
Full Terms & Conditions of access and use can be found at
https://www.tandfonline.com/action/journalInformation?journalCode=gmos20

Molecular Simulation

ISSN: (Print) (Online) Journal homepage: https://www.tandfonline.com/loi/gmos20

Theoretical studies of Thiazolyl-Pyrazoline
derivatives as promising drugs against malaria by
QSAR modelling combined with molecular docking
and molecular dynamics simulation

Arwansyah Arwansyah, Abdur Rahman Arif, Gita Syahputra, Sukarti Sukarti
& Isman Kurniawan

To cite this article: Arwansyah Arwansyah, Abdur Rahman Arif, Gita Syahputra, Sukarti Sukarti &
Isman Kurniawan (2021): Theoretical studies of Thiazolyl-Pyrazoline derivatives as promising drugs
against malaria by QSAR modelling combined with molecular docking and molecular dynamics
simulation, Molecular Simulation, DOI: 10.1080/08927022.2021.1935926

To link to this article:  https://doi.org/10.1080/08927022.2021.1935926

Published online: 07 Jun 2021.

Submit your article to this journal 

View related articles 

View Crossmark data

https://www.tandfonline.com/action/journalInformation?journalCode=gmos20
https://www.tandfonline.com/loi/gmos20
https://www.tandfonline.com/action/showCitFormats?doi=10.1080/08927022.2021.1935926
https://doi.org/10.1080/08927022.2021.1935926
https://www.tandfonline.com/action/authorSubmission?journalCode=gmos20&show=instructions
https://www.tandfonline.com/action/authorSubmission?journalCode=gmos20&show=instructions
https://www.tandfonline.com/doi/mlt/10.1080/08927022.2021.1935926
https://www.tandfonline.com/doi/mlt/10.1080/08927022.2021.1935926
http://crossmark.crossref.org/dialog/?doi=10.1080/08927022.2021.1935926&domain=pdf&date_stamp=2021-06-07
http://crossmark.crossref.org/dialog/?doi=10.1080/08927022.2021.1935926&domain=pdf&date_stamp=2021-06-07


Theoretical studies of Thiazolyl-Pyrazoline derivatives as promising drugs against
malaria by QSAR modelling combined with molecular docking and molecular
dynamics simulation
Arwansyah Arwansyah a, Abdur Rahman Arif b, Gita Syahputra c, Sukarti Sukartia and Isman Kurniawan d,e

aDepartment of Chemistry, Faculty of Science, Universitas Cokroaminoto Palopo, Palopo, Indonesia; bDepartment of Chemistry, Faculty of
Mathematics and Natural Sciences, Hasanuddin University, Makassar, Indonesia; cResearch Center for Biotechnology, Indonesian Institute of Science,
Bogor, Indonesia; dSchool of Computing, Telkom University, Bandung, Indonesia; eResearch Center of Human Centric Engineering, Telkom University,
Bandung, Indonesia

ABSTRACT
We investigate thiazolyl-pyrazoline derivatives as promising drugs for the anti-malarial. Protein kinase G
is a primary target for treating malaria due to its essential role in Plasmodium falciparum life cycle. In this
present study, several computational approaches such as QSAR modelling, molecular docking, and all-
atom MD simulation are performed to screen 36 drug candidates against malaria. From QSAR analysis,
three potent drugs are selected based on the strong correlation between the inhibitory action, i.e.
pEC50 and various descriptors. Further, those selected drugs are used as ligand molecules for
molecular docking. We predict three complexes of models 1, 2, and 3 bind to the catalytic site of
protein kinase G, suggesting those ligands may become potent inhibitors for Plasmodium falciparum.
To validate the structural stability of those complexes, the parameters of RMSD, RMSF, and Rg are
calculated from MD simulation. All models are stable along simulation since no significant fluctuations
are observed in those validity parameters. Moreover, the binding energy is estimated at each model
using MM-GBSA method and model 2 becomes the most stable structure. Finally, three ligands are
assumed to have potential as inhibitors and the ligand of model 2 may become the most promising
drug against malaria.

ARTICLE HISTORY
Received 18 February 2021
Accepted 15 May 2021

KEYWORDS
Thiazolyl-pyrazoline
derivatives; protein kinase G;
QSAR modelling; molecular
docking; molecular dynamics
simulations

1. Introduction

Malaria transmitted by a bite of infected mosquitoes is one of
the serious global diseases that has caused 400,000 deaths and
hundreds of million people of new infection each year [1].
Therefore, searching for promising anti-malarial drugs for the
treatment of the disease can be a crucial challenge due to the
increasing cases affected by Plasmodium parasites. In the mol-
ecular investigation, inhibition of the parasite life is required
for preventing a new infection to the human. A lot of proteins
are directly connected to the Plasmodium life [2–6]. Protein
kinase is one of the Plasmodium proteins that can be considered
an important target because of the critical role in the parasite life
cycle. This protein relates to a complex system of second mes-
senger signalling, phosphoinositide metabolism, calcium trans-
port, etc. [2, 3, 7]. It indicates that protein kinase is implicated in
calcium mobilisation, parasite signalling, and even transporting
the parasite invasion to red blood cells.

In experimental research, the inhibitory activities of several
anti-malarial drugs to protein kinase have been investigated. In
the paper presented by Rama and co-workers, a series of pyra-
zolopyrimidine and imidazopyrazine can become anti-malaria
drugs by in vitro analysis due to the inhibitory action to Plas-
modium falciparum calcium-dependent protein kinase 4
(PfCDPK4) [3]. Also, protein kinases as targets for anti-malarial
intervention have been reported by Doerig and co-workers [7].

The authors suggest that the inhibition of protein kinases is
needed for controlling a new infection by the parasites. From
viewpoints of theoretical investigation, the inhibitory activities
by the interaction of drug candidates in complex with protein
kinase have been presented. For example, plasmepsin-II inhibi-
tor di-tertiary amines by molecular docking combined with
QSAR method have capabilities as anti-malarial agents since
those drug candidates bind to the enzyme’s active site [8].
Potential drugs against malaria such as imidazopyrazine and
its analogs by molecular docking and MD simulations have
reported the inhibition activities to phosphatidylinositol-4-
OH kinase type III beta (pfPI4KB). The test compounds of
ZINC78988474 and ZINC20564116 are identified as potent
pfPI4KB inhibitors due to the lowest binding energies from
all candidates [9]. A paper presented byMarilia and co-workers
[10] has also investigated quinazoline derivatives as potential
drugs as anti-malaria. The authors employ machine learning
techniques combined with molecular docking to screen a series
of compounds. Thus, the inhibition of a protein kinase of Plas-
modium parasites becomes a crucial target for designing a new
drug to treat malaria.

Cyclic guanosine-3,5-monophosphate-dependent protein
kinase or protein kinase G, one of the kinds of protein kinase
of Plasmodium falciparum, is selected as a primary target for
anti-malaria drugs. Bakkouri and co-workers have investigated
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the tertiary structure of protein kinase G by X-ray analysis [2].
This protein consists of various domains such as cyclic nucleo-
tide-binding (CNB-A, B, C, D), kinase domain C-lobe, kinase
domain N-lobe and auto-inhibitory segment (AIS). The acti-
vation of this protein involves the binding of cyclic guano-
sine-3,5-monophosphate (cGMP) to a segment of protein
kinase G. This holoenzyme bounds to several amino acid resi-
dues of protein kinase G, including VAL105, LYS113,
MET115, PHE121, GLY122, GLU123, ALA124, ARG132,
SER133, and ILE136. Hence, favourable drug candidates that
can attach to cGMP sites are assumed to have an inhibitory
action to protein kinase G.

In this research, we perform quantitative structure-activity
relationship (QSAR) modelling to screen a series of thiazolyl-
pyrazoline derivatives as promising drugs against malaria.
This technique is one of the favourable and innovative methods
in the field of drug design and molecular modelling by optimis-
ing and validating the relationship between a compound and its
chemical properties [11–18]. To find the binding site, including
the orientation pose of anti-malaria drugs with a receptor, we
perform the molecular docking simulation on the thiazolyl-
pyrazoline/protein kinase G complex. This method is also
widely used as a drug discovery because it can explain a particu-
lar small molecule in binding with a target protein by using a
searching algorithm and scoring functions [19–21]. To
confirm the complex obtained by molecular docking is stable
in the water solvent, all-atom molecular dynamics (MD) simu-
lation is performed on thiazolyl-pyrazoline in complex with
protein kinase G. Moreover, the binding energy of the complex
is estimated from the trajectories of MD simulation. A combi-
nation of some computational approaches, i.e. QSAR, molecu-
lar docking, and MD, is expected not only to present a better
understanding of thiazolyl-pyrazoline/protein kinase G inter-
actions but also to occupy notable significance for further
design of new potent drugs for the treatment of malaria.

2. Materials and methods

2.1. QSAR modelling

2.1.1. Data preparation and selection
To perform QSAR modelling on thiazolyl-pyrazoline deriva-
tives, we retrieve the dataset, including the value of inhibitory
potency (EC50) of the compounds for 36 structures from Ref.
[22]. The chemical structures of those compounds are pro-
vided in an additional file. 36 structures are created by Avoga-
dro program packages. Next, those structures are optimised by
using semi-empirical calculations (AM1) in the gas phase to
obtain the stable geometry of each molecule. Then, all struc-
tures are saved in Mol2 format. Meanwhile, inhibitory potency

(EC50) of 36 structures is converted to negative logarithm
values log10(1/EC50) or written to pEC50. This data is used
to validate the QSAR analysis in further analysis.

To obtain the descriptor in relation to the compound’s
structural, topological, and chemical properties, Padel pro-
gram package is employed on thiazolyl-pyrazoline derivatives
[23]. Initially, a total of 1440 descriptors are obtained after cal-
culations. Since large descriptors are collected, we need to
decide the descriptors with strong correlations with inhibitory
activity pEC50 (mM). The number of descriptors is reduced by
applying some step selections. In the first selection, the
descriptor with constant or almost constant values is dis-
carded. The descriptor which contains NaN values and
empty features is erased. Also, the descriptor with a strong cor-
relation with other descriptors (Pearson correlation coefficient
>0.8) is removed. From this procedure, the dataset of the gen-
erated descriptor remains 72 features. Then, we apply the Gen-
etic Algorithm (GA) method to select the most important
descriptors from the primary variable collection. The GA pro-
tocols are set according to the similar procedure provided in
Ref. [24]. The size of the population and learning generations
are set to 200 and 100,000, respectively. Other parameters are
arranged as a default form. Finally, three descriptors with
strong correlations with inhibitory activity pEC50 (mM) are
found from all selection protocols. The name, including the
definition of those descriptors, are listed in Table 1.

2.1.2. QSAR method and validation
For QSAR modelling, multiple linear regression (MLR) is
commonly used to investigate the linear relationship between
a dependent variable, i.e. PEC50, and independent variables
corresponding to various descriptors. The data analysed by
MLR are represented as a linear equation. The model develop-
ment is started by splitting 36 compounds into two sets, i.e.
training and test data. The training data consists of 28 com-
pounds. Meanwhile, 8 compounds are selected as the test
data. The descriptor values of 3 descriptors with high corre-
lations with pEC50 are shown in Table 2. Further, we apply
two other methods, i.e. random forest (RF) and support vector
machine (SVM), to analyse the correlation between descriptor
and inhibitory activity. RF is a general method that randomly
selects the training data to examine a large number of features.
CART algorithm developed by Breiman and co-workers is
basic theory for RF method where the diversity of trees is
improved as the learning ability [25,26]. RF can solve a
regression or classification issue in some ways. For example,
the variable importance of a data set is measured by fitting a
random forest to the data, then the value of the features are
recorded and averaged to the training data. The standard devi-
ation is found after normalising the feature score in the data
set. In this current letter, the descriptors are estimated by RF
to find the correlation of given compounds with chemical
structure and properties with their inhibitory values as anti-
malaria. Another popular method for QSAR modelling is
SVM method developed by Vapnik [27]. This method gener-
ates some principles such as developing the statistical approach
theory, handling to minimise the error value, and producing
the optimal whole response [28]. This technique has been
widely applied to determine the classification or regression

Table 1. List of selected descriptors and the physical-chemical definition.

Descriptor Description class Descriptor definition

AATS7e Auto correlation
descriptor

Average Broto–Moreau autocorrelation - lag 1
/ weighted by Sanderson electronegativities

AlogP Physico-chemical Logarithm of the octanol-water partision
ATSC4s Auto correlation

descriptor
Average centred Broto–Moreau
autocorrelation - lag 0 / weighted by I-state
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of the data due to many attractive features and encouraging
practical execution. In SVM, several parameters are related
to the calculation performance, such as the capacity C par-
ameter, the kernel function, and epsilon-intensitive loss func-
tion. Also, the Gaussian radial basis function (RBF) is generally
utilised in SVM. Therefore, the usage of those parameters is a
necessary step for SVM estimation [29]. In this present letter,
the regression assessment of MLR, RF, and SVM is analysed by
Python 2.7 packages [30].

To validate the QSAR model, the internal and external
validations are performed by utilising the model to predict
training and test data. Here, we calculate several parameters
to evaluate the validity of the model. Firstly, the coefficients
of determination (R2) are calculated to evaluate the strength
of the relationship between the actual values and predicted
values. The model performance is also evaluated by consider-
ing the slope value (k) and (r2−r20)

r2 . The r2 and r20 parameters
represent the correlation coefficient between the actual and
predicted values with and without intercept, respectively.
Finally, we calculate the modified r2 (r2m) to present a better
predictive ability of the model [31,32]. The calculation of
the validation parameters is formulated in the following
equations:

R2 = 1−
∑

(y− ŷ)2∑
(y− �y)2

(1)

k =
∑

(y× ŷ)∑
(ŷ)2

(2)

r2 =
∑

(y− �y)(ŷ− �̂y)
[ ]2∑
(y− �y)2 ×∑

(ŷ− �̂y)2
(3)

r20 = 1−
∑

(y− k× ŷ)2∑
(y− �y)2

(4)

r2m = r2 × 1−
��������
r2 − r20

√( )
(5)

where, y and ŷ denote the actual and predicted value of pEC50,
respectively, while �y and �̂y denote the mean of the actual and
predicted value, respectively. Then, we evaluate the acceptabil-
ity of the model by considering the following criteria [33–35]:

R2 . 0.60

0.85 ≤ k ≤ 1.15

(r2 − r20)
r2

, 0.10

r2m . 0.50

We also evaluate the applicability domain (AD) of the model

Table 2. The values of the descriptors, experimental and predicted pEC50 values by MLR, RF and SVM models for training and test sets.

No. AATS7e ALogP ATSC4s Exp (pEC50) MLR RF SVM

Training set
1 8.616.535 24.801 6.463.437 4.596 4.602 4.673 4.695
2 7.992.811 35.141 −4.287.536 4.757 4.852 4.834 4.837
3 7.966.531 36.586 −3.884.633 4.825 4.847 4.835 4.831
4 8.046.704 32.495 −15.015.726 4.961 4.966 4.949 4.863
5 8.209.171 33.056 −10.535.654 4.922 4.864 4.936 4.870
6 7.991.385 27.180 −8.575.302 4.944 4.945 4.941 4.850
7 7.763.543 26.144 −4.763.540 4.948 4.980 4.954 4.874
9 8.043.407 26.707 −6.773.654 4.909 4.912 4.918 4.853
10 8.012.786 28.152 −6.419.912 4.868 4.909 4.908 4.852
11 8.106.203 24.061 −15.874.330 4.974 5.006 4.970 4.974
12 8.154.468 24.622 −10.465.366 4.975 4.930 4.967 4.975
13 8.037.675 18.746 −10.829.863 4.974 5.004 4.970 4.974
14 7.853.266 17.710 −3.468.137 4.976 4.987 4.977 4.976
15 7.937.788 19.264 −6.388.219 4.977 4.984 4.971 4.977
16 8.076.718 25.919 −5.116.022 4.974 4.888 4.954 4.974
17 8.040.209 27.364 −4.785.052 4.948 4.888 4.954 4.948
18 8.151.591 23.273 −13.706.227 4.963 4.973 4.966 4.963
20 8.067.944 17.958 −9.189.209 4.962 4.981 4.961 4.962
22 7.950.789 18.476 −4.716.120 4.958 4.966 4.963 4.958
23 7.819.267 33.088 −2.922.553 4.973 4.903 4.967 4.973
24 7.794.927 34.533 −2.645.213 4.961 4.899 4.936 4.961
25 7.869.182 30.442 −10.096.634 4.949 4.980 4.953 4.949
29 7.735.314 25.645 −2.602.887 4.988 4.969 4.974 4.988
30 8.025.044 47.974 −3.016.840 4.623 4.754 4.706 4.623
32 8.074.959 45.328 −10.195.216 4.966 4.831 4.867 4.966
34 8.021.192 40.013 −6.451.876 4.705 4.838 4.798 4.705
35 7.867.306 38.977 2.313.220 4.788 4.797 4.804 4.788
36 7.941.091 40.531 −2.696.843 4.928 4.820 4.817 4.928
Test set
8 7.902.167 27.698 −3.883.451 4.948 4.919 4.926 4.948
19 8.198.887 23.834 −8.433.738 4.912 4.898 4.960 4.912
21 7.851.358 16.922 −1.965.586 4.958 4.976 4.977 4.958
26 7.940.469 31.003 −4.978.976 4.970 4.900 4.945 4.970
27 7.823.849 25.127 −6.354.929 4.967 4.985 4.972 4.967
28 7.727.330 24.091 2.416.255 4.856 4.926 4.827 4.856
31 8.000.704 49.419 −2.739.318 4.709 4.750 4.716 4.709
33 8.118.809 45.889 −5.077.883 4.706 4.759 4.847 4.706
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to investigate the limitation of the model against the data set
[36,37]. The AD is calculated by using leverage approach, in
which the leverage values of each compound is formulated as:

H = X(XTX)−1XT (6)

where H is an n× n matrix that orthogonally projects vectors
into space spanned by the columns of X. Then, we construct
the AD region by plotting the leverage value against the stan-
dard residual value referred to as the Williams plot. The AD
region lies in a square area within +3 for standard residual
values at the y-axis and the leverage threshold (h∗) at x -axis.
The leverage threshold is formulated as h∗ = 3(p+ 1)/n,
where p is the number of descriptor and n is the number of
compounds [33,38].

2.2. Molecular docking simulation

In order to find the binding site of selected thiazolyl-pyrazoline
derivatives (ligand molecules) obtained from the QSAR model
into the N-terminal of protein kinase G of Plasmodium falci-
parum (receptor), molecular docking simulation is performed
by using AutoDock v 4.2 packages developed by Morris and
co-workers [39]. The tertiary structure of the receptor is
obtained from protein data bank (PDB ID: 5E16) with resol-
ution 1.65 Å as shown in Figure 1 [2]. The receptor is prepared
by adding hydrogen atoms, and Kollman’s united atom
charges are given to generate the PDBQT format. Meanwhile,
the selected ligands are prepared by adding gasteiger charges
and polar hydrogens. The torsion atoms of ligands are ident-
ified, then PDBQT formated are created. Autogrid option is
decided around the binding site of protein kinase G with
enough space for the ligand rotation and translation. The
grid box size is set on 52 × 46 × 52 points with a grid spacing
of 0.375 Å. The distance-dependent function of dielectric con-
stant at −0.1465 is applied for the estimation of the energetic
map. All of those docking parameters are prepared by using
AutoDock Tools 1.5.6 [39].

The docking simulation is performed by employing the
Lamarckian genetic algorithm (LGA) method to search ligand

conformation poses and orientations inside the receptor’s
binding site. The searching parameters are decided as follows:
the maximum energy evaluation number is set to 25,000,000
per run. The number of individuals in the population and
the maximum number of generations is adjusted to 150 and
2700. The rate of gene mutation and the rate of the crossover
are set at 0.02 and 0.8, respectively. Other parameters are fol-
lowed as the default of AutoDock v 4.2. Each optimisation
involves many evaluations of the scoring function in the pos-
ition, orientation, and torsion coordinates of the ligand to the
receptor. The values of RMSD by <2 Å are clustered, and the
binding energies are ranked based on the energy score to
show the representative of ligand pocket.

2.3. Molecular dynamics simulation

To validate the stability of the complex selected from molecu-
lar docking, we perform all-atom molecular dynamics simu-
lation on protein kinase G and selected ligands. The system
is inserted with TIP3P water [40] and Na+ ions are also
added to neutralise the system. To determine the force field
parameters of ligand molecules, general AMBER force field
(GAFF) [41] is applied to ligands. Meanwhile, the AMBER14
force field is used for the receptor [42]. The electrostatic inter-
actions and the constrained distance of the hydrogen atom are
computed by using the Particle Mesh Ewald (PME) [43] and
SHAKE [44] algorithms. The switching cutoff distance is set
10 Å, and all simulations are simulated with the time step of
2 fs.

MD simulation is started by carrying out the energy mini-
misation on the system. Then, the temperature is gradually
increased from 0 to 300 K by performing NVT-constant for
500 ps. The temperature and the pressure of the system are
kept at 300 K and 1 atm using the Langevin thermostat [45]
and isotropic position scaling algorithm, respectively. The sys-
tem is equilibrated with the NPT ensemble for 50 ns, and the
trajectory is saved each 5000 steps (10 ps). All MD simulations
are performed by using Amber16 packages [46]. CPPTRAJ
tool is used to analyse the trajectories of MD simulation [47].

To validate the stability of ligand in binding with the recep-
tor, we calculate the root-mean-square deviation (RMSD) of
the complex as follows:

RMSD(t1) = 1
M

∑N
i=1

mi ‖ ri(t1)− rref ,i ‖2
[ ]1

2

, (7)

where mi is the mass of atom i, N is the total number of atoms
in the model complex,M is the total mass of all atoms, and ri is
the position of atom i at the time t, and rref ,i is the positions of
ith atom in the X-ray structure, respectively.

2.4. MM-GBSA binding energy

To estimate the binding energy of receptor–ligand complex,
we employ molecular mechanics-generalised Born surface
area (MM-GBSA) method developed by Miller and co-workers
[48]. The binding energy is calculated from the trajectories of

Figure 1. (Colour online) The tertiary structure of N-terminal of protein kinase
G. The structures of α-helix and β-sheet are presented by red and green colours
in cartoon models, respectively. Meanwhile, the structure of cyclic guanosine-3,5-
monophosphate (cGMP) refers to magenta colour by a stick model.
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MD simulations according to the following equation:

DGbinding = −RT lnKi = Gcomplex − (Greceptor + Gligand) (8)

the energy term is calculated as follows:

G = Evdw + Eele + EGB + ESA (9)

Where Evdw, Eele, EGB, and ESA are the van der Waals, electro-
static, general Born solvation and surface area energies,
respectively.

3. Results and discussions

3.1. QSAR analysis

To characterise the descriptors of 36 compounds of thiazolyl-
pyrazoline derivatives, several QSAR approaches have been
applied to find the correlation between descriptors and their
chemical properties. In the present letter, anti-malaria drug
candidates of thiazolyl-pyrazoline derivatives using MLR, RF,
and SVM approaches are reported. Three descriptors, i.e.
AATS7e, ALogP, ATSC4s, provided in Table 2 are obtained
from selection protocols described in subsection 2.1.1. In
Figure 2(a), we show the scatter plot of experimental values
versus predicted pEC50 meanwhile, the residuals of exper-
imental pEC50 against predicted values using MLR are
shown in Figure 2(b). Based on these two figures, the pEC50
values predicted by MLR are a good agreement with exper-
imental evidence. Also, as shown in Figure 2(b), the residual
values are scattered on both areas of the zero axes. It implies
that the model is free of regular error. Figure 3(a,b) shows
the graph of experimental pEC50 versus calculated pEC50
values and the graph of residuals versus experimental pEC50
values calculated by using RF method. The training and test
set of predicted values are noticed consistently with the exper-
imental data as shown in 3(a). Also, from Figure 3(b), most of
the residual values are distributed to the zero axes. Thus, the
predicted value by RF is a good correspondence with the
experimental data. For the SVM model, the scatter plot of

experimental values against predicted pEC50 is provided in
Figure 4(a). The predicted values are reliable with the corre-
sponding experimental evidence. Meanwhile, in Figure 4(b),
the residuals for the predicted pEC50 values are plotted against
the experimental pEC50. The majority of the residuals are
nearly equivalent to zero. This finding suggests that the pre-
dicted values by SVM are comparable with experimental data.

The validation parameter that indicates the acceptability
and validity of the models are listed in Table 3. From the
table, we find that the validation parameters of all models
satisfy the threshold value. This indicates that the QSAR
model developed by MLR, RF and SVM is valid and accepta-
ble. To determine the best model, we compare the value of
R2 and r2m values for both train and test sets. As for the R2 par-
ameter, we find that the greatest R2 value of train and test set
are obtained from RF and SVM models, respectively. The R2

value of train and test calculated using the RF model are
0.87 and 0.75, respectively, while the R2 value of train and
test set calculated using the SVM model are 0.86 and 0.87,
respectively. Meanwhile, MLR method gives the worst R2

values for both train and test sets. The R2 value of train and
test calculated by using the MLR model are 0.67 and 0.84,
respectively. As for r2m, we find that the greatest r2m value of
train and test set are acquired from RF and MLR models,
respectively. The r2m value of train and test calculated by
using RF model are 0.82 and 0.70, respectively, while R2

value of train and test set calculated by using MLR model
are 0.66 and 0.79, respectively. To determine the best model,
we consider the external validation of R2 as more priority par-
ameters. Hence, we find that the SVM model has the best abil-
ity in predicting the value of pEC50.

The applicability domain (AD) of the models is determined
by using the leverage approach. The Williams plot of leverage
values against standard residual values is presented in Figure 5.
We implement the standard residue and leverage threshold to
construct the AD region. According to the figure, we find that
all samples lies inside the AD region for all QSARmodels. This
confirms the applicability of those models against both train

Figure 2. (a) Values of experimental pEC50 of thiazolyl-pyrazoline derivatives against the calculated values of pEC50 using MLR model. (b) Residuals of thiazolyl-pyrazo-
line derivatives against the experimental values of pEC50 using MLR model.
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and test sets. Hence, the QSAR models developed by MLR, RF
and SVM are applicable to predict pEC50 of Thiazolyl-Pyrazo-
line compounds.

3.2. Contribution of selected descriptors

To examine the relative importance and contribution of the
descriptor with pEC50 values. We calculate the mean effect

(MF) according to the following equation:

MFj =
b j

∑n
i

dij

∑m
j

(b j

∑n
j

dij)

(10)

MFj and b j represent the mean effect of each descriptor j and

Figure 3. (a) Values of experimental pEC50 of thiazolyl-pyrazoline derivatives against the calculated values of pEC50 using RF model. (b) Residuals of thiazolyl-pyrazo-
line derivatives against the experimental values of pEC50 using RF model.

Figure 4. (a) Values of experimental pEC50 of thiazolyl-pyrazoline derivatives against the calculated values of pEC50 using SVM model. (b) Residuals of thiazolyl-pyr-
azoline derivatives against the experimental values of pEC50 using SVM model.

Table 3. Statistical parameters by MLR, RF and SVM models for thiazolyl-pyrazoline derivatives.

Parameter MLR RF SVM Threshold
Train Test Train Test Train Test

R2 0.67 0.84 0.87 0.75 0.86 0.87 >0.60
k 1.05 1.08 1.01 0.96 1.03 1.00 0.85 ≤ k ≤ 1.15
(r2−r20 )

r2 0.00 0.00 0.00 0.01 0.01 0.03 , 0.10
r2m 0.66 0.79 0.82 0.70 0.77 0.73 >0.50
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the coefficient of the descriptor j, respectively. dij and m refer
to the value of proposed descriptors for each compound and
the number of descriptors.

Figure 6 shows MF graph of molecular descriptor for thia-
zolyl-pyrazoline derivatives. Three descriptors, i.e. AATS7e,
ALogP, and ATSC4s, are presented. AATS7e is a molecular
descriptor based on average Moreau-Broto autocorrelation
of Sanderson electronegativities calculated by using physico-
chemical properties such as atomic masses and covalent
radius at the atomic level [49]. In MF bar, the descriptor
has a positive correlation with pEC50. It assumes that the
large value of AATS7e affects a high degree of anti-malaria.
In Table 2, the compounds 1 (8.616) and 5 (8.20) are higher
than the others. Therefore, those ligands may have better
inhibitory activity than the other compounds. Another
descriptor, AlogP related to the hydrophobicity of ligand, is
selected in QSAR model. This descriptor describes the capa-
bility of ligand to pass the cell membrane quickly [50]. In
MF estimation, the value of AlogP is positive. As a conse-
quence, the high value of this descriptor increases the inhibi-
tory of a compound. From our results, the compound 31
(4.941) with the highest AlogP may become more inhibitory
activity than the other compounds. The last descriptor, i.e.
ATSC4s, is an almost similar parameter of AATS7e based
on the Moreau-Broto autocorrelation function. From MF

analysis, compounds 1 (6.463) have a positive value and
may have a high inhibitory activity compared to other com-
pounds. Assumed from the MF analysis in respect to the
inhibitory activity pEC50 of ligands, three compounds 1, 5,
and 31 are selected for evaluating their possibilities in binding
with protein kinase G by molecular docking.

Figure 5. Williams plot of applicability domain calculated by using (a) MLR, (b) RF and (c) SVM models.

Figure 6. (Colour online) Mean effects of molecular descriptors for thiazolyl-pyr-
azoline derivatives.
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3.3. Molecular docking

In molecular docking simulation, the selected configurations
from the docking result are required to determine the theoreti-
cal accuracy of the obtained complex structure between ligand
and receptor. To select the conformations from simulation,
two strategies are considered to find the promising structure
of the complex. These strategies are included selecting the low-
est binding energy and concerning the binding site of the
ligand into the moiety of the receptor (binding pose). The
best-docked structure is found from the lowest binding energy,
which presents the stable state of the ligand in binding to the
site of the receptor. On the other hand, the binding pose also
becomes a crucial point to screen the conformations obtained
by molecular docking. The binding pose of complex provides
the information of ligand position in attaching to the amino
acid residues of the receptor. The best pose is selected when
the ligand participates in the catalytic site (active site) of the
receptor. Therefore, both the binding energy and binding
pose of the ligand/receptor complex are noticed for selecting
the promising conformation from the docking simulation
[39,51,52].

In the previous subsection, we have performed QSAR mod-
elling to screen 36 structures of thiazolyl-pyrazoline deriva-
tives. From our evaluation, we obtain three compounds,
including compounds 1, 5, and 31, as suggesting potent
drugs against malaria. The structural formula of these com-
pounds is shown in Figure 7. In order to expand a deeper
understanding of the QSAR results. Molecular docking is per-
formed for those compounds to find the stability complex in
binding with the receptor of protein kinase G. The stable struc-
ture is achieved when the complex has negative binding ener-
gies and low inhibition constants. From our simulations, three
complexes between ligand and receptor are obtained. These
complexes containing compounds 1, 5, and 31 are written to
become models 1, 2, and 3, respectively. In Table 4, we

summarise the thermodynamics quantities of docking results
such as binding energy, inhibition constant, intermolecular
energy, Van der Waals, hydrogen bond, and dehydration ener-
gies, electrostatic energy, total internal energy, torsional free
energy, and unbound energy. All models have negatives bind-
ing energy. It indicates that the ligand can make a binding to
the site of the receptor. Although all models have slightly
different binding energies, the inhibition constant of model 2
is lower than other models. We can assume that model 2
may easily bind to the receptor for making a stable complex.

Let us discuss the interaction of ligand into the moiety of
the receptor. Figure 8 shows the binding site and orientation
pose of all complexes. We observe all ligands participate in
hydrogen bond and hydrophobic interactions with the recep-
tor. The details of hydrogen bonds for those complexes are
listed in Table 5. In model 1, the ligand makes hydrogen
bonds with residues GLY122, ALA124, ALA125, ARG132 of
the receptor. In model 2, the hydrogen bonds are formed
with residues of AlA124, ALA125, ARG132, SER133, and
ALA134. Meanwhile, in model 3, the ligand participates
hydrogen bond with residue SER133. All complexes may
become stable structures since the hydrogen bonds are formed
between ligand and receptor. Moreover, as mentioned in the
introduction section, to deactivate the receptor of protein
kinase G, the candidate drugs must prevent cGMP binding
with at least one residue of the receptor such as VAL105,
LYS113, MET115, PHE121, GLY122, GLU123, ALA124,
ARG132, SER133, and ILE136. From our model, we see all
ligands bind with at least one crucial residue for activation
of protein kinase G. This indicates that all ligands can inhibit
the receptor, suggesting they may have inhibitory activities as
anti-malaria.

The hydrophobic interactions between ligand and receptor
are also crucial interactions between ligand and receptor.
Thus, we analyse this interaction for all models by LigPlot

Figure 7. (Colour online) Structural formula of selected compounds from QSAR modelling (a) compound 1, (b) compound 5, and (c) compound 31.

Table 4. Thermodynamic quantities of ligand in complex with receptor obtained by molecular docking.

Model

Binding
energy
kcal/mol

Inhibition
constant
(Ki)/μM

Intermolecular
energy (kcal/mol)

vdW + Hbond +
Dsolv energy
(kcal/mol)

Electrostatic
energy (kcal/mol)

Internal energy
(kcal/mol)

Torsional free
energy

(kcal/mol)

Unbound
energy

(kcal/mol)

1 −4.04 1110 −5.83 −5.54 −0.29 −0.42 1.79 0.42
2 −4.46 537.17 −6.85 −6.70 −0.15 −0.98 2.39 0.98
3 −4.21 825.91 −6.59 −6.51 −0.08 −1.83 2.39 −1.83
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Figure 8. (Colour online) Orientation pose of ligand to the receptor. (a) Model 1, (b) Model 2, and (c) Model 3. The three dimension (3D) of complex pose is visualised by
PLIP program [54] combined with Pymol v 2.3 program packages [55].

Table 5. Hydrogen bonds of thiazolyl-pyrazoline derivatives in complex with receptor.

Model Residue AA Distance H-A (Å) Distance D-A (Å) Donor Angle Donor Atom Acceptor Atom

Model 1 122 GLY 2.94 3.89 153.63 1652 (N) 2244 (N3)
124 ALA 3.57 3.91 102.05 1674 (N) 2252 (O2)
125 ALA 2.15 3.09 152.27 1684 (N) 2252 (O2)
132 ARG 1.91 2.86 153.80 1826 (N) 2252 (O2)

Model 2 124 ALA 2.93 3.30 102.35 1674 (N) 2243 (O3)
125 ALA 1.88 2.80 147.86 1684 (N) 2243 (O3)
132 ARG 2.77 3.68 148.05 1826 (N) 2243 (O3)
133 SER 1.81 2.79 159.51 1832 (N) 2244 (O3)
134 ALA 3.13 3.90 133.03 1843 (N) 2244 (O3)

Model 3 133 SER 2.95 3.89 154.12 2245 (N) 1837 (O2)
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v.4.5.3 packages developed by Wallace and co-workers [53].
Two dimensions (2D) of the hydrophobic interactions for all
complexes are shown in Figure 9. In model 1, the ligand

participates in hydrophobic interaction with the residues
LYS113, VAL105, ILE136, PHe121, SER120, ASN56,
GLU123, ALA134, GLY122, and ILE86, ALA124, ALA125,

Figure 9. (Colour online) Hydrophobic interactions of the ligand in complex with receptor are presented by the dashed red line. (a) Model 1, (b) Model 2, and
(c) Model 3.
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and ARG132. In model 2, hydrophobic interactions are formed
between ligand and residues SER119, THR114, MET115,
SER120, LYS113, GLU123, PHE121, VAL105, ALE136,
GLY122, ARG132, ALA124, SER133, ALA125. In addition,
model 3 also shows hydrophobic interaction by residues of
LEU57, VAL158, ASN56, GLU123, ILE127, MET115,
ILE136, ALA124, VAL105, PHE121, HIS128, ALA134,
SER133, and VaL107 with ligand molecules. We suppose
hydrophobic interaction is also contributed to the stability of
ligand in the site of the receptor.

3.4. MD analysis

From the results of molecular docking simulation provided in
Figure 8, we have predicted that the promising drugs in three
models may become potential inhibitors for the treatment of
malaria due to their binding site to the catalytic site of the recep-
tor. To validate the structural stability of those models in water
solvent, all-atom MD simulation is performed [41,46,56].
Because of the different ligands’ structures, we determine the
box sizes, the number of counter ion and water molecules for
each model as listed in Table 6. For the MD procedure of all
models, we have presented in subsection 2.1.

In order to validate the structural stability of the complex,
we analyse several parameters, i.e. root-mean square deviation
(RMSD), root mean square fluctuation (RMSF), and radius of
gyration (Rg) for all models. In Figure 10, we show the RMSD
value as a function of MD time for each model. The RMSD is
calculated from the trajectories of MD simulations according
to the equation (6). As shown in Figure 10, models 1, 2, and
3 reach the equilibrium state after 10 ns. This finding implies
that our complexes are stable during the simulation. In
model 1, little fluctuations are observed around 30–34 ns,
but after this time, the RMSD becomes stable until the end
of the simulation. This fluctuation can occur because the inter-
actions of each residue, which includes electrostatic inter-
action, hydrogen bond, hydrophobic interactions or even
water molecules, participate in structural rearrangement at
the interface of protein. The flexibility of each model deter-
mined by estimating the RMSF factor is shown in Figure 11.
As shown in the figure, all models do not significantly change
the structure during the simulation. Although complex 2 looks
at a higher fluctuation than models 1 and 2, all models’ graphs
tend to resemble similar shapes. This indicates that all com-
plexes keep a stable along simulation. Furthermore, another
parameter in relation to the protein stability is the change of
protein size corresponding to the radius of gyration, as
shown in Figure 12. In model 3, we find slight fluctuations
around 37–42 ns. After that evolution time, the graph looks

stable again. Also, from Figure 12, we do not see any significant
change of radius of gyration for each complex, indicating all
complexes are stable during the simulation. Thus, assumed
from all results of those stability parameters, we suggest that
the complex corresponding to models 1, 2, and 3, consisting
of ligand and receptor are relatively stable along the
simulation.

Figure 10. (Colour online) The RMSD value of complex of model 1, model 2, and
model 3 is presented by red, green, and blue line colours.

Figure 11. (Colour online) The RMSF value of complex of model 1, model 2, and
model 3 is presented by red, green, and blue lines points colours.

Figure 12. (Colour online) The Rg value of complex of model 1, model 2, and
model 3 is presented by red, green, and blue line colours.

Table 6. Properties of simulation for all models.

Models Identities

Box size (Å)
No. of ions

(Na+)
No. of
water

Total
atom

Model 1 58.924 × 65.274× 56.877 4 5744 19433
Model 2 60.156 × 65.274× 56.877 4 5935 20021
Model 3 58.924 × 65.274 × 56.877 5 5727 19409
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To decide which model are the most stable structure in the
water solvent, the binding energy using MM-GBSA method is
calculated according to the equation (9). The MD trajectories
are selected from the equilibrium state from 20–50 ns. Thus,
3000 frames are used to calculate the binding energy. From
our estimation, the binding free energies, including the contri-
bution of energy for each model, are summarised in Table 7.
We find that model 2 has the lowest binding energy at
−18.14 kcal/mol. For models 1 and 2, the binding energy is
obtained at −16.41 kcal/mol and −11.28 kcal/mol, respect-
ively. This finding implies that the most stable complex may
be found in model 2. Also, the binding energy from MM-
GBSA method is a good correspondence with our result
obtained by molecular docking where the lowest binding
energy by these two methods is found in model 2, then fol-
lowed by models 3 and 1, respectively. Further, as shown in
Table 7, we see the Eele and EGb values for all models have sig-
nificantly different values. This indicates those energy terms
influence the difference of binding energy for each model.

Since model 2 becomes the most stable structure obtained
by the estimation of the binding energy using MM-GBSA
method. We extract two snapshot conformations of the com-
plex at 30 ns (blue) and 50 ns (magenta) of MD simulations,
then aligned to the structure obtained from molecular docking
(yellow). The structural superimposes for those molecular
docking and MD snapshots are shown in Figure 13. From
this figure, we can see the complex fluctuation in respect to
the conformational changes of receptor and ligand molecule.
For the receptor molecule, no significant fluctuations are
observed for both docking and MD structures. This finding
reveals that the protein keeps stable in the system during the
simulations. Meanwhile, in ligand molecule, the structure
involves the large fluctuations shown in Figure 13. These
fluctuations may increase the probability of ligand in binding
with the receptor to form a complex structure. Hence, the
ligand of model 2 may become the most promising drug
against malaria not only have the lowest binding energy but
also participate in interactions easily to the catalytic site of
protein kinase G.

4. Summary

Inhibition of protein kinase G becomes a crucial point for
the treatment of malaria due to its essential role in Plasmo-
dium parasite life. In this present study, the purpose of
searching novel, potent and selective protein kinase G inhibi-
tor as anti-malaria is performed by combining several com-
putational approaches such as QSAR modelling, molecular
docking, and all-atom MD simulation. From QSAR model-
ling, we employ MLR, RF, and SVM approaches to find
the relation between the inhibitory action, i.e. pEC50, and
the variable of various descriptors. The several validation
parameters of each model are estimated to validate the
strong/weak correlation of predicted and experiment value
of pEC50. Also, we estimate the mean effect to examine
the relative importance and contribution of the descriptors
with pEC50 and select three potent drugs for the anti-malaria
agent. Further, those selected drugs are used as ligand mol-
ecules for molecular docking. From our results, we predict
there complex of models 1, 2, and 3 bind to the catalytic
site of protein kinase G. This finding implies those ligands
may become inhibitors for Plasmodium falciparum. To vali-
date the stability of those complexes, all-atom MD simu-
lation is performed on all models. Based on the parameters
of RMSD, RMSF, and Rg, all complexes are stable along
simulation since no significant fluctuations are observed in
those parameters. Besides, the binding energy for complexes
is estimated by MM-GBSA to decide the most stable struc-
ture in the water solvent. From our calculation, model 2
may become the most stable structure based on the binding
energy score. Therefore, the snapshot structures of model 2
from molecular docking and MD simulations are extracted
to see the conformational changes of the complex. The side
chain of the ligand becomes large fluctuations during the
simulation. We imply that the fluctuation of the ligand
may increase the probability of binding with the receptor
of protein kinase G. Finally, assumed from our simulations,
three ligands may have potential as inhibitors of protein
kinase G and the ligand of model 2 may become the prom-
ising drug against malaria. Therefore, for further safety and
health interest, the suggested drugs of our computational
assessment need further in vitro and in vivo analysis or
event preclinical trials.
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Table 7. The binding energy and the contribution of each energy term. The units for all contributions are given by kcal/mol.

Model Evdw Eele EGB ESA DGMM DGGBSA
Solv DGbind

Model 1 −23.44 −12.56 27.91 −3.19 −36.01 24.72 −11.28
Model 2 −25.26 −27.63 38.24 −3.49 −52.89 34.74 −18.14
Model 3 −26.02 −75.26 88.17 −3.29 −101.29 84.88 −16.41

Figure 13. (Colour online) Superimposes of the complex of model 2 obtained
from docking (yellow) and MD simulations at 30 ns (blue) and 50 ns (magenta)
are presented by cartoon model.
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