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Abstract: In this study, we model extreme rainfall to study the high rainfall events 
in the province of South Sulawesi, Indonesia. We investigated the effect of the El 
Nino South Oscillation (ENSO), Indian Ocean Dipole Mode (IOD), and Mad‑
den–Julian Oscillation (MJO) on extreme rainfall events. We also assume that 
events in a location are affected by events in other nearby locations. Using rain‑
fall data from the province of South Sulawesi, the results showed that extreme 
rainfall events are related to IOD and MJO.
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1. Introduction

Extreme rainfall has a detrimental effect on human life and the environment. 
Extreme rainfall is that which rarely occurs in a location within a certain time [1]. 
There are two approaches used in determining extreme rainfall, namely Peak Over 
Threshold (POT) and Block Maxima (BM) [2]. In the POT approach, extreme rain‑
fall is expressed as rainfall that is greater than the threshold value. Meanwhile, 
in the BM approach, extreme rainfall is expressed as the maximum value in a block 
of time.

Extreme rainfall can be divided into high extreme rainfall and low extreme rain‑
fall. High rainfall is associated with floods or landslides, while low rainfall is associ‑
ated with drought. Both types of extreme rainfall have adverse effects on human life 
and the environment. High extreme rainfall is defined as rainfall that is more than 
or equal to the 75th or 90th percentile [1, 3].

Extreme rainfall in Indonesia is strongly linked to the phenomena of global cli‑
mate change such as the El Nino South Oscillation (ENSO) [4], Indian Ocean Dipole 
Mode (IOD) [5], and Madden–Julian Oscillation (MJO)  [6]. This is because Indone‑
sia is one of the tropical regions between the Pacific Ocean and the Indian Ocean 
and the continents of Asia and Australia. This study aims to model the rate of ex‑
treme rainfall events related to the effects of climate change on 21 areas in the prov‑
ince of South Sulawesi in order to construct an early warning system.

The number of extreme rainfall events is a counting process that can be modeled 
into the Poisson model [7]. The Poisson processes with constant intensity are called 
Homogeneous Poisson processes, while Poisson processes with time ‑dependent in‑
tensities are called non ‑homogeneous Poisson processes (NHPP). The number of ex‑
treme rainfall events over time certainly varies because of climate change, in other 
words they are not constant. Thus, non ‑homogeneous Poisson processes character‑
ized by time ‑dependent intensity functions are realistic enough to be applied when 
modeling extreme rainfall phenomena.

The NHPP model has been applied in various disciplines, for example model‑
ing the arrival rate of containers in port operations and management [8], analyzing 
ozone behavior [9], analyzing rainfall occurrence [10], and modeling the frequency 
of extreme rainfall [11]. However, the studies that have been carried out are most‑
ly focused on the development of time ‑dependent models, whilst extreme rainfall 
modeling involves data that is observed at different times and locations so that often 
observations in a location are affected by observations in other nearby locations. 
Thus, the addition of spatial effects to a model should be considered.

Some researchers add spatial effects to their research model to explain the pos‑
sible correlations and sources of variance that are not explained in the model. 
Huang et al. [12] applied Conditional Auto ‑Regressive (CAR) to explain spatial 
correlation in modeling N2O emissions. Rusworth et al. [13] present a new mod‑
el for estimating the effects of air pollution on human health by using the spatial 
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effect of CAR on Spatio -temporal model. Sharkey and Winter [14] add the spatial ef‑
fect of CAR distribution on the Generalized Pareto Distribution (GPD) parameter for 
precipitation modeling. Marco et al. [15] use CAR as a spatial effect in his research 
on modeling drug crime. The addition of the spatial effect of CAR on the models 
of these studies was constructed using the Bayesian hierarchy framework. A Bayes‑
ian hierarchy is considered a flexible framework and allows the incorporation of var‑
ious sources of uncertainty [14].

2. Data

The data used in this study are daily rainfall data at 60 locations in 21 areas 
in the province of South Sulawesi obtained from the Global Satellite Mapping of Pre‑
cipitation or GSMaP (ftp://hokusai.eorc.jaxa.jp). This research analyses extreme rain‑
fall events for 8 years from 2009 to 2016. Three important climatic factors: the El Nino 
Southern Oscillation (ENSO), the Indian Ocean Dipole (IOD), and the Madden– 
Julian Oscillation (MJO) are considered in this study to understand their effects on 
extreme rainfall occurrence. ENSO and IOD data were obtained from the National 
Oceanic and Atmospheric (NOAA) and MJO data from the Bureau of Meteorology. 
Figure 1 shows the districts in the province of South Sulawesi, Indonesia and rainfall 
station locations.

Fig. 1. Map of rainfall station locations in the province of South Sulawesi

ftp://hokusai.eorc.jaxa.jp
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3. Methodology

The steps in this study are as follows: Collecting data, determine extreme rainfall 
data by calculating the 75th percentile value in a day’s rainfall, counting the number 
of days with rainfall more than or equal to the 75th percentile (D75) every month, 
identify spatial correlations with Moran’s I test, construct NHPP models for the num‑
ber of extreme rainfall events D75 with three independent variables with the addition 
of spatial effects of CAR in the Bayesian Hierarchy framework, parameter estimation 
using WinBugs Version 3.0.2 software, and interpretation of research results.

4. Extreme Rainfall Modeling

Modeling the rate of extreme rainfall events is carried out within the Hierarchi‑
cal Bayesian framework. Non -homogeneous Poisson modeling with spatial effects 
using the Bayesian hierarchy method consists of three steps, namely the data mod‑
eling step, the process modeling step, and the prior distribution selection step. The 
hierarchical modeling structure is described as follows:

Let yti denotes the number of extreme rainfall day in time t, t = 1, 2, ..., T and area i, 
i = 1, 2, ..., n. yti is Poisson distribution data, which can be shown through the Kol‑
mogorov–Smirnov test. yti is modeled as Poisson distribution data with the parame‑
ter λti, then the data modeling step can be written as follows:

 yti ~Poisson(λti),

where λti depends on the time t and the location i of the event with the likelihood 
function as follows:
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In process modeling, it is assumed that the rate of extreme rainfall events λti is 
based on spatial processes since neighboring locations have more similar character‑
istics than locations farther away, so that ui as spatial random effects are added to 
the model. Also, three climate covariates that are thought to affect extreme rainfall 
events: MJO, IOD, and ENSO are also included in the model thus the model can be 
written as follows:

 0 1 2 3log ti ti ti ti iMJO NINO IOD uλ = β +β +β +β + ,

where β0 is global intercept, β1, β2, β3 are regression coefficients, MJOti, NINOti, 
IODti are predictors at time t in location i and ui are spatial random components 
at location i modeled with priors conditional autoregressive (CAR) distribution. 
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The use of a log ‑link in parameter estimation aims to ensure the parameter val‑
ue is a non -negative number. Banerjee et al. [16] in Sharkey and Winter [14] write 
the CAR model with conditional prior for ui as:
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where ui is spatial random effect, τ2 is the variance, 
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= ∑  with wi+ is the num‑

ber of neighbors of cell location i, wij is spatial weight on the spatial weight matrix W. 
A real n×n matrix defining spatial proximity between cells i and j with wij = 1 if loca‑
tion i and j are adjacent and wij = 0 otherwise.

The last step in hierarchical modeling is defining priors and assumed that 
the parameters at each step of the model are independent. Assuming there is no 
prior knowledge of one of the parameters in the model, it is chosen to set non‑
‑informative prior for βk = (β0, β1, β2, β3) with consideration of βk ~ N(μ, φ) where 
hyperprior μ and φ are normally distributed with mean ‑centered on zero and a large 
and fixed variant [14]. The definition of the prior is described as follows: Parame‑
ter βk = {β0, β1, β2, β3} are priors with Normal distribution,  βk ~ N(μ, φ), μ ~ N(0, 100), 
φ ~ N(0, 100), τ ~ Gamma(0.5, 0.0005).

Proportionally, the posterior distribution is the product of the likelihood func‑
tion with prior. The parameters that will be estimated are written as:

 0 1 2 3{ , , , , }iu= β β β βθ

with hyperparameter:

 { , , }= µ ϕ τψ ,

thus the likelihood function in this model is:
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Therefore, the posterior distribution can be written as follows.
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Model parameters are estimated by means of the Bayes method using the Mar‑
kov Chain Monte Carlo (MCMC) algorithm with WinBugs version 3.0.2 software.



10 B. Bakri, K. Adam, A. Rahim

5. Result

The parameter estimation results with the Bayesian method are good when 
the estimated parameters converge. The convergence of the estimation results was 
observed by the visual inspection of trace samples for each chain, density, history, 
autocorrelation, and convergence statistics of Gelman ‑Rubin. The estimation results 
for the high extreme rainfall rate models are obtained by carrying out an MCMC 
run of 10.000 iterations with 1.000 burn ‑in period. Trace sample plots for each chain, 
density, history, autocorrelation, and convergence statistics of Gelman–Rubin show 
that MCMC is mixing well.

The estimation results for the number of extreme rainfall days (D75) model 
are presented in Table 1. The first column in each Table is the covariate parameter 
(factors) that are thought to affect extreme rainfall events rate, the mean column 
shows the magnitude of the model parameter value, and for the next three columns, 
namely val2.5% (credible lower limit interval), median, and val97.5% (upper limit 
of the credible interval) is the estimated value on the 95% credible interval. Covari‑
ates with values at credible intervals that do not contain zero value are considered to 
significantly affect the rate of the number of extreme rainfall days.

Table 1. Parameter posterior estimation results for the rate of D75 model

Parameter Mean Standard 
deviation Val2.5% Median Val97.5%

β0 0.6365 0.0563 0.5274 0.6368 0.7469

β1 0.1864 0.0566 0.0749 0.1863 0.2972

β2 −0.0005 0.0181 −0.0367 −0.0007 0.0349

β3 −0.7952 0.0645 −0.9203 −0.7945 −0.6697

τ 11.9300 5.5690 4.5500 10.7900 25.7800

Based on the estimation results in Table 1, what is stated to affect the rate of D75 
in South Sulawesi with a confidence interval of 95% is MJO and IOD. This can be 
seen from the results of estimating the parameters β1 and  β3 whose values do not 
contain zero on the credible interval. In contrast to ENSO, since it contains zero 
on the credible interval on the results of the β2 parameter estpmation, it stated that 
ENSO did not show a significant result for D75 in the province of South Sulawesi 
for a period of 2009 to 2016. Meanwhile, the CAR parameter (τ) shows that there is 
a spatial dependency between neighboring locations of events.

The rate of the number of extreme rainfall days in the province of South Sulawe‑
si can be modeled as follows:

 75log 0.6365 0.1864 0.7952D
ti ti tiMJO IODλ = + − .
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From the estimation results for D75 rates, it stated that for D75 behavior to‑
wards the climate covariate. The MJO and the IOD significantly influence while 
ENSO does not affect significantly. The CAR parameter (τ) significantly affects both 
the MJO and the IOD. It means that in the case of extreme rainfall events there are 
spatial dependencies in neighboring locations.

The description of D75 in the province of South Sulawesi (see Fig. 2) shows 
a pattern that varies over time. The presence of spatial dependencies occurred 
in the province of South Sulawesi. Several locations have similar colors.

Fig. 2. Map of the high extreme rainfall rate in the period 2009 to 2016: 
a) January, b) February, c) March, d) April, e) May, f) June, g) July,  

h) August, i) September, j) October, k) November, l) December

a) b) c) d)

e) f) g) h)

i) j) k) l)
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The rate of D75 in the province of South Sulawesi in the period 2009 to 2016 
ranges from one to six days (see Fig. 2). The maximum rate of extreme rainfall days 
in six days and this occurs in January and April, with the rate of D75 in one ‑day 
for August and September. The variation in the rate of occurrence is certainly re‑
lated to the geography and topography at the scene. Although globally the rate 
of extreme rainfall events is significantly affected by MJO and IOD, extreme rain‑
fall events in several locations in South Sulawesi are influenced by the local nature 
of the location.

6. Discussion

The modeling of extreme rainfall events rate in this study was carried out by 
considering three climate covariates that were thought to affect extreme rainfall 
events: ENSO [4], IOD [5], and MJO [6]. Climate change that changes from time to 
time causes the incidence of extreme rainfall is not constant or changes over time. In 
that case, the NHPP is quite realistic to be used to model the rate of D75 that depend 
on changes in time.

Globally, 21 areas of observation in the province of South Sulawesi have spatial 
correlations with the location of their neighbors. This can be seen from the Moran 
index value I = 0.2990. Thus the addition of spatial effects to rainfall modeling was 
carried out to explain the spatial random effects as carried out by [14]. Spatial depen‑
dence is done by selecting prior CAR on spatial random effects. In this study, prior 
CAR in the NHPP model is used to model high extreme rainfall events in the prov‑
ince of South Sulawesi.

The effect of the global climate on the rate of the number of extreme rainfall 
days is shown in Table 1. Both MJO and IOD showed a significant effect on the num‑
ber of extreme rainfall days in the province of South Sulawesi. This can be seen 
from the results of estimating the parameters β1 and β3 whose values do not contain 
zero on the credible interval. This is in contrast to ENSO, because it contains zero 
on the credible interval on the results of the β2 parameter estimation. ENSO has no 
significant effect on the rate of D75 in the province of South Sulawesi for the period 
of 2009 to 2016.

In general, ENSO has a varied influence on rainfall intensity and the number 
of rainy days both spatially and temporally. According to Deni et al. [17], ENSO has 
a major effect on rainfall anomalies in Indonesia. In the east of Indonesia, ENSO was 
correlated with rainfall in that location [18]. This study shows that the rate of D75 
in the province of South Sulawesi for a period of 2009 to 2016 is only significantly in‑
fluenced by MJO and IOD, while ENSO does not have a significant effect. It can hap‑
pen when ENSO merges concurrently with MJO or IOD or even both. Jones et al. [19] 
stated that MJO in the active phase led to increased extreme rainfall, where MJO 
generally tends to be most active during the ENSO neutral phase and experiences 
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a resting phase when ENSO strengthens. Also, IOD reduces the impact of ENSO, 
while merging at the same time [20]. MJO is stronger during negative IOD com‑
pared with positive IOD [21]. When IOD is negative, MJO increases the probability 
of the occurrence of high extreme rainfall. When IOD is positive, the modulation 
of the wet days by MJO becomes weaker.

7. Conclusion

This study shows that for the period of 2009 to 2016, IOD and MJO are asso‑
ciated with the rate of the number of extreme rainfall days. When there is a neg‑
ative IOD, the incidence of the number of extreme rainfall days tends to increase. 
MJO in the active phase affects the rate of high extreme rainfall events at the location 
it passes. The ENSO does not have a significant effect on the rate of D75 events. 
The random effect of spatial shows a significant effect, which means that the rate 
of the number of extreme rainfall days in the area of the province of South Sulawesi 
affects the rate of occurrence in neighboring locations.
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