PENGARUH PENAMBAHAN KITIN PADA MEDIA PADAT DAN CAIR TERHADAP VIABILITAS CENDAWAN *Penicillium* sp. serta DAMPAKNYA TERHADAP MORTALITAS PUPA PENGGEREK BUAH KAKAO,

Conopomorpha cramerella (Snellen).

ADDITION EFFECT OF CHITIN ON SOLID AND LIQUID MEDIUM TO VIABILITY OF FUNGI *Penicillium* sp. AND ITS IMPACT TO PUPAE MORTALITY COCOA POD BORER, *Conopomorpha cramerella* (Snellen).

ADE SUGIARTI KUMALASARI

PROGRAM PASCASARJANA
ILMU HAMA DAN PENYAKIT TUMBUHAN
UNIVERSITAS HASANUDDIN
MAKASSAR
2013

PENGARUH PENAMBAHAN KITIN PADA MEDIA PADAT DAN CAIR TERHADAP VIABILITAS CENDAWAN *Penicillium* sp. serta DAMPAKNYA TERHADAP MORTALITAS PUPA PENGGEREK BUAH KAKAO,

Conopomorpha cramerella (Snellen).

Tesis

Sebagai Salah satu Syarat Untuk Mencapai Gelar Magister

Program Studi

Ilmu Hama dan Penyakit Tumbuhan

Disusun dan diajukan oleh

ADE SUGIARTI KUMALASARI

PROGRAM PASCASARJANA
ILMU HAMA DAN PENYAKIT TUMBUHAN
UNIVERSITAS HASANUDDIN
MAKASSAR
2013

TESIS

PENGARUH PENAMBAHAN KITIN PADA MEDIA PADAT DAN CAIR TERHADAP VIABILITAS CENDAWAN *Penicillium* sp. serta DAMPAKNYA TERHADAP MORTALITAS PUPA PENGGEREK BUAH KAKAO,

Conopomorpha cramerella (Snellen).

Disusun dan disajikan oleh ADE SUGIARTI KUMALASARI P4100210002

Sebagai Salah satu Syarat Untuk Mencapai Gelar Magister

Menyetujui Komisi Penasehat

Pembimbing 1

Pembimbing 2

<u>Prof.Dr.Ir.Nurariaty Agus, M.S</u> Nip. 19610216 198503 2 001

<u>Prof.Dr.Ir. Itji Diana Daud, M.S</u> Nip. 19600606 198601 2 001

Mengetahui Ketua Program Studi

<u>Prof.Dr.Ir.Nurariaty Agus, M.S</u> Nip. 19610216 198503 2 001 PERNYATAAN KEASLIAN TESIS

Yang bertanda tangan dibawah ini :

perbuatan tersebut.

Nama : ADE SUGIARTI KUMALASARI

Nomor Mahasiswa : P4100210002

Program Studi : Ilmu Hama dan Penyakit Tumbuhan

Menyatakan dengan sebenarnya bahwa tesis yang saya tulis ini benar-benar merupakan hasil karya saya sendiri, bukan merupakan pengambilan tulisan atau pemikiran orang lain. Apabila dikemudian hari terbukti atau dapat dibuktikan bahwa sebagian atau keseluruhan tesis/disertasi ini hasil karya orang lain, saya bersedia menerima sanksi atas

Makassar, 23 September 2013 Yang Menyatakan,

ADE SUGIARTI KUMALASARI

KATA PENGANTAR

Puji syukur penulis panjatkan ke hadirat Allah SWT, atas Berkah, Rahmat dan KaruniaNya sehingga penulis dapat menyelesaikan penulisan Tesis yang berjudul "PENGARUH PENAMBAHAN KITIN PADA MEDIA PADAT DAN CAIR TERHADAP VIABILITAS CENDAWAN Penicillium sp. serta DAMPAKNYA TERHADAP MORTALITAS PUPA PENGGEREK BUAH KAKAO, Conopomorpha cramerella (Snellen).

Banyak kendala yang dihadapi oleh penulis dalam pelaksanaan penelitian dan penyusunan tesis, namun berkat bantuan berbagai pihak, penelitian dan penyusunan tesis ini dapat diselesaikan. Pada kesempatan ini penulis menyampaikan rasa terimakasih dan penghargaan kepada Prof.Dr.Ir.Nurariaty Agus, M.S selaku pembimbing I dan Prof.Dr.Ir. Itji Diana Daud, M.S selaku pembimbing II atas bantuan, bimbingan dan arahan yang telah diberikan pada penulis sejak penyusunan proposal sampai dengan penulisan tesis ini.

Ucapan terimakasih disampaikan kepada Rektor Universitas Hasanuddin, Dekan Fakultas Pertanian dan Ketua Program Studi Magister (S2) Ilmu Hama dan Penyakit Tumbuhan Fakultas Pertanian Universitas Hasanuddin atas kesempatan yang diberikan untuk mengikuti Program Pendidikan Magister (S2) di Universitas Hasanuddin.

Penulis menyampaikan terimakasih kepada Prof.Dr. Ir. Annie P. Saranga, MS, Dr. Ir. Melina, MP dan Dr. Ir. Ade Rosmana atas semua masukan dan koreksi yang diberikan sebagai dosen penguji untuk penyempurnaan tesis ini.

Kepada analis Bapak Ardan dan Kamaruddin dan seluruh staf Laboratorium Hama dan Penyakit Tumbuhan yang banyak membantu dalam pelaksanaan penelitian, disampaikan terimakasih, dan kepada kedua orangtua penulis Ayahanda Agus Hasanie dan Ibunda Murti Absari yang dengan penuh kasih sayang telah membesarkan dan mendidik serta senantiasa mendoakan penulis agar menjadi anak yang saleh, berbakti kepada orangtua dan menjadi kebanggaan keluarga.

Kepada Saudara - saudaraku yang dengan penuh kasih sayang, kesabaran dan kesetiaan mendampingi penulis, mendoakan serta memotivasi untuk penyelesaian studi, penulis menyampaikan rasa terimakasih yang tak terhingga, demikian pula kepada Prabowo Lestari, Darwisa Tomme, Asman, Yumarto, Rahmawati, Nur Afraha Rauf atas bantuan dan dukungannya.

Akhirnya kepada semua pihak yang telah membantu namun tidak sempat disebutkan satu persatu, penulis menyampaikan terima kasih. Semoga tulisan ini bermanfaat bagi pembaca sebagai bahan informasi

Makassar, 23 September 2013

Ade Sugiarti Kumalasari

ABSTRAK

ADE SUGIARTI KUMALASARI. Pengaruh Penambahan Kitin Pada Media Padat dan Cair Terhadap Viabilitas Cendawan *Penicillium* sp. serta Dampaknya terhadap Mortalitas Pupa Penggerek Buah Kakao *C.cramerella* (Snellen). (dibimbing oleh Nurariaty Agus dan Itji Diana Daud).

Penelitian ini bertujuan (1) Mengetahui pengaruh penambahan kitin pada cendawan *Penicillium* sp. (2). Mengetahui pengaruh penambahan kitin terhadap mortalitas pupa penggerek buah kakao *C. Cramerella* di Laboratorium. Penelitian ini dilaksanakan di Laboratorium Penyakit Tumbuhan, Fakultas Pertanian, Jurusan hama dan Penyakit Tumbuhan Universitas Hasanuddin, Makassar yang berlangsung mulai Mei sampai Desember 2012.

Hasil penelitian menunjukkan bahwa Cendawan *Penicillium* sp. baik yang diberi kitin maupun tanpa kitin mulai berkecambah pada waktu 12 jam setelah aplikasi sampai 24 jam. Persentase perkecambahan spora *Penicillium* sp lebih tinggi jika diberi kitin (83,26%) dibandingkan tanpa kitin (59,36%) pada awal pengamatan.

Kata kunci : Cendawan Penicillium sp. Viabilitas Spora, Mortalitas pupa

•

ABSTRACT

ADE SUGIARTI KUMALASARI. Addition Effect of Chitin on Solid and Liquid Medium to Viability of Fungi *Penicillium* sp. And Its Impact to Pupae Mortality Cocoa Pod Borer, *Conopomorpha cramerella* (Snellen). (Supervised by Nurariaty Agus and Itji Diana Daud).

This research aimed to (1) Determine the effect of addition chitin on fungus *Penicillium* sp. (2). Know the effect to mortality of pupae pod borer in Laboratory. This research was conducted Laboratory of Plant Pathology, Faculty of Agriculture, Department of Plant Pest and Disease Hasanuddin University, Makassar, from May to December 2012.

The results showed that the fungus *Penicillium* sp. given both chitin and without chitin began to germinate at 12 hours after application until the 24 hours. Percentage *Penicillium* sp spore germination is higher when given chitin (83.26%) than without chitin (59.36%) at the beginning of the observation.

Keywords: Fungus *Penicillium* sp. Spore viability, pupae mortality

.

DAFTAR ISI

KAIA	PENGANTAR	V
ABST	RAK	viii
ABST	RACT	ix
DAFT	AR ISI	X
DAFT	AR GAMBAR	xiii
DAFT	AR TABEL	χiν
I. PEN	IDAHULUAN	
A.	Latar Belakang	1
В.	Rumusan Masalah	5
C.	Tujuan Penelitian	6
D.	Kegunaan Penelitian	6
E.	Hipotesis	6
F.	Kerangka Pikir Penelitian	7
II. TIN	JAUAN PUSTAKA	
A.	Hama Penggerek Buah Kakao (<i>C. cramerella</i> Snellen)	8
В.	Siklus Hidup	10
C.	Gejala Serangan	12
D.	Pengendalian	14
E.	Cendawan Entomopatogen	18
	E.1 Cendawan Penicillium	20
F	Kitin	23

III. METODE PENELITIAN

A. Tempat dan Waktu Penelitian	27	
B. Metode Penelitian	27	
1. Persiapan Cendawan <i>Penicillium</i> sp	27	
2. Persiapan Media	27	
3. Produksi Kitin	29	
4. Pengujian – Pengujian	29	
Viabilitas <i>Penicillium</i> sp	29	
Pertumbuhan Cendawan Penicillium sp	30	
5. Patogenitas Cendawan	31	
IV. HASIL DAN PEMBAHASAN		
4.1 Viabilitas Cendawan <i>Penicillium</i> sp	33	
4.2 Pertumbuhan Koloni <i>Penicillium</i> sp	34	
4.3 Mortalitas Pupa Penggerek Buah Kakao (C. Cramerella)	35	
V. KESIMPULAN DAN SARAN		
Kesimpulan	40	
Saran	40	
DAFTAR PUSTAKA		
AMPIR AN		

Teks

Nomo	or Halan	nan
1.	Kerangka Pikir Penelitian	7
2.	Imago Betina Penggerek Buah Kakao (C. cramerella)	12
3.	Gejala Serangan Penggerek Buah Kakao (C. cramerella)	14
4.	Konidia dan Konidiofor Cendawan Penicillium sp	21
5.	Rata – rata Viabilitas Cendawan <i>Penicillium</i> sp	33
	Lampiran	
1. '	Viabilitas Cendawan <i>Penicillium</i> sp	46
2	Jumlah Spora Cendawan <i>Penicillium</i> sp	46
3.	Berat Basah dan Berat Kering Spora Cendawan Penicillium sp	47
4	Mortalitas Pupa Penggerek Buah Kakao setelah Anlikasi	47

DAFTAR TABEL

Nomor		Halaman	
	1. Rata – rata Jumlah Spora, Berat Basah, dan Berat Kering	34	
2	2. Rata-rata Mortalitas Pupa Penggerek Buah Kakao	35	

BAB I

PENDAHULUAN

A. Latar Belakang

Kakao merupakan salah satu komoditas andalan perkebunan yang peranannya cukup penting bagi perekonomian nasional, khususnya sebagai penyedia lapangan kerja, sumber pendapatan dan devisa negara. Di samping itu kakao juga berperan dalam mendorong pengembangan wilayah dan pengembangan agroindustri. Perkebunan kakao di Indonesia mengalami perkembangan pesat dalam kurun waktu 20 tahun terakhir dan pada tahun 2002 areal perkebunan kakao Indonesia tercatat seluas 914.051 ha. Perkebunan kakao tersebut sebagianbesar (87,4%) dikelola oleh rakyat dan selebihnya 6,0% perkebunan besar negara serta 6,7% perkebunan besar swasta (Suparno, 2004).

Dari segi kualitas, kakao Indonesia tidak kalah dengan kakao dunia. Bila dilakukan fermentasi dengan baik dapat mencapai cita rasa setara dengan kakao berasal dari Ghana dan keunggulan kakao Indonesia tidak mudah meleleh. Sejalan dengan keunggulan tersebut, peluang pasar kakao Indonesia cukup terbuka baik ekspor maupun kebutuhan dalam negeri. Dengan kata lain, potensi untuk menggunakan industri kakao sebagai salah satu pendorong pertumbuhan dan distribusi pendapatan cukup terbuka (Susanto, 2004).

Meskipun demikian, agribisnis kakao Indonesia masih menghadapi berbagai masalah kompleks antara lain produktivitas kebun masih rendah akibat serangan Hama Penggerek Buah Kakao (PBK), mutu produk masih rendah serta masih belum optimalnya pengembangan produk hilir kakao. Hal ini menjadi suatu tantangan sekaligus peluang bagi para investor untuk mengembangkan usaha dan meraih nilai tambah yang lebih besar dari agribisnis kakao (Susanto, 2004).

Indonesia berhasil menempatkan diri sebagai produsen kakao terbesar kedua dunia setelah Pantai Gading pada tahun 2002, walaupun kembali tergeser ke posisi ketiga oleh Ghana pada tahun 2003. Tergesernya posisi Indonesia tersebut salah satunya disebabkan oleh makin mengganasnya serangan hama PBK *Conopomorpha cramerella* Snellen yang dapat menurunkan produksi mencapai 80-100%. Kerusakan yang ditimbulkan oleh larva PBK berupa kerusakan pada biji yaitu biji menjadi keriput, timbul warna gelap pada kulit biji, biji saling melekat dan ukuran biji kecil (Anonim,2004).

Berbagai upaya telah dilakukan untuk mengendalikan hama PBK seperti eradikasi, kondomisasi, panen sering,pemangkasan, sanitasi, dan pemupukan, serta menggunakan pestisida (Suparno 2004). Saat ini pengendalian dengan menggunakan agens hayati menjadi sangat antusias dilakukan oleh berbagai kalangan. Penggunaan agens hayati cendawan entomopatogen merupakan suatu upaya untuk mengurangi pestisida sintetik

yang selama ini banyak menyebabkan masalah lingkungan, dan diharapkan dapat menjadi solusi disamping dapat menggali potensi sumber daya hayati local yang diperkirakan keberadaannya berlimpah di alam Indonesia

Beberapa hasil penelitian telah berhasil mengembangkan cendawan, bakteri atau virus entomophatogen yang dapat mematikan stadia tertentu dari hama. Entomopathogen menyebabkan serangga sakit karena efek infeksi, parasitisme dan atau *toxaemia* (Lacey dan Brooks, 1997).

Hasil penelitian Sulistyowati (2002), di Maluku menunjukkan adanya cendawan entomopatogen pada Penggerek Buah kakao (PBK) seperti Beauveria bassiana Vuill., Spicaria sp., Fusarium sp., Verticillium sp., Acrostalagmus sp., dan Penicillium sp. Sementara itu di Sulawesi Selatan, Nurariaty (2006) melaporkan bahwa cendawan entomopatogen yang ditemukan pada pupa PBK adalah B. bassiana, Aspergillus sp., Gliocephalis sp., Fusarium sp., dan Penicillium sp. Hasil penelitian Anni, Nurariaty dan menunjukkan bahwa Saranga (2006) media yang terbaik perkembangan cendawan *Penicillium* sp. adalah media PDA dan CYA yang menunjukkan laju perkembangan yang cepat, sedangkan Penicillium sp. yang tertinggi pada media CYA sebesar 90,5%. Sementara itu, Nurariaty dan Raodah (2010) melaporkan bahwa cendawan Penicillium sp. dengan konsentrasi 10⁶ yang dikembangkan dari media PDA dapat menyebabkan mortalitas pupa PBK sebesar 100% dalam waktu 216 jam, dari media beras dan ampas kelapa sebesar 93,33% dalam waktu 192 jam, serta 80% dari media jagung dan media kombinasi ampas kedelai+serbuk gergaji+dedak dalam waktu 120 jam.

Untuk aplikasi cendawan tersebut pada pupa PBK, maka dibutuhkan beberapa bahan penambah antara lain kitin. Kitin merupakan polimer karbohidrat yang terbentuk melalui ikatan ß (1- 4) antara monomer-monomer nacetylglucosamine. Kitosan yang merupakan senyawa turunan kitin mempunyai lebih banyak keunggulan bila ditinjau dari segi ekonomi maupun aplikasinya. Sumber utama yang dapat digunakan untuk pengembangan lebih lanjut adalah kitin dari jenis udang-udangan dan kepiting (Subadiyasa, 1997).

Kitosan umumnya dibuat dari limbah hasil industri perikanan, seperti udang dan kepiting, yaitu dari bagian kepala dan kulit. Kitosan berkerja sebagai racun perut, sehingga dapat mengganggu sistem pencernaan hama dan secara perlahan akan mematikan hama. Kitosan selain ramah terhadap lingkungan, bahan baku limbah golongan crustacea khususnya rajungan juga mudah didapatkan sehingga sumber daya lokal yang selama ini dimiliki dapat dimanfaatkan sebagai pengganti bahan kimia (Zakiah, *et al.*, 2007)

Pada serangga, kitinase berperan mendegradasi kutikel dinding sel sebagai rangkaian dari proses morfogenesis. Pelepasan kitinase oleh serangga dilakukan pada kondisi dan waktu yang tepat, serta diatur secara hormonal. Hanya ketika benar-benar dibutuhkan enzim ini baru dikeluarkan. Fenomena ini mengindikasikan bahwa kitinase bersifat detrimental

(mematikan) terhadap serangga, sehingga membuka peluang pemanfaatan kitinase dalam mengendalikan hama (Leger *et al*, 1996; Barboza-Corona *et al*, 2003).

Aplikasi kitinase dalam pengendalian serangga hama melalui kloning gen tersebut ke tanaman telah banyak dilaporkan (Leger *et al*, 1996; Barboza-Corona *et al*, 2003), namun penggunaannya dalam menekan hama tebu masih sangat sedikit. Penelitian Downing *et al* (2000) menunjukkan bahwa kloning gen kitinase dari *Serratia marcescens* ke bakteri yang hidup pada daun tebu (*Pseudomonas aeruginosa*) mampu menekan hama penggerek batang, *Eldana saccharina*. Kitinase bakteri dilaporkan pula oleh Regev *et al* (1996) bersinergi dengan endotoksin dari *Bacillus thuringiensis* dalam menekan larva *Spodoptera littoralis* pada tanaman tebu.

Berdasarkan hal tersebut, maka perlu diadakan penelitian selanjutnya mengenai pengaruh kitin terhadap cendawan *Penicillium* sp. dalam bentuk padat dan cair dan dampaknya terhadap mortalitas pupa penggerek buah kakao *C. cramerella* di laboratorium.

B. Rumusan Masalah

Rumusan masalah dari penelitian ini adalah :

- 1. Bagaimana pengaruh penambahan kitin pada cendawan *Penicillium* sp.
- 2. Bagaimana pengaruh penambahan kitin terhadap media Padat dan cair sera pengaruhnya terhadap viabilitas dan mortalitas pupa penggerek buah kakao *C. cramerella* di laboratorium.

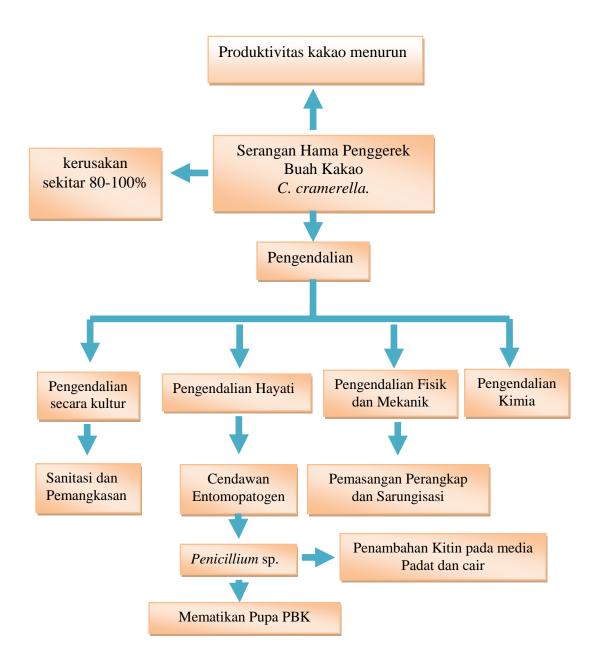
C. Tujuan dan Kegunaan

Penelitian ini bertujuan untuk:

- Mengetahui pengaruh cendawan Penicillium sp. dengan adanya penambahan kitin pada media PDA dan cair.
- 2. Mengetahui pengaruh penambahan kitin terhadap media PDA dan cair sera pengaruhnya terhadap viabilitas dan mortalitas pupa penggerek buah kakao *C. cramerella* di laboratorium.

D. Kegunaan Penelitian

Kegunaan penelitian ini diharapkan:


- Secara akademis, hasil penelitian ini dapat memberikan manfaat yang berarti terhadap pengembangan IPTEK di bidang pertanian khususnya dalam mengendalikan hama tanaman secara hayati.
- 2. Cendawan *Penicillium* sp. dengan penambahan kitin dapat mematikan pupa penggerek buah kakao *C. Cramerella*.

E. Hipotesis

Berdasarkan uraian diatas maka dapat dirumuskan hipotesis penelitian ini sebagai berikut :

- Penambahan kitin pada media dalam bentuk padat dan cair dapat mempengaruhi cendawan *Penicillium* sp.
- 2. Penambahan kitin dapat meningkatkan peran cendawan *Penicillium* sp. dalam mematikan pupa penggerek buah kakao *C. Cramerella*.

F. Kerangka Pikir Penelitian

Gambar 1. Kerangka pikir penelitian

BAB II

TINJAUAN PUSTAKA

A. Hama Penggerek Buah Kakao (Conopomorpha Cramerella Snellen)

Menurut Kalshoven (1981) hama penggerek buah kakao (*C.cramerella*) sebelumnya dikenal dengan nama *Acrocercops cramerella* Snellen tergolong dalam : Kingdom : animalia, Filum: Arthopoda, Kelas: Insekta, Ordo: Lepidoptera, Famili: Gracillaridae, Genus: Conopomorpha, Spesies : *Cramerella*.

Penyebaran hama PBK ke berbagai daerah di Indonesia sejalan dengan penyebaran klon-klon DR dari Jawa Tengah. Keberadaan hama PBK saat ini, dilaporkan telah terdapat di Papua, Maluku, Sulawesi, Kalimantan Timur, Sumatera Utara, Sumatera Barat, Jambi, Bengkulu, Riau dan Pulau Jawa. Keberadaan PBK di Sumatera disebabkan daerah tersebut berdekatan dengan daerah serangan PBK di negara bagian Malaka, Johor, Negeri Sembilan dan Pahang (Malaysia). Mengingat transportasi antara kedua daratan tersebut cukup lancar, peluang PBK masuk ke Sumatera Utara cukup besar. Demikian pula untuk propinsi-propinsi di Kalimantan, peluang daerah tersebut tertular hama PBK dari Serawak dan Sabah yang letaknya berdekatan juga cukup tinggi (Atmawinata, 1993).

Ditinjau dari letak geografisnya, PBK dari serangan di Malaysia berpeluang masuk ke Sumatera Utara dan Kalimantan sedangkan yang dari

daerah serangan di Filipina Selatan berpeluang masuk ke Sulawesi Utara. Hal ini memberi pemahaman bahwa sekali PBK masuk ke suatu pertanaman kakao, maka serangga akan tetap tinggal di tempat tersebut dan populasinya akan tetap berfluktuasi pada tingkat yang menimbulkan kerusakan buah (Wiryadiputra, Sulistyowati, dan Prawoto, 1994).

Timbulnya hama PBK di berbagai daerah di Indonesia diduga berkaitan dengan introduksi bahan tanaman kakao (buah dan bibit) dari daerah sumber hama PBK ke dalam pertanaman yang telah berproduksi dalam rangka perluasan areal tanam (Wardoyo, 1981). Hal ini pernah terjadi di Kabupaten Donggala, Sulawesi Tengah hanya dalam waktu 23 tahun setelah diintroduksi bibit kakao dari Malaysia ke Kasimbar dan sekitarnya pantai timur Donggala, ternyata areal pertanaman kakao di wilayah tersebut terserang hama PBK (Wiryadiputra et. al., 1994).

Serangan *C. cramerella* di Sulawesi Selatan terdeteksi pertama kali pada bulan Oktober 1995 dengan luasan serangan 96 Ha. Sejak ditemukannya *C. cramerella* di Kabupaten Luwu pada tahun 1995, hama tersebut cepat meluas. Pada tahun 2000 sudah mencapai 103.900 Ha. dalam waktu setahun berikutnya bertambah kurang dari 30.000 Ha, sehingga pada tahun 2001 mencapai 134. 982 Ha atau telah meluas lebih dari 50 % areal pertanaman kakao di Sulawesi Selatan (Salahuddin, 2003).

B. Siklus Hidup

Hama PBK melalui beberapa stadium perkembangan yaitu telur, larva, pupa dan imago. Perkembangan dari telur sampai menjadi imago diperlukan waktu sekitar 26 - 35 hari dan rata-rata 28 hari (Anonim, 2004). Stadium telur 6-9 hari, larva 15-18 hari, pupa 6-8 hari, dan lama hidup imago 3-7 hari (Suparno, 1999), dan menurut Siregar, Riyadi dan Nuraeni, (2000) stadium telur selama 7 hari, larva 16 hari, dan pupa 7 hari. Siklus hidup dari telur sampai imago 27-34 hari.

Imago betina meletakkan telur pada permukaan buah kakao terutama pada alur kulit buah. Menurut Roepke (1992 dalam Wardoyo, 1980) imago *C. cramerella* meletakkan telurnya satu persatu pada permukaan buah kakao.

Telur berbentuk oval dan berwarna kuning orange pada saat baru diletakkan (Deppraba, 2002). Bentuknya bulat panjang berukuran 0,30-0,45 mm. Stadia telur 6-9 hari (Susanto, 2004).

Setelah telur menetas maka akan keluar larva dengan ukuran sekitar 1,2 cm dan berwarna ungu muda hingga putih (Bennu, 2006), sedangkan menurut Suparno (1999) larva berwarna kekuningan dengan ukuran 1 mm keluar dari telur setelah 6-7 hari. Selanjutnya menurut Anshari (2000) larva pada stadium awal (instar I) berwarna putih transparan dan larva instar terakhir (menjelang prapupa) berwarna kuning tua. Larva *C. cramerella* terdiri dari 5 instar (Alba *et al.*, 1985). Stadium larva *C. cramerella* antara 3-4 hari

pada instar I dan II, 3-5 hari pada instar III dan IV dan 3-6 hari pada instar V. Stadium larva 14-18 hari.

Setelah 15-18 hari di dalam buah, larva yang mencapai ukuran 10-11 mm dan berwarna hijau pucat membentuk fase prapupa. Tubuh prapupa berwarna kuning pucat hingga kuning kehijauan, berukuran 10,4 mm, dan lebar 2,3 mm (Suparno, 1999). Pupa berwarna kecoklatan dengan ukuran 7-8 mm dan lebar 1 mm.

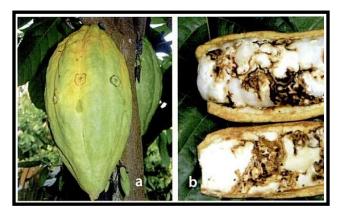
Menurut Alba *et al.*, (1985), pupa *C. cramerella* berwarna kuning kehijaun dan berada dalam kokon yang terbuat dari benang-benang sutera yang keluar dari mulutnya berwarna cokelat muda. Pupa *C. cramerella* berwarna cokelat dengan ukuran 6-7 mm x 1,0 – 1,5 mm (Suparno, 1999) yang berada dalam kokon yang berbentuk bulat telur dengan ukuran 6,9 x 13 x 18 mm (Anonim, 2004), namun menurut Bennu (2006), pupa berwarna abu-abu gelap dengan ukuran 8 mm.

Imago *C. cramerella* memiliki panjang tubuh 7 mm dan lebar 2 mm, sayap depan berwarna hitam bergaris putih, pada setiap ujungnya terdapat bintik kuning dan sayap belakang berwarna hitam (Gambar 2) dengan antena yang panjang serta runcing (Bennu, 2006). Perkembangan *C. cramerella* sejak telur sampai stadium dewasa memerlukan waktu 27-33 hari (Wardoyo, 1994).

Gambar 2. Imago hama penggerek buah kakao (*C. cramerella*) (Sumber www.plantwise.org)

Serangga aktif pada malam hari termasuk aktivitas kawin dan bertelur antara jam 18.00 – 20.30. Pada siang hari biasanya berlindung di tempat lembab dan tidak terkena sinar matahari. Daya terbangnya pun tidak terlalu tinggi namun mudah terbawa oleh angin. Serangga dewasa ini sendiri hanya berumur 5-7 hari, setelah bertelur serangga akan mati (Bennu, 2006).

C. Gejala Serangan


Kerusakan yang ditimbulkan oleh larva *C. cramerella* berupa rusaknya biji, mengeriputnya biji dan timbulnya warna gelap pada kulit biji. Imago *C. cramerella* meletakkan telurnya pada buah kakao yang berukuran panjang lebih besar dari 5 cm (Anshari, 2000). Telur diletakkan satu persatu pada alur buah kakao. Telur yang menetas menjadi larva tersebut akan bergerak dan mulai membuat lubang ke dalam kulit selanjutnya masuk ke dalam buah kakao. Lubang gerekan berada tepat di bawah tempat meletakkan telur.

Selanjutnya akan menggerek daging buah diantara biji dan plasenta (Suparno, 1999).

Pada buah muda yang terserang gejala tampak pada permukaan kulitnya bercak-bercak besar berwarna kuning. Jika buah yang menunjukkan gejala tersebut dibelah, tampak alur sepanjang plasenta ke biji berwarna cokelat akibat serangan larva, sedangkan daging buahnya masih tetap berwarna putih. Pada serangan berat, bagian dalam buah berwarna cokelat kehitaman. Apabila buah muda terserang, masih dapat berkembang menjadi buah dewasa namun pada permukaan kulit luar buah tampak besar berwarna kuning, sedangkan bagian lainnya tetap berwarna hijau atau merah tergantung jenis kakaonya. Jika buah tersebut dibelah akan terlihat jalur-jalur gerekan larva dan daging buah berwarna kecoklatan, pertumbuhan biji terganggu, dan biji melekat satu sama lainnya. Jika buah terserang *C. cramerella* maka buah menjadi kering dan pulp mengeras (Suparno, 1999).

Pada buah yang menjelang matang dan pada klon kakao dengan kulit buah berwarna merah, gejala serangan tampak ada bercak-bercak berwarna orange, apabila buah menjelang matang dengan kulit berwarna hijau, akan tampak bercak berwarna kuning hingga orange. Jika buah tersebut dipetik terasa berat dan apabila diguncang tidak terdengar adanya gerekan biji (Siregar *et al.*, 2000).

Apabila buah tersebut dibelah maka terlihat daging buah berwarna cokelat kehitaman sampai hitam, biji saling melekat dan apabila diproses lebih lanjut biji akan menjadi keriput karena biji tidak berisi sempurna (Anonim, 2004). Hal tersebut dapat dilihat pada Gambar 3.

Gambar 3.(a). Gejala serangan penggerek buah kakao (*C. cramerella*) (b). Biji saling melekat dan berwarna hitam (Sumber www.plantwise.org)

D. Pengendalian

Beberapa pengendalian yang bisa dilakukan untuk mencegah serangan hama penggerek buah kakao *C. cramerella* yaitu :

Penen sering adalah melakukan panen buah kakao yang telah memperlihatkan siap panen (warna kekuningan atau buah kakao tua). Panen awal ini diharapkan akan memperpendek masa perkembangan larva PBK di buah kakao. Untuk menurunkan jumlah PBK, sebaiknya semua buah yang sudah masak atau masak awal di panen seminggu sekali. Cara ini menghindari perpanjangan perkembangan atau daur hidup PBK di kebun (Hindayana,dkk., 2002).

Sanitasi diperlukan untuk mematika, maka PBK yang ada di dalam buah yang sudah panen. Jika tidak dimatikan, PBK tersebut dapat berkembangbiak dan menyerang buah yang masih ada di pohon. Sanitasi dilakukan dengan cara membersihkan areal kebun dari daun-daun kering, tanaman tidak sehat, ranting kering, kulit buah maupun gulma yang ada disekitar tanaman. Keadaan ini akan menciptakan suatu kondisi yang tidak sesuai dengan lingkungan untuk perkembangbiakan hama PBK (Hase, 2006). Setelah buah dipanen seluruhnya dibelah, kulit buah dimasukkan ke dalam lubang dan ditutup dengan tanah atau dengan plastik untuk membunuh larva yang masih ada atau hidup pada buah. Jika tidak segera dikerjakan simpanlah buah dalam karung plastik yang diikat rapat. Cara tersebut mencegah PBK keluar dan menyerang buah yang belum masak di pohon (Hindayana, dkk., 2002).

Pemangkasan adalah pemotongan cabang atau ranting tanaman serta tanaman naungan agar tanaman kakao tidak terlalu rimbun. Tanaman kakao yang terlalu rimbun, mengakibatkan kelembaban cukup tinggi sehingga baik untuk perkembangbiakan serangga hama PBK. Pemangkasan diharapkan masuknya sinar matahari di antara tanaman kakao sekitar 60%. Pemangkasan berfungsi untuk mengatur tajuk tanaman, sehingga kanopinya tidak terlalu rindang. Kondisi kanopi yang rindang sangat kondusif bagi pertumbuhan hama PBK. Salah satu kelemahan hama PBK adalah tidak menyukai sinar matahari langsung, sehingga bila dilakukan pemangkasan

yang sering dan teratur akan dapat menekan populasi karena pendistribusian sinar matari pada bagian tanaman maupun areal kebun menjadi merata (Hase, 2006).

Ketersediaan unsur hara berkaitan erat dengan pertumbuhan dan produktifitas yang optimal, maka pengendalian hama bisa dilakukan dengan cara memberikan pupuk yang cukup. Terpenuhinya unsur hara yang dibutuhkan tanaman akan memperlancar proses metabolisme tanaman. Lancarnya proses tersebut akan mempercepat masaknya buah, sehingga akan mengurangi tingkat kerusakan buah dan memungkinkan frekuensi panen lebih sering. Disamping itu, pertumbuhan tanaman yang optimal akan mempengaruhi daya tahan tanaman terhadap serangan hama PBK meskipun pengaruhnya tidak begitu besar (Hase, 2006). Dampak utama pemupukan terhadap tanaman kakao adalah merangsang pertumbuhan yang baik. Dampak ini meningkatkan ketahanan kakao terhadap serangan PBK. Proses pemupukan yang benar dengan memperhatikan dosis, jenis, cara, waktu, dan tempat (Hindayana, dkk., 2002).

Sistem rampasan dilakukan dengan cara merampas atau memetik semua buah kakao yang ada dipohon agar siklus hidup PBK terputus. Menurut Susanto (2004), tujuan sistem rampasan adalah menghilangkan sember hama atau menekan populasi serangga untuk sementara waktu, sebab dengan cara ini hama tidak memperoleh makanan. Dengan demikian PBK itu hanya terbang sekitar tanaman tanpa bisa menemukan tempat untuk

meletakkan telur. Akhirnya PBK itu akan mati tanpa bisa meninggalkan keturunan. Adapun saat yang tepat untuk melakukan perampasan adalah setelah panen raya (Hase, 2006).

Sarungisasi adalah memberikan selubung perlindungan terhadap buah kakao. Selubungnya dapat menggunakan kantong plastik yang ujung bagian atasnya diikatkan pada tangkai buah, sedangkan ujung buah tetap terbuka. Dengan penyelubungan buah tersebut, hama tidak bisa meletakkan telurnya pada kulit buah sehingga buah akan terhindar dari gerekan larva (Hase, 2006). Kondomisasi merupakan salah satu metode baru yang paling efektif dan efiisien di dalam pengendalian hama PBK serta dapat meningkatkan mutu serta kesuburan buah kakao. Kondomisasi dilakukan dengan memasangkan plastik selubung pada buah kakao secara satu persatu dengan menggunakan plastik transparan pada buah yang berukuran antara 2-3 bulan atau panjang buah telah mencapai 5-8 cm (Salahuddin, 2003).

Pengendalian dengan menggunakan musuh-musuh alami sangat berperanan dalam mengatur populasi PBK di lapangan, seperti pelepasan parasitoid, entomopatogen dan predator. Hal ini didasari dari penelitian yang dilakukan oleh Nurariaty (2006) bahwa hasil identifikasi cendawan yang ditemukan menginfeksi pupa PBK yaitu terdapat tiga jenis, masing-masing Beauveria bassiana Vuill., Aspergillus sp. dan Penicillium sp. Hal tersebut didasarkan pada ciri-ciri morfologi cendawan yang telah dimurnikan setelah diisolasi dari pupa PBK yang mati. Pupa PBK yang terinfeksi oleh cendawan

Penicillium sp. nampak berwarna kehijauan. Konidiofornya hialin yang berdinding kasar atau halus. Ketiga jenis cendawan entomopatogen mampu meenginfeksi pupa PBK karena adanya toksin yang dihasilkan oleh masingmasing cendawan.

E. Cendawan Entomopatogen

Cendawan entomopatogen merupakan salah satu jenis bioinsektisida yang dapat digunakan untuk mengendalikan hama tanaman. Diketahui terdapat enam kelompok mikroorganisme yang dapat dimanfaatkan sebagai bioinsektisida adalah Cendawan, bakteri, virus, nematoda, protozoa, dan ricketsia (Tanada dan Kaya 1993). Empat kelompok pertama merupakan jenis yang sering digunakan dan mempunyai prospek yang baik untuk dikembangkan (Kaaya, Mwangi,Ouna, 1996., Prayogo dan Tengkano, 2004).

Mekanisme infeksi cendawan Entomopatogen

Mekanisme infeksi cendawan entomopatogen dapat digolongkan menjadi empat tahapan etologi penyakit serangga yang disebabkan oleh cendawan. Tahap pertama adalah inokulasi, yaitu kontak antara propagul cendawan dengan tubuh serangga. Propagul cendawan entomopatogen berupa konidia karena merupakan cendawan yang berkembang baik secara tidak sempurna. Dalam proses ini, senyawa mukopolisakarida memegang peranan sangat penting. Tahap kedua adalah proses penempelan dan perkecambahan propagul cendawan pada integumen serangga. Kelembaban udara yang tinggi dan bahkan kadang-kadang air diperlukan untuk

perkecambahan propagul cendawan. Cendawan pada tahap ini dapat memanfaatkan senyawa-senyawa yang terdapat pada integumen (Ferron, 1985).

Tahap ketiga yaitu penetrasi dan invasi. Cendawan dalam melakukan penetrasi menembus integumen dapat membentuk tabung kecambah (appresorium) (Bidochka, Kamp, dan Decroos, 2000). Titik penetrasi sangat dipengaruhi oleh konfigurasi morfologi integumen. Penembusan dilakukan secara mekanis atau kimiawi dengan mengelusrkan enzim atau toksin. Tahap keempat yaitu destruksi pada titik penetrasi dan terbentuknya blastospora yang kemudian beredar kedalam hemolimfa dan membentuk hifa sekunder untuk menyerang jaringan lainnya (Strack, 2003). Pada umumnya serangga sudah mati sebelum proliferasi blastospora.

Serangga juga mengembangkan sistem pertahanan diri dengan cara fagositosis atau enkapsulasi dengan membentuk granuloma. Pada waktu serangga mati, fase perkembangan saprofit cendawan dimulai dengan penyerangan jaringan dan berakhir dengan pembentukan organ reproduksi. Pada umumnya semua jaringan dan cairan tubuh serangga habis digunakan oleh cendawan, sehingga serangga mati dengan tubuh yang mengeras seperti mumi. Pertumbuhan cendawan diikuti dengan pengeluaran pigmen atau toksin yang dapat melindungi serangga dari serangan mikroorganisme lain terutama bakteri. Tidak selalu cendawan tumbuh ke luar menembus integumen serangga. Apabila keadaan kurang mendukung, perkembangan

saprofit hanya berlangsung di dalam jasad serangga tanpa ke luar menembus integumen. Dalam hal ini cendawan membentuk struktur khusus untuk dapat bertahan, yaitu arthrospora (Ferron, 1985).

Hasil penelitian Sulistyowati (2002), di Maluku menunjukkan adanya cendawan entomopatogen pada PBK seperti *Beauveria bassiana* Vuill., *Spicaria* sp., *Fusarium* sp., *Verticillium* sp., *Acrostalagmus* sp., dan *Penicillium* sp. Sementara itu di Sulawesi Selatan, Nurariaty (2006) melaporkan bahwa cendawan entomopatogen yang ditemukan pada pupa PBK adalah *B. bassiana*, *Aspergillus* sp., *Gliocephalis* sp., *Fusarium* sp., dan *Penicillium* sp. dan telah dilaporkan bahwa secara alami peranan cendawan-cendawan tersebut masih rendah.

E.1 Cendawan *Penicillium* sp.

Penicillium sp. termasuk golongan cendawan Ascomycetes yang sangat penting di alam serta bermanfaat untuk produksi makanan dan obatobatan. Cendawan tersebut menghasilkan penisilin, sebuah molekul yang digunakan sebagai antibiotik, yang dapat membunuh atau menghentikan pertumbuhan beberapa jenis bakteri di dalam tubuh

Konidia dari *Penicillium* sp. terlihat jelas pada pengamatan dengan menggunakan mikroskop cahaya. Konidia berbentuk bulat dan bersinar (mengkilap) (Gambar 4).

Gambar 4. Konidia dan konidiofor cendawan *Penicillium sp.* (Sumber : Foto Ade Sugiarti, 2012).

Penicillium sp. menghasilkan senyawa metabolit, yang dapat mematikan serangga. Beberapa senyawa metabolit yang bersifat toksin adalah ochratoxin A, brevianamide A, penicilic acid dan citrinin. Senyawa – senyawa tersebut dapat mematikan *Drosophila melanogaster* dan *Spodoptera littoralis* (Peterson *et al.* 1987).

Sebelum cendawan tersebut diaplikasikan pada pertanaman kakao untuk mengendalikan hama PBK, namun sebelumnya perlu dilakukan perbanyakan di laboratorium . Di ketahui terdapat berbagai media berupa media cair maupun media padat. Berbagai jenis media padat yang selama ini diketahui sebagi media tumbuh cendawan tersebut adalah media jagung manis atau jagung lokal + gula 1% yang dapat menghasilkan jumlah konidia dan persentase daya kecambah konidia yang lebih tinggi dibandingkan dengan media lain (Prayogo dan Tengkano, 2004).

Media tumbuh cendawan lain menurut Widayat dan Rayati (1993), adalah media yang mengandung nitrogen dari unsur organik dan paling

banyak digunakan untuk menumbuhkan *Metarhizium anisoplie*. Media sebagai bahan pembawa (*bearer*) spora seperti agar dapat menyediakan hara yang cukup dan sangat dibutuhkan untuk pembentukan konidia cendawan entomopatogen.

Media padat untuk perbanyakan cendawan dengan campuran ampas kedelai + serbuk gergaji + dedak merupakan media yang paling efektif untuk pertumbuhan *Trichoderma* sp. dan *Penicillium* sp, karena memiliki kerapatan spora yang tinggi yaitu sebesar 9,07 x 10⁶ spora/ml (Warsini, 2005).

Media padat lain yang dapat dimanfaatkan untuk perbanyakan cendawan yaitu ampas kelapa memiliki kandungan nutrisi yang cukup tinggi terutama protein. Hal ini menyebabkan ampas kelapa berpotensi untuk diolah menjadi pakan. Salah satu cara yang dapat dipergunakan untuk mengolah ampas kelapa menjadi pakan adalah dengan fermentasi. Proses fermentasi dilakukan dengan menggunakan spora *Aspergillus niger*. Proses fermentasi dilakukan secara bertahap, yaitu dengan fermentasi aerob kemudian dilanjutkan dengan fermentasi anaerob (proses enzimatis). Hasil analisa menunjukkan bahwa terjadi peningkatan kadar protein ampas kelapa setelah fermentasi dari 11,35% menjadi 26,09% atau sebesar 130% dan penurunan kadar lemak sebesar 11,39%. (Miskiyah dkk, 2006). Nurariaty dan Raodah (2010) mengemukakan bahwa media padat seperti ampas kelapa lebih baik untuk pertumbuhan cendawan *Penicillium* sp. dibandingkan dengan media beras. jagung dan kombinasi ampas kedelai+serbuk gergaji+dedak.

Dalam rangka aplikasi cendawan pada pupa PBK, maka diperlukan suatu formulasi yang tepat seperti bentuk tepung dan cair. Demikian pula halnya dengan pemberian bahan penambah seperti kitin.

F. Kitin.

Secara kimia kitin adalah molekul besar (polimer). Senyawa ini tidak dapat disintesis secara kimia dan tersusun oleh satuan molekul N-asetil-D-glukosamin. Kalau bagian asetil ini dibuang, maka kita akan memperoleh kitosan. Struktur ini memiliki fungsi yang lebih bervariasi beberapa contoh aplikasi kitin dan kitosan dalam bidang nutrisi (suplemen dan sumber serat), pangan (nutraceutical, flavor, pembentuk tekstur, emulsifier, penjernih minuman), medis (mengobati luka, contact lens, membran untuk dialisis darah, antitumor), kesehatan kulit dan rambut (krim pelembab, hair care product), lingkungan dan pertanian (penjernih air, menyimpan benih, fertilizer dan fungisida) lain-lain (proses finishing kertas dan menyerap warna pada produk cat) (Suhartono, 2006).

Kitosan merupakan produk hasil turunan kitin dengan rumus Nasetil-D-Glukosamin, merupakan polimer kationik yang mempunyai jumlah monomer sekitar 2000-3000 monomer dan tidak toksik. Kitosan diproduksi dengan proses deasetilasi lapisan kitin yang terdapat di cangkang hewan crustaceae (udang-udangan) seperti udang, lobster, dan kepiting. Kulit kepiting mengandung protein (15,60-23,90%), kalsium karbonat (53,70-

78,40%) dan kitin (18,70-32,20%). Hal ini tergantung pada jenis kepiting tempat hidupnya. Kandungan kitin dalam kulit udang lebih sedikit dari kulit kepiting tetapi kulit udang lebih mudah didapatkan dan tersedia dalam jumlah yang lebih banyak sebagai limbah (Widodo, 2009).

Kitosan sebagai polimer film dari karbohidrat lainnya, memiliki sifat selektif *permeable* terhadap gas-gas CO₂ dan O₂, tetapi kurang mampu menghambat perpindahan air. Pelapis yang tersusun dari polisakarida dan turunannya hanya sedikit menahan penguapan air, tetapi efektif untuk mengontrol difusi dari berbagai gas (Nisperroscarriedo 1995 dalam Herjanti 1997).

Di bidang pertanian, kitosan bukan hanya mampu membentuk lapisan tipis permeabel terhadap gas sehingga dilaporkan mampu rnenghambat pemasakan buah, tetapi juga dilaporkan mampu berfungsi sebagai biofungisida. Karena peran gandanya ini, dan diklaim 100% aman bagi kesehatan, perannya di bidang pertanian menjadi semakin popular. Walaupun demikian, informasi ilmiah tentang penggunaannya sebagai pelapis buah (fruit coating) pada buah-buah tropis sulit diperoleh (Widodo, 2009). Dalam industri pangan, kitin dan kitosan bermanfaat sebagai pengawet dan penstabil warna produk.

Pada serangga, kitinase berperan mendegradasi dinding sel sebagai rangkaian dari proses morfogenesis. Pelepasan kitinase oleh serangga dilakukan pada kondisi dan waktu yang tepat, serta diatur secara hormonal.

Hanya ketika benar-benar dibutuhkan enzim ini baru dikeluarkan. Fenomena ini mengindikasikan bahwa kitinase bersifat detrimental (mematikan) terhadap serangga, sehingga membuka peluang pemanfaatan kitinase dalam mengendalikan hama.

Aplikasi kitinase dalam pengendalian serangga hama melalui kloning gen tersebut ke tanaman telah banyak dilaporkan (Leger et al, 1996; Barboza-Corona et al, 2003), namun penggunaannya dalam menekan hama tebu masih sangat sedikit. Penelitian Downing et al (2000) menunjukkan bahwa bahwa kloning gen kitinase dari Serratia marcescens ke bakteri yang hidup pada daun tebu (Pseudomonas aeruginosa) mampu menekan hama penggerek batang, Eldana saccharina. Kitinase bakteri dilaporkan pula oleh Regev , (1996) bersinergi dengan endotoksin dari B. thuringiensis dalam menekan larva Spodoptera littoralis pada tebu Secara umum efektivitas pengendalian hama tanaman menggunakan gen kitinase yang introduksi masih relatif rendah. Hal ini diduga akibat pemilihan kitinase yang tidak sesuai dengan kitin yang akan dijadikan target degradasi. Secara alami, kitinase dan kitin sangat bervariasi lebar. Dalam famili yang sama kitinase memiliki spesifikasi terhadap substrat yang berlainan dan mode of action yang berbeda, sesuai dengan kebutuhan masing-masing organisme serta variasi bentuk-bentuk kitin di alam. Kitin bervariasi dalam derajat kristalinitas, panjang rantai polimer, derajat deasetilasi, dan ikatan kovalen dengan senyawa lain. Oleh karena itu, introduksi gen kitinase kedalam tanaman harus didahului oleh pemilihan kitinase yang memiliki aktivitas tinggi terhadap target, serta memiliki karakteristik yang sesuai dengan kondisi inang. Untuk keperluan pengendalian hama penggerek pucuk tebu, dibutuhkan kitinase yang mampu mendegradasi kutikel atau sistem pencernaan penggerek, optimum bekerja pada pH alkalin (pH pencernaan penggerek), inducible (diinduksi oleh perlukaan supaya bersifat selektif), dan tahan terhadap kadar gula tinggi.

Kitinase merupakan salah satu enzim yang berperan penting dalam entomopatogenisitas. Berbagai riset melaporkan bahwa inisiasi invasi patogen terhadap serangga melibatkan kitinase. Enzim ini dipakai oleh bakteri dan fungi dalam menyerang serangga, dengan cara mendegradasi kitin pada kutikel dan membrane pencernaan. Fungi entomopatogenik seperti Beauveria bassiana, Metharizium anisoplae and Verticillium lecanii adalah agen biokontrol yang bisa menekan hama tebu seperti uret, boktor, apid, dll. Pemanfaatan kitinase dari fungi-fungi ini secara langsung ke tanah dilaporkan bisa mengurangi serangan hama (Harman et al, 2002).

Menurut Ghaouth (1991) dan Ramadhan (2010) kitosan adalah salah satu bahan yang bisa digunakan untuk pelapisan buah, yang merupakan polisakarida berasal dari limbah kulit udang, kepiting, dan yang termasuk ke dalam Crustaceae. Kitosan merupakan suatu senyawa poli (N-amino-2 deoksi β-D-glukopiranosa) atau glukosamin hasil deasetilasi kitin/poli (N-asetil-2 amino-2-deoksi β- D-glukopiranosa) yang diproduksi dalam jumlah

besar di alam. Selain itu, digunakan untuk memperpanjang umur simpan buah stroberi. Pemberian lapisan tipis pada permukaan buah untuk menghambat keluarnya gas, uap air dan menghindari kontak dengan oksigen, sehingga proses pemasakan dan pencoklatan buah dapat diperlambat, merupakan salah satu upaya yang dapat diterapkan. Lapisan yang ditambahkan di permukaan buah ini tidak berbahaya dan dapat ikut dikonsumsi bersama buah.