (without) Potassium sorbate and water 60% (w/w) mixed on mixer apparatus (2000 gram capacity). The dough obtained was conditioned or the dough covered with cloth and lied for 1 hour to become homogen and the water well absorbed. After conditioning, the dough were placed on the plate surface, which was dropped with some vegetable oil before, and then continued to forming the sheet on 2 mm thick, 30 Cm wide and 40 Cm long. The sheets were steamed on aluminium tray 15 minutes and then cooled. After cooling the sheets were cut using the manual pasta making in 3 mm wide. The evaluation of sensory (organoleptic) test of noodles was released by the hedonic scale adopted from Meilgaard, et al. (1999).
Result and Discussion

The water content of fresh noodle obtained after preparation and storage varied between 45.77% - 49.48% dry basis before storage and 46.95%-47% after 2 days storage and 47%-49.48% after 4th day storage. (Table. 1)

Table 1. Analyses noodles composition from of sago flour and corn flours

<table>
<thead>
<tr>
<th>Sample</th>
<th>Water Content (%)</th>
<th>Protein (%)</th>
<th>Ash (%)</th>
<th>Mirobial Count</th>
<th>Texture</th>
<th>Color</th>
<th>Aroma</th>
<th>Taste</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1B0C0</td>
<td>46.91</td>
<td>3.37</td>
<td>1.16</td>
<td>0</td>
<td>3.0</td>
<td>3.27</td>
<td>3.45</td>
<td>2.9</td>
</tr>
<tr>
<td>A1B0C1</td>
<td>47.17</td>
<td>3.23</td>
<td>1.12</td>
<td>1.03.10^5</td>
<td>2.9</td>
<td>3.0</td>
<td>3.0</td>
<td>2.9</td>
</tr>
<tr>
<td>A1B0C2</td>
<td>49.19</td>
<td>2.75</td>
<td>0.89</td>
<td>Undetermined</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A1B1C0</td>
<td>46.88</td>
<td>3.38</td>
<td>1.04</td>
<td>0</td>
<td>3.0</td>
<td>2.73</td>
<td>3.45</td>
<td>2.0</td>
</tr>
<tr>
<td>A1B1C1</td>
<td>47.36</td>
<td>3.15</td>
<td>1.02</td>
<td>1.5.10^3</td>
<td>2.6</td>
<td>2.9</td>
<td>2.9</td>
<td>2.8</td>
</tr>
<tr>
<td>A1B1C2</td>
<td>48.12</td>
<td>2.69</td>
<td>0.88</td>
<td>Undetermined</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A2B0C0</td>
<td>47.71</td>
<td>3.05</td>
<td>1.42</td>
<td>0</td>
<td>3.27</td>
<td>2.45</td>
<td>3.55</td>
<td>2.8</td>
</tr>
<tr>
<td>A2B0C1</td>
<td>47.75</td>
<td>2.98</td>
<td>0.96</td>
<td>1.265.10^6</td>
<td>2.27</td>
<td>2.9</td>
<td>3.18</td>
<td>2.6</td>
</tr>
<tr>
<td>A2B0C2</td>
<td>49.48</td>
<td>2.75</td>
<td>0.89</td>
<td>Undetermined</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A2B1C0</td>
<td>45.56</td>
<td>3.63</td>
<td>1.38</td>
<td>1.03</td>
<td>3.18</td>
<td>2.36</td>
<td>3.27</td>
<td>2.9</td>
</tr>
<tr>
<td>A2B1C1</td>
<td>46.45</td>
<td>2.98</td>
<td>1.10</td>
<td>2.18.10^5</td>
<td>2.9</td>
<td>2.9</td>
<td>3.1</td>
<td>2.6</td>
</tr>
<tr>
<td>A2B1C2</td>
<td>48.08</td>
<td>2.82</td>
<td>1.08</td>
<td>Undetermined</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A3B0C0</td>
<td>46.66</td>
<td>3.95</td>
<td>1.19</td>
<td>1.03</td>
<td>3.27</td>
<td>3.73</td>
<td>3.64</td>
<td>3.0</td>
</tr>
<tr>
<td>A3B0C1</td>
<td>46.96</td>
<td>3.55</td>
<td>1.13</td>
<td>1.268.10^6</td>
<td>2.7</td>
<td>3.18</td>
<td>2.9</td>
<td>2.7</td>
</tr>
<tr>
<td>A3B0C2</td>
<td>49.22</td>
<td>3.38</td>
<td>1.01</td>
<td>Undetermined</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A3B1C0</td>
<td>46.90</td>
<td>3.84</td>
<td>1.08</td>
<td>1.03</td>
<td>3.27</td>
<td>3.73</td>
<td>3.45</td>
<td>3.0</td>
</tr>
<tr>
<td>A3B1C1</td>
<td>37.73</td>
<td>3.64</td>
<td>1.03</td>
<td>5.68.10^5</td>
<td>2.8</td>
<td>3.1</td>
<td>2.9</td>
<td>3.1</td>
</tr>
<tr>
<td>A3B1C2</td>
<td>47.77</td>
<td>3.63</td>
<td>0.75</td>
<td>Undetermined</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

A1= Combine of corn flour 50% and sago flour 50%
A2= Combine of corn flour 40% and sago flour 60%
A3= Combine of corn flour 60% and sago flour 40%
B0= Non addition preservative
B1= Addition preservative (Potassium sorbate 0.005%)
C0= Storage 0 days (Control)
C1= Storage 2 days
C2= Storage 4 days
Investing In Food Quality, Safety and Nutrition

The addition of preservative in this case was significant (Ps0.5) for noodle water content, but interaction of the combine of flours and storage, interaction between addition of preservative and storage treatments was not significant. The interaction of tree variable treatments (The combination of 2 different flours, addition of preservative and storage) were also not significant. The addition of preservative (potassium sorbate) caused the water evaporation from the dough, during and after steaming dough sheet resulted the noodle water content especially on noodle prepared from 60% sago flour and corn flour 40% (A2B2) (Figure 1). The water content will correspond lately to total microbial count on noodle storage especially molds, yeast, and bacteria (Branen et al., 1990).

Figure 1. Water conten of noodle prepared from combine of sago and corn flours.

The protein control of noodle increased when adding the proportion of corn flour 60% and the Sago flour 40% (by weight) (Figure 2). In this case, the majority of protein on noodle come from corn flour (protein content of corn was 7.9%) (Munarso at al. 1992., Van Drop. et al., 1989), whereas the protein of sago flour only 0.7% (Djafar et al. 2000 ; Haryanto et al. 1992., Cecil et al. 1982)). Thus, the protein of noodle was clearly came from the corn flour. During storage, the protein showed decreasing value for all noodle samples. The Anova result showed the combination the flours and storage was significant to noodles, but other combination treatments also the three combination treatments implied in the noodle preparation were not significant.
Figure 2. Protein content of noodles from combine of sago and corn flours during storage.

The ash content tends to decrease during storage (1.38 - 0.75%). The relation of the ash content, water content and protein of noodle seemed to correlate in development of total microbial count during storage whereas the ash, water and protein consumed by microbial during storage and also preservative (Potassium sorbate 0.05%) added on the noodle was not effective (Figure 3)

Figure 3. The ash content of noodles prepared from combine of sago and corn flours

The self life of all noodles was 2 days. The microbial count during 2 days storage was average $0 - 6 \times 10^5$. After three days storage, the noodle was not acceptable due to high intensity of mold myceliums and other microbes growth on noodles surface.
Investing In Food Quality, Safety and Nutrition

The crude fiber of noodles was 0.82%, this value below the standard value of SNI (Standar Nasional Indonesia) therefore the noodles were save for consumption of infants.

The sensory test of noodle becomes important, due to evaluate the panels assumption the acceptable of noodles for consumption. The best sensory value (color, texture, aroma and taste) of noodle contributed by the panels that was expressed in “like” to: Color was fresh noodle (without storage) from 60% sago flour combined with 40% corn flour without preservative; Texture was fresh noodle from 40% sago flour and 60% corn flour and also prepared from 40% sago flour combine with 60% corn flour with preservative; Aroma was noodle prepared from 40% sago flour combine with 60% corn flour without preservative; taste was noodle prepared from combine 40% sago flour and 60% corn flour and also noodle prepared from combine of 50% sago flour and 50% corn flour with preservative, (Figures 4, 5 and 6).

Figure 4. Noodles prepared from combination of 50% sago flour and 50% corn flour without preservative.

Figure 5. Noodles prepared from combination of 60% sago flour and 40% corn flour without preservative.
Improving Food Security

Figure 6. Noodles prepared from combination of 40% sago flour and 60% corn flour without preservative.

Conclusion

The conditioning the dough of noodle has to be done in noodle preparation from sago and corn flours in order to homogenate the dough before sheeting and steam. The steaming was also important to find the elasticity of noodle dough before cutting. The best noodle obtained indicated by properties of physic, nutrition value and storage life the noodle prepared from combine of 60% sago flour and 40% corn flour with addition preservative.

References

