DISERTASI

STUDI MODEL PERUBAHAN MORFOLOGI DASAR SALURAN TANAH AKIBAT BANGUNAN KRIB

Model Study Of Morphological Changes In The Base Morphology Of Soil Channels Due To Groyne Structure

AMRULLAH M. D013181010

PROGRAM STUDI DOKTOR ILMU TEKNIK SIPIL

DEPARTEMEN TEKNIK SIPIL

FAKULTAS TEKNIK

UNIVERSITAS HASANUDDIN

GOWA

2023

PENGAJUAN DISERTASI

STUDI MODEL PERUBAHAN MORFOLOGI DASAR SALURAN TANAH AKIBAT BANGUNAN KRIB

Disertasi Sebagai Salah Satu Syarat untuk Mencapai Gelar Doktor Program Studi Ilmu Teknik Sipil

Disusun dan diajukan oleh

AMRULLAH M. D013181010

Kepada

PROGRAM STUDI DOKTOR ILMU TEKNIK SIPIL
DEPARTEMEN TEKNIK SIPIL
FAKULTAS TEKNIK
UNIVERSITAS HASANUDDIN
GOWA
2023

DISSERTATION SUBMISSION PAGE

MODEL STUDY OF MORPHOLOGICAL CHANGES IN THE BASE MORPHOLOGY OF SOIL CHANNELS DUE TO GROYNE STRUCTURE

Dissertation
as one og the Requirements for Achieving a Docktoral Degree
Study Program Civil Engineering
Prepared and Submitted by

AMRULLAH M. D013181010

to

CIVIL ENGINEERING DOCTORAL DEGREE
CIVIL ENGINEERING DEPARTMENT
FACULTY OF ENGINEERING
HASANUDDIN UNIVERSITY
GOWA, INDONESIA
2023

DISERTASI

STUDI MODEL PERUBAHAN MORFOLOGI DASAR SALURAN TANAH AKIBAT BANGUNAN KRIB

AMRULLAH M D013181010

Telah dipertahankan dihadapan Panitia Ujian Disertasi yang dibentuk dalam rangka penyelesaian studi pada Program Doktor Ilmu Teknik Sipil Fakultas Teknik Universitas Hasanuddin pada tanggal 02 Oktober 2023 dan dinyatakan telah memenuhi syarat kelulusan

Menyetujui, Promotor

Prof. Dr. Ir. Mary Selintung, M.Sc. NIP. 194306121965092001

Co-Promotor

Co-Promotor

Prof. Dr. Ir. H. Muhammad Saleh Pallu.M.Eng NIP. 19540910 198303 1 003 Dr.Eng. Ir.H. Mukhsan Putra Hatta, ST. MT

NIP. 19730512199903 1 002

Dekan Fakultas Teknik Universitas Hasanuddin

Ketua Program Studi S3 Ilmu Teknik Sipil

Prof. Dr.Eng. Ir. Muhammad Isran Ramli, ST. MT. IPM

NIP. 197309262000121002

Prof. Dr.Eng. Ir. Rita Irmawaty, ST, MT

NIP. 197206192000122001

PERNYATAAN KEASLIAN DISERTASI DAN PELIMPAHAN HAK CIPTA

Yang bertanda tangan di bawah ini :

Nama : Amrullah M.

Nomor Mahasiswa : D013181010

Program Studi : Teknik Sipil

Dengan ini saya menyatakan bahwa, disertasi berjudul "Studi Model Perubahan Morfologi Dasar Saluran Tanah Akibat Bangunan Krib" adalah benar karya saya dengan arahan dari komisi pembimbing Prof. Dr. Ir. Mary Selintung, M.Sc., sebagai Promotor dan Prof. Dr. Ir. H. Muhammad Saleh Pallu, M.Eng., sebagai co-promotor-1 serta Dr. Eng. Ir. H. Mukhsan Putra Hatta, S.T. M.T., sebagai co-promotor-2. Karva ilmiah ini belum diajukan dan tidak sedang diajukan dalam bentuk apa pun kepada pergurun tinggi mana pun. Sumber informasi yang berasal atau dikutip dari karya diterbitkan maupun tidak diterbitkan dari penulis lain telah disebutkan dalam teks dan dicantumkan dalam Daftar Pustaka disertasi ini. Sebagian dari isi disertasi ini telah dipublikasikan di Jurnal IOP Publishing Conf. Series: Earth and Environmental Science 419 (2020) 012121 DOI 10.1088/1755-1315/419/1/012121 sebagai artikel dengan judul Experimental study the effect of turbulent flows in bend channels as to a result of vegetation groin structure on permeable type dan Jurnal IOP Publishing Conf. Series: Earth and Environmental Science 841 (2021) 012031 DOI 10.1088/1755-1315/841/1/012031 sebagai artikel dengan judul Measurement of Turbulent Flows and Shear Stress on Open Channels serta Jurnal Konferensi Nasional Teknik Sipil ke-15 ISBN 978-623-7635-91-8, KA-05 hal 202-210 sebagai artikel dengan judul analisis pengaruh perubahan kecepatan aliran akibat krib permeabel pada saluran terbuka. Judul artikel Internasional Model Study of Morphological Changes in the Base Morphology of Soil Channels Due to Groyne Structure, dipublikasi pada journal Design Engineering dengan publisher Rogers Media Publishing Ltd. ISSN: 0011-9342. Year 2023. Issue;1 page 457-470.

Dengan ini saya melimpahkan hal cipta dari karya tulis saya berupa disertasi ini kepada Universitas Hasanuddin

UCAPAN TERIMA KASIH

Puji Syukur kehadirat Allah SWT atas limpasahn rahmat dan karuniaNya, sehingga penulis dapat menyelesaikan disertasi ini, dengan judul "Studi Model Perubahan Morfologi Dasar Saluran Tanah Akibat Bangunan Krib". Penulis menyadari sepenuhnya bahwa dalam proses penyelesaian Disertasi banyak mengalami hambatan-hambatan, maupun bersifat teknis maupun non teknis. Oleh karena itu atas berkat doa, bantuan dan dukungan dari berbagai pihak, sehingga Disertasi ini dapat diselesaikan dengan baik, walaupun belum sempurna. oleh karenanya pada kesempatan ini perkenankan penulis mengucapkan terima kasih yang sebesar-besarnya kepada:

- 1) Bapak Prof. Dr.Ir. H. Muh. Isran Ramli, MT. sebagai Dekan Fakultas Teknik Universitas Hasanuddin Makassar,
- 2) Bapak Prof.Dr.H. Muhammad Wihardi Tjaronge, S.T, M.Eng. sebagai Ketua Departemen Teknik Sipil dan Dosen Pembimbing Akademik.
- 3) Ibu Prof. Dr. Eng. Ir. Rita Irmawati, M.T. selaku Ketua Program Studi S3 Teknik Sipil Fakultas Teknik Universitas Hasanuddin Makassar.
- 4) Bapak Prof. Ir. Mary Selintung, M.Sc. sebagai Promotor, Prof. Dr. Ir.H. Muhammad Saleh Pallu, M.Eng. sebagai Co-Promotor, dan Dr. Eng. Ir. H. Mukhsan Putra Hatta, M.T., sebagai Co-Promotor atas bimbingan dan arahannya yang telah diberikan mulai dari pengembangan minat sampai dengan penulisan disertasi ini,
- 5) Bapak Prof.Dr.Ir. H. Muhammad Arsyad Thaha, M.T., Sebagai penguji internal, Prof. Dr.Ir. H. Abdul Rachman Djamaluddin, M.T. sebagai penguji internal, Dr.Eng. Ir. Hj. Rita Tahir Lopa, M.T. sebagai penguji internal, Prof. Dr.Eng. Ir. H. Farouk Maricar, M.T. sebagai penguji internal
- 6) Ibu Dr. Ir. Tiny Manonama, M.T. Dosen Universitas Sam Ratulangi Manado, selaku penguji Eksternal atas kesediaan waktunya untuk memberikan arahan dan masukannya, demi perbaikan dan kesempurnaan naskah Disertasi ini.
- 7) Segenap dosen pengajar dan staff program Studi S3 Teknik Sipil Fakultas Teknik Universitas Hasanuddin Makassar.
- 8) Rekan-rekan seperjuangan mahasiswa pascasarjanan UNHAS Angkatan 2018 Program Teknik Sipil atas kerjasamanya selama ini, hingga pada tahap penyelesaian Disertasi.
- 9) Bapak Prof. Dr. H. Ambo Asse, M.Ag. selaku Rektor Unismuh Makassar, beserta Wakil Rektor I, Dr. Ir. H. Abd. Rakhim Nanda, M.T., Wakil Rektor II, Prof. Dr.H. Andi Syukri Syamsuri, M.Hum, Wakil Rektor III, Dr. Muhammad Tahir, M.Si, Wakil Rektor IV, Dr.H. Mawardi Pewangi, M.Ag., serta jajarannya atas segala dukungan moril dan material, kesempatan kepada penulis dalam penyelesaian Disertasi.
- 10) Segenap sejawat bapak Dr. Burhanuddin, M.Si selaku ketua BPM, bapak Dr. Khaeruddin, M.Pd. selaku Ketua dan Dr. Rahmi, S.Pi., selaku Sekretaris BAPEPAN-MTI, serta rekan-

- rekan semua di BPM dan BAPEPAN-MTI atas dukungannya dan memberikan berperan ganda dalam penyelesaian Disertasi ini.
- 11) Segenap civitas Akademika Fakultas Teknik Unismuh Makassar, Ibu Dr.Ir. Hj. Nurnawaty, M.T, selaku Dekan, Bapak Ir. Muhammad Syafaat S. Kuba, S.T, M.T, selaku Wakil Dekan 1, Dr.Andi Makbul Syamsuri, S.T, M.T, selaku Dekan II, bapak Fausan Hamdi, S.T, M.T, selaku Wakil Dekan III, bapak Dr. Abd. Rahman, M.Ag. selaku dekan IV, serta rekan-rekan pimpinan prodi dan dosen Fakultas Teknik Unismuh Makassar atas dukungannya dalam penyelesaian Disertasi.
- 12) Orang tua tercinta yaitu Bapak Mansida (alm), Ibu Buah Cani (alm), Ibu Mertua Habiba (alm) dan ibu H. Maryam (alm), bapak Saehe (alm) serta istriku tercinta Marlia dan ananda Fadhila Eka Rahayu Amrullah dan Ahmad Fairuz Amrullah yang terus bersabar, memberikan dukungan dan semangat kepada penulis dalam penyelesaian Disertasi ini.
- 13) Kakak-Adik-adiku, ipar para suami dan istrinya, kemanakan semua atas dukungan dan semangat kepada penulis dalam penyelesaian Disertasi ini.
- 14) Semua keluarga besar Ambe Bata-Indo Riang dan Parissangi Puang Sita atas dukungannya.
- 15) Seluruh pihak yang namanya tidak tercantum tetapi telah banyak membantu penulis dalam menyelesaikan disertasi ini.

Akhir kata penulis berharapkan Disertasi ini dapat berguna bagi pengembangan ilmu pengetahuan khususnya di bidang persungaian dengan pengaturan kecepatan aliran dan pencegahan gerusan di Sungai. Amin.

Makassar, 02 Oktober 2023

Amrullah M.

ABSTRAK

Amrullah M. Studi Model Perubahan Morfologi Dasar Saluran Tanah Akibat Bangunan Krib (Dibimbing oleh Mary Selintung, Muhammad Saleh Pallu, dan Mukhsan Putra Hatta).

Krib permeable sebagai hambatan aliran untuk mengatur dan mengurangi dampak kecepatan aliran. Hambatan aliran ini menyebabkan penomena perubahan morfologi dasar sungai sebagai dampak dari fluktuasi kecepatan aliran secara tiba-tiba. Model penelitian menggunakan metode eksperimental dengan melakukan pengamatan secara visual, untuk mempelajari karakteristik aliran dan pergerakan sedimen sebagai salah satu parameter perubahan marfologi dasar saluran. Media penelitian menggunakan lebar saluran (b) 35 cm, tinggi (h) 45 cm dan panjang (L) 900 cm. Variasi penelitian digunakan; debit pengaliran (O) dan kemiringan dasar saluran (S_o) masing-masing tiga variasi, kerapatan krib $(k_{kl}=0.09 \text{ cm}, k_{k2}=0.12 \text{ cm})$, (Jarak krib $(L_{kl}=60 \text{ cm}, L_{k2}=90 \text{ cm})$, diameter krib $(d_{kl}=0.09 \text{ cm}, d_{k2}=0.17 \text{ cm})$ masing-masing dua variasi. Pengukuran kecepatan aliran dengan current meter pada empat segmen dengan metode lima titik kedalaman dan sebelas titik berdasarkan arah lebar saluran. Pengambilan sampel volume angkutan sedimen dan pola gerusan dilakukan sebelum dan setelah ada krib permeabel. Penelitian ini menganalisis perubahan karakteristik aliran, perubahan morfologi dasar saluran dan persamaan empiris akibat bangunan krib permeabel serta divalidasi dengan persamaaan empiris sebelumnya. Ditemukan karakteristik aliran dengan turbulen dan mengurangi kecepatan aliran sebesar 8,55%. Perubahan gerusan dasar saluran berbanding lurus dengan semakin besar jarak krib permeable (L_k) , kerapatan krib (k_k) dan diameter krib (d_k) , menunjukkan semakin besar angkutan sedimen dengan kountur semakin renggang, sedangkan semakin kecil jarak krib (L_k) , kerapatan krib (k_k) , dan diameter krib (d_k) permeable angkutan sedimen semakin kecil dengan kountur semakin rapat. Ditemukan persamaan empris angkutan sedimen (q_b) akibat krib permeable. Hambatan kecepatan dan energi aliran cukup tinggi secara tiba-tiba menyebabkan penomena resistensi turbulensi aliran dan gerusan di sekitar area krib permeable.

Kata Kunci: Bangunan krib, resistensi aliran, angkutan sedimen, perubahan morfologi dasar

ABSTRACT

Amrullah M. Model Study of Morphological Changes in the Base Morphology of Soil Channels Due to Groyne Structure

(Supervised by Mary Selintung, Muhammad Saleh Pallu, dan Mukhsan Putra Hatta)

The impact of flow velocity is effectively regulated and mitigated by permeable groynes, which also induce changes in riverbed morphology due to abrupt fluctuations in flow velocity. Therefore, this research investigated the effects of permeable groynes on flow characteristics, channel bottom morphology, and derived empirical equations to quantify their influence. The research media uses a channel width (b) of 35 cm, height (h) of 45 cm and length (L) of 900 cm, respectively, was utilized in the experimental setup. Several research variations were implemented, which involved three variations each of flow rate (Q) and channel bottom slope (S_o). Moreover, two variations of groyne density (k_{k1} =0.09 cm, k_{k2} =0.12 cm), distance (L_{k1} = 60 cm, L_{k2} = 90 cm), and diameter (d_{k1} = 0.09 cm, $d_{k2} = 0.17$ cm) were considered. t_0 measure flow velocity, a current meter was employed at three segments, with five points each, to determine the flow depth in the vertical dir. Before and after the introduction of the permeable groyne, flow velocity measurements and sampling of sediment transport volume and scour patterns were conducted. This research analyzes changes in flow characteristics, changes in channel bed morphology and empirical equations due to permeable groin structures and is validated with previous empirical equations. The result showed that the flow characteristics were turbulent and reduced the flow velocity by 8.55% due to the presence of permeable groyne. Changes in channel bottom scour are directly proportional to the greater the distance of permeable groyne (L_k), the density of the groyne (k_k) and the diameter of the groyne (d_k) , indicating that the greater the transport of sediment with the more tenuous the contour, while the smaller the groyne distance (L_k) , the density of the groyne (k_k) , and the diameter of the groyne (d_k) permeable sediment transport becomes smaller with the contour getting denser. The resulting empirical equations are the sediment transport equation (q_b) in permeable groynes. The relatively high resistance to flow velocity causes resistance to flow turbulence and scour and around the permeable groyne area.

Keywords: Groyne Structure, Flow resistance, Sediment transport, Base changes morphology.

DAFTAR ISI

HAL	AMAN SAMPUL DEPAN	1
PENC	GAJUAN DISERTASI	ii
DISS	ERTATION SUBMISSION PAGE	iii
PERS	SETUJUAN DISERTASI	iv
PERN	NYATAAN KEASLIAN DISERTASI DAN PELIMPAHAN HAK CIPTA	V
UCA]	PAN TERIMA KASIH	vi
ABS	ΓRAK	viii
ABS	TRACT	ix
DAF	TAR ISI	X
DAF	ΓAR TABEL	xiii
DAF	TAR GAMBAR	xiv
DAF	ΓAR SINGKATAN DAN ARTI SIMBOL	XX
BAB	I PENDAHULUAN	1
1.1	Latar Belakang	1
1.2	Rumusan Masalah	4
1.3	Tujuan Penelitian	4
1.4	Manfaat penelitian	5
1.5	Batasan Penelitian	5
1.6	Sistematika Penelitian	6
1.7	Kebaruan/novelty Penelitian	6
BAB	II TINJAUAN PUSTAKA	7
2.1	Hidrolika Aliran Sungai	7
2.1.1	Perlawanan Terhadap Aliran	7
2.1.2	Klasifikasi Aliran berdasarkan Angka Reynolds	8
2.1.3	Persamaan Empiris Kecepatan Aliran	8
2.1.4	Karakteristik Aliran Melewati Sebuah Benda	11
2.2	Morfologi Sungai	12
2.2.1	Gerusan Sungai	12
2.2.2	Faktor yang Mempengaruhi Gerusan	14
2.2.3	Mekanisme Gerusan	15
2.2.4	Tegangan Dasar Sungai	17

2.2.5	Gerak Awal Sedimen	18
2.2.6	Angkutan sedimen melayang (suspended load)	19
2.2.7	Angkutan Sedimen dasar (bedload)	20
2.2.8	Sifat sedimen gabungan	24
2.2.9	Gaya-gaya yang bekerja pada butiran sedimen dalam air	26
2.3	Bangunan Krib (Groyne Structure)	29
2.3.1	Klasifikasi Krib	29
2.3.2	Formasi Krib	34
2.3.3	Pemilihan Tipe Krib	34
2.4	Analisis Dimensi	35
2.5	Hipotesis	38
2.6	Penelitian Terdahulu	39
2.7	Kerangka Pikir Penelitian	48
BAB	III METODE PENELITIAN	49
3.1	Bentuk dan jenis Penelitian	49
3.2	Lokasi dan Waktu Penelitian	49
3.3	Rancangan Penelitian	49
3.3.1	Bahan penelitian	49
3.3.2	Peralatan	50
3.3.3	Perencanaan Model	52
3.3.4	Lokasi pengukuran	54
3.4	Variabel Penelitian	56
3.5	Analisis Penelitian	58
3.6	Bagan Alir Penelitian	61
BAB	IV ANALISIS DAN PEMBAHASAN	63
4.1	Parameter Utama Data penelitian	63
4.1.1	Media tanah pasir sebagai media Sedimen Uji	63
4.1.2	Variable Data penelitian	63
4.1.3	Validasi Pengukuran Kecepatan Aliran dengan Kondisi Saluran Tanpa Krib Dengan Sedimen (TKDS)	64
4.2	Perubahan Karateristik aliran akibat krib permeable	66
4.3	Perubahan Morfologi Dasar Saluran	70
4.3.1	Perubahan Morfologi Dasar Saluran Akibar Krib Permeabel	70
4.4	Pola Perubahan Morfologi Dasar Saluran Akibat Krib Permeabel	80

4.4.1	Pola perubahan Kecepatan Aliran akibat variasi jarak krib (Lk) dan kerapatan (kk) Krib Permeabel	80
4.4.2	Pola perubahan Kecepatan Aliran akibat variasi kemiringan saluran (So) pada jarak krib (Lk), kerapatan krib (kk), dan diameter krib (dk)	85
4.4.3	Pola perubahan gerusan dasar saluran akibat variasi jarak krib (Lk), kerapatan krib (kk), dan diameter krib (dk) pada pengaliran (Q2)	95
4.4.4	Perubahan Pola gerusan dasar saluran akibat variasi kemiringan saluran (So) pada jarak krib (Lk), kerapatan krib (kk), dan diameter krib (dk)	102
4.5	Model Empiris perubahan Morfologi Dasar Saluran	114
4.5.1	Analisis Dimensi	114
4.5.2	Analisis dimensi untuk koefisien gaya seret (CD) pada bangunan krib permeable	115
4.5.3	Analisis Dimensi untuk angkutan sedimen (qb) pada bangunan krib permeable	119
BAB	V KESIMPULAN DAN SARAN	127
5.1	Kesimpulan	127
5.2	Saran 127	
DAF	TAR PUSTAKA	129
Lamp	viran 1. Analisa saringan sedimen (summary test results)	135
Lamp	piran 2. Analisa saringan sedimen (specific gravity test)	136
Lamp	piran 3. Analisa saringan sedimen (sieve analysis)	137
Lamp	iran 4. Diagram Shields hubungan tegangan geser krtis dengan bilangan Reynolds untuk intesitas sedimen dasar (Breuser dan Raudkivi, 1991)	138
Lamp	pada krib permeable (Re)	139
Lamp	iran 6. Analisis bilangan Reynolds dan Koefisien gaya gesek (CD) pada krib permeabel	140
Lamp	iran 7. Analisis gaya hambat FD empiris dan FD penel. pada krib permeable pada pengaliran (Q1)	141
Lamp	iran 8. Analisis gaya hambat FD empiris dan FDpenel. pada krib permeable pada pengaliran (Q2)	142
Lamp	iran 9. Analisis gaya hambat FD empiris dan FDpenel. pada krib permeable pada pengaliran (Q3)	143

DAFTAR TABEL

Nomor	Halaman
Tabel 1. Nilai M yang disarakan oleh Bazin	10
Tabel 2. Nilai koefisien kekasaran Manning (n)	10
Tabel 3. Nilai koefisien kekasaran Strickler (ks)	11
Tabel 4. Faktor-faktor gerakan muatan dasar (bed load movement)	20
Tabel 5. Klasifikasi ukuran butir sedimen menurut Wentworth	25
Tabel 6. Persamaan Empiris untuk koefisien Drag Pelat Datar	27
Tabel 7. Bazin untuk Koefisien yang Tergantung pada Kekasaran Dinding (Suyuno Sasrodarsono, dkk., 1986	33
Tabel 8. Hubungan antara panjang dan interval krib (Suyuno Sasrodarsono, dkk., 1986), (SNI 2400.1.2016	33
Tabel 9. Arah Aliran dan Sudut Sumbuh Krib	33 34
Tabel 10. Analisis Dimensi untuk angkutan sedimen (q_b)	37
Tabel 11. Analisis Dimensi koefisien gesek/koefisien hambat (C_D) krib permeabel	37
Tabel 12. Data teknis penelitian simulasi model	53
Tabel 13. Dimensi model krib permeabel	56
Tabel 14. Data variasi penelitian	57
Tabel 15. Matrik Kebutuhan data Penelitian	5 <i>9</i>
Tabel 16. Matrik kebutuhan data penelitian	60
Tabel 17. Karakteristik Aliran dengan metode Bilangan Reynolds (Re) pada pegujian Tanpa	
Krib dengan Sedimen (TKDS)	66
Tabel 18 . Karakteristik Aliran dengan metode Bilangan Reynolds (Re) pada pegujian Dengan Krib Dengan Sedimen (DKDS)	67
Tabel 19 . Gaya Seret dan gerak Sedimen dengan Tanpa Krib dengan Sedimen (TKDS) disekitar krib permeabel	70
Tabel 20 . Gaya Seret dan gerak Sedimen dengan Dengan Krib dengan Sedimen (DKDS) di sekitar krib permeabel	70
Tabel 21 . Variable analisis dimensi koefisien gaya seret (C _D) bangunan krib permeabel	115
Tabel 22. Variabel-variabel analisis dimensi	119
Tabel 23 Hasil Analisis Regresi liner Berganda dengan Angkutan Sedimen (q_b)	122

DAFTAR GAMBAR

Nomor	F	Ialaman
1.	Distorsi dari partikel Fluida ketika mengalir di dalam lapisan batas (Bruce R Monson,	0
2	dkk, 2005)	9
2.	Ketebalan lapisan batas (a) ketebalan lapisan batas standar, (b) ketebalan perpindahan lapisan batas (Bruce R Monson, dkk., 2005)	9
<i>3</i> .	Hubungan kedalaman gerusan (ds) dengan waktu. (Breusers & Raudkivi, 1991)	15
4.	Hubungan kedalaman gerusan (ds) dengan kecepatan. (Breusers & Raudkivi, 1991)	15
5.	Mekanisme gerusan akibat pola aliran air disekitar pilar	16
6.	Aliran pada sekeliling silinder: (a) silinder yang tidak terendam pada alas datar yang kaku; (b) silinder tidak terendam dengan lubang gerusan; (c) silinder terendam di dasar	
_	datar kaku; dan (d) silinder terendam dengan lubang gerusan. (Imam R., 2019).	17
7.	Profil gaya pada dasar miring	17
8.	Proses pergerakan sedimen dasar (bedload) dan melayang (suspensi)	22
9.	Gaya – gaya dari fluida di sekeliling pada sebuah benda dua dimensi (Bruce R	
	Monson, dkk., 2005)	26
10.	Gaya seret (drag force) dan gaya angkat (lift force) pada butiran sedimen (Muhammad	
	Arsyad Thaha, 2006)	28
11.	Aliran turbulen disekitar slider (Muhammad Arsyad Thaha, 2006)	28
<i>12</i> .	Konstruksi krib permeabel	30
<i>13</i> .	Lokasi dan konstruksi krib impermeable	30
14.	Konstruksi krib semi permeable	31
15.	Formasi krib dan penggerusan-pengendapan pada dasar Sungai (Suyuno Sasrodarsono, dkk., 1986).	34
<i>16</i> .	Kerangka Pikir Penelitian	48
17.	(a) $Tanah - Pasir$, (b) $kayu$ bulat diameter $krib$ permeable $(dk1) = 9$ mm , dan (c) $diameter$ $krib$ permeable $(dk2) = 17$ mm	50
18.	(a) Denah dan (b) tampak samping model flume	51
19.	Denah Penempatan krib permebal pada model flume jarak krib 60 cm, kerapatan krib 9	31
	mm dan diameter krib 17 mm	52
<i>20</i> .	Denah Penempatan krib permebal pada model flume jarak krib 90 cm, kerapatan krib 9	
	mm dan diameter krib 17 mm	52
21.	Potongan melintang penempatan krib dan model flume	52
<i>22</i> .	Denah dan profil memanjang segmen titik pengukuran kecepatan aliran	54
<i>23</i> .	Media uji tanpa krib dengan sedimen (TKDS)	55
<i>24</i> .	Media uji dengan krib permeabel dengan sedimen (DKDS)	55
<i>25</i> .	(a) Profil melintang segmen titik pengukuran kecepatan aliran, (b) Diameter krib (dk1=	
	0.09 cm, jarak krib ($Lk1 = 60$ cm), (c) diameter krib ($dk2 = 0.17$ cm, jarak krib ($Lk2 = 90$	
	cm) dan kerapatan krib permeabel ($kk1 = 0.9$ cm, $kk2 = 1.2$ cm)	55
<i>26</i> .	Media uji dengan tanpa krib tanpa sedimen (DKTS) dan dengan krib tanpa sedimen	
	(DSTS)	56
27.	(a) Diameter krib ($dk1 = 0.09$ cm, jarak krib ($Lk1 = 60$ cm) dan kerapatan krib ($kk1 = 0.9$ cm), (b) diameter krib ($ak1 = 0.17$ cm, jarak krib ($Lk2 = 90$ cm) dan kerapatan krib	
	permeabel (kk2=1.2 cm)	56

<i>28</i> .	Bagan alir penelitian	62
29.	Kedalaman aliran (h) terhadap kecepatan aliran (u) pada variasi debit aliran (Q1) dan kemiringan dasar saluran (S). (a) Pengukuran kecepatan aliran arah melintang saluran sebelas belas bagian berdasarkan lebar saluran (b), (b) Pengukuran kecepatan	
	aliran lima titik berdasarkan kedalaman aliran (h) dan lokasi pengukuran sebanyak	64
20	empat.	
<i>30</i> .	Kemiringan dasar saluran (S) dengan Kecepatan Aliran (u)	65
<i>31</i> .	Debit Pengaliran (Q) dengan Kecepatan Aliran (u)	66
<i>32</i> .	Hubungan pengaruh Bilangan Reynolds (Re) dengan angkutan sedimen (qb)	69
33. 34.	Visualisasi hasil pergerakan sedimen setelah ada krib (DKDS) di sekitar krib permeabel73 Visualisasi hasil gerusan sedimen setelah ada krib Permeabel (DKDS) di sekitar krib permeabel.	74
<i>35</i> .	Hubungan kecepatan geser (u*) dan kecepatan aliran (u) terhadap angkutan sedimen	/ 7
55.	(qb), (a) variasi diameter krib (dk), (b) variasi kerapatan krib (kk).	75
<i>36</i> .		15
30.	Hubungan kecepatan geser dan kecepatan aliran (u*/u) terhadap angkutan sedimen	76
27	(qb), pada variasi jarak krib (Lk)	76
<i>37</i> .	(a) Hubungan hidrolik gradien dengan kedalaman aliran (S/h) terhadap angkutan	
20	sedimen (qb) pada variasi diameter krib (dk), (b) variasi kerapatan krib (kk)	77
<i>38</i> .	Hubungan hidrolik gradien dengan kedalaman aliran (S/h) terhadap angkutan sedimen	
	(qb) pada variasi jarak krib (dk)	77
<i>39</i> .	(a) Hubungan tegangan geser dasar (το) terhadap angkutan sedimen (qb) pada variasi	
	debit aliran (Q), (b) hubungan tegangan geser dasar ($ au$ o) $$ terhadap peningkatan	
	angkutan sedimen (qb) pada perubahan jarak krib (Lk).	78
<i>40</i> .	Hubungan tegangan geser (το) terhadap angkutan sedimen (qb) (a) variasi kerapatan	
	krib (kk), (b) variasi diameter krib (dk), terhadap angkutan sedimen (qb)	79
41.	Perubahan vector pola kecepatan aliran tanpa krib pada kemiringan dasar saluran S2	
	pada debit pengaliran Q2	81
<i>42</i> .	Perubahan vector pola kecepatan aliran dengan krib pada kemiringan dasar saluran S1	
	dengan Q2 dk1 ak1 Lk1	81
43.	Perubahan vector pola kecepatan aliran dengan krib pada kemiringan dasar saluran S1 dengan Q2 dk1 ak1 Lk2	81
44.	Perubahan vector pola kecepatan aliran tanpa krib pada kemiringan dasar saluran S2	
	pada debit pengaliran Q2	82
<i>45</i> .	Perubahan vector pola kecepatan aliran dengan krib permeable pada kemiringan dasar	
	saluran S2 pada Q2 dk1 kk2 Lk1	82
46.	Perubahan vector pola kecepatan aliran dengan krib permeable pada kemiringan dasar	
	saluran S2 pada Q2 dk1 ak2 Lk2	82
<i>47</i> .	Perubahan vector pola kecepatan aliran tanpa krib pada kemiringan dasar saluran S2	
	pada debit pengaliran Q2	83
48.	Perubahan vector pola kecepatan aliran dengan krib permeable pada kemiringan dasar	
	saluran S2 pada Q2 dk2 kk1 Lk1	83
49.	Perubahan vector pola kecepatan aliran dengan krib permeable pada kemiringan dasar	
	saluran S2 pada Q2 dk2 kk1 Lk2	83
<i>50</i> .	Perubahan vector pola kecepatan aliran tanpa krib pada kemiringan dasar saluran S2	
	pada debit pengaliran Q2	84
<i>51</i> .	Perubahan vector pola kecepatan aliran dengan krib permeable pada kemiringan dasar	0,
	saluran S2 pada Q2 dk2 kk2 Lk1	84
<i>52</i> .	Perubahan vector pola kecepatan aliran dengan krib permeable pada kemiringan dasar	01
	saluran S2 pada Q2 dk2 kk2 Lk2	84
<i>53</i> .	Perubahan vector pola kecepatan aliran tanpa krib dengan sedimen pada kemiringan	5 7
	dasar saluran S1 pada debit pengaliran Q2	86
	andar darm an di pana acon pengani an 22	

<i>54</i> .	Perubahan vector pola kecepatan aliran tanpa krib permeable dengan sedimen pada
	kemiringan dasar saluran S2 pada Q2
<i>55</i> .	Perubahan vector pola kecepatan aliran tanpa krib permeable dengan sedimen pada
	kemiringan dasar saluran S3 pada Q2
<i>56</i> .	Perubahan vector pola kecepatan aliran dengan kemiringan dasar saluran dengan krib
	permeable S1, pada Q2 dk1 kk1 Lk1
<i>57</i> .	Perubahan vector pola kecepatan aliran dengan kemiringan dasar saluran dengan
	krib permeable S2, pada Q2 dk1 kk1 Lk1
<i>58</i> .	Perubahan vector pola kecepatan aliran dengan kemiringan dasar saluran dengan krib
	permeable S3, pada Q2 dk1 kk1 Lk1
<i>59</i> .	Perubahan vector pola kecepatan aliran dengan kemiringan dasar saluran dengan krib
	permeable S1, pada Q2 dk1 kk1 Lk2
<i>60</i> .	Perubahan vector pola kecepatan aliran dengan kemiringan dasar saluran dengan krib
00.	permeable S2, pada Q2 dk1 kk1 Lk2
61.	Perubahan vector pola kecepatan aliran dengan kemiringan dasar saluran dengan krib
01.	permeable S3, pada Q2 dk1 kk1 Lk2
<i>62</i> .	Perubahan vector pola kecepatan aliran dengan kemiringan dasar saluran dengan krib
02.	
<i>63</i> .	permeable S1, pada Q2 dk1 kk2 Lk1
03.	Perubahan vector pola kecepatan aliran dengan kemiringan dasar saluran dengan krib
	permeable S2, pada Q2 dk1 kk2 Lk1
<i>64</i> .	Perubahan vector pola kecepatan aliran dengan kemiringan dasar saluran dengan
	krib permeable S3, pada Q2 dk1 kk2 Lk1.
<i>65</i> .	Perubahan vector pola kecepatan aliran dengan kemiringan dasar saluran dengan krib
	permeable S1, pada Q2 dk1 kk2 Lk2
66.	Perubahan vector pola kecepatan aliran dengan kemiringan dasar saluran dengan krib
	permeable S2, pada Q2 dk1 kk2 Lk2
<i>67</i> .	Perubahan vector pola kecepatan aliran dengan kemiringan dasar saluran dengan krib
	permeable S3, pada Q2 dk1 kk2 Lk2
68.	Perubahan vektor pola kecepatan aliran dengan kemiringan dasar saluran dengan krib
	permeable S1, pada Q2 dk2 kk1 Lk1
69.	Perubahan vector pola kecepatan aliran dengan kemiringan dasar saluran dengan krib
	permeable S2, pada Q2 dk2 kk1 Lk1
<i>70</i> .	Perubahan vector pola kecepatan aliran dengan kemiringan dasar saluran dengan krib
	permeable S3, pada Q2 dk2 kk1 Lk1.
<i>71</i> .	Perubahan vector pola kecepatan aliran dengan kemiringan dasar saluran dengan krib
	permeable S1, pada Q2 dk2 kk1 Lk2
<i>72</i> .	Perubahan vector pola kecepatan aliran dengan kemiringan dasar saluran dengan krib
	permeable S2, pada Q2 dk2 kk1 Lk2
<i>73</i> .	Perubahan vector pola kecepatan aliran dengan kemiringan dasar saluran dengan krib
	permeable S3, pada Q2 dk2 kk1 Lk2
<i>74</i> .	Perubahan vektor pola kecepatan aliran dengan kemiringan dasar saluran dengan krib
	permeable S1, pada Q2 dk2 kk2 Lk1
<i>75</i> .	Perubahan vector pola kecepatan aliran dengan kemiringan dasar saluran dengan krib
	permeable S2, pada Q2 dk2 kk2 Lk1
<i>76</i> .	Perubahan vector pola kecepatan aliran dengan kemiringan dasar saluran dengan krib
. ••	permeable S3, pada Q2 dk2 kk2 Lk1
<i>77</i> .	Perubahan vector pola kecepatan aliran dengan kemiringan dasar saluran dengan krib
, , .	permeable S1, pada Q2 dk2 ak2 Lk2
78.	Perubahan vector pola kecepatan aliran dengan kemiringan dasar saluran dengan krib
/ U.	permeable S2, pada Q2 dk2 ak2 Lk2
<i>79</i> .	Perubahan vector pola kecepatan aliran dengan kemiringan dasar saluran dengan krib
/ y .	
	permeable S3, pada Q2 dk2 ak2 Lk2

<i>80</i> .	Perubahan kountur pola gerusan tanpa krib pada kemiringan dasar saluran S2 pada debit pengaliran Q2	96
81.	Perubahan kountur pola gerusan dengan krib permeable pada kemiringan dasar saluran S2 pada Q2 dk1 kk1 Lk1	96
82.	Perubahan kountur pola gerusan dengan krib permeable pada kemiringan dasar saluran S2 pada Q2 dk1 kk1 Lk2	96
83.	Perubahan kountur pola gerusan dengan krib permeable pada kemiringan dasar	
84.	saluran S2 pada Q2 dk1 kk1 Lk2 Perubahan kountur pola gerusan tanpa krib pada kemiringan dasar saluran S2 pada	96
<i>85</i> .	debit pengaliran Q2 Perubahan kountur pola gerusan dengan krib permeable pada kemiringan dasar	97
03.	saluran S2 pada Q2 dk1 kk2 Lk1	97
<i>86</i> .	Perubahan kountur pola gerusan dengan krib permeable pada kemiringan dasar saluran S2 pada Q2 dk1 kk2 Lk2	97
87.	Perubahan kountur pola gerusan dengan krib permeable pada kemiringan dasar saluran S2 pada Q2 dk1 kk2 Lk2	98
88.	Perubahan kountur pola gerusan dasar tanpa krib pada kemiringan dasar saluran S2	99
89.	pada debit pengaliran Q2. Perubahan kountur pola gerusan dasar dengan krib permeable pada kemiringan dasar saluran S2 pada Q2 dk2 kk1 Lk1	99
90.	Perubahan kountur pola gerusan dasar dengan krib permeable pada kemiringan dasar saluran S2 pada Q2 dk2 kk1 Lk2	99
91.	Perubahan kountur pola gerusan dasar dengan krib permeable pada kemiringan dasar saluran S2 pada Q2 dk2 kk1 Lk2	99
92.	Perubahan kountur pola gerusan dasar tanpa krib pada kemiringan dasar saluran S2 pada debit pengaliran Q2	100
93.	Perubahan kountur pola gerusan dasar dengan krib permeable pada kemiringan dasar saluran S2 pada variasi Q2 dk2 kk2 Lk1	100
94.	Perubahan kountur pola gerusan dasar dengan krib permeable pada kemiringan dasar saluran S2 pada variasi Q2 dk2 kk2 Lk2	100
95.	Perubahan pola kountur gerusan dasar dengan krib permeable pada kemiringan dasar saluran S2 pada variasi Q2 dk2 kk2 Lk2	101
96.	Perubahan kountur pola gerusan dasar dengan kemiringan dasar saluran S1 tanpa krib permeable dengan sedimen pada debit aliran Q2	102
97.	Perubahan kountur pola gerusan dasar dengan kemiringan dasar saluran S2 tanpa krib permeable dengan sedimen pada debit aliran Q2	102
98.	Perubahan kountur pola gerusan dasar dengan kemiringan dasar saluran S3 tanpa krib permeable dengan sedimen pada debit aliran Q2	102
99.	Pola perubahan gerusan dasar dengan kemiringan dasar saluran S3 tanpa krib	
100.	permeable dengan sedimen pada debit aliran Q2 Perubahan kountur pola gerusan dasar dengan kemiringan dasar saluran S1 dengan krib permeable pada Q2 dk1 kk1 Lk1	103 103
101.	Peruahan kountur pola gerusan dasar dengan kemiringan dasar saluran S2 dengan krib permeable pada Q2 dk1 kk1 Lk1	103
102.	Perubahan kountur pola gerusan dasar dengan kemiringan dasar saluran S3 dengan krib permeable pada Q2 dk1 kk1 Lk1	104
103.	Perubahan kountur pola gerusan dasar dengan kemiringan dasar saluran S3 dengan krib permeable pada Q2 dk1 kk1 Lk1	104
104.	Perubahan kountur pola gerusan dasar dengan kemiringan dasar saluran S1 dengan krib permeable pada Q2 dk1 kk1 Lk2	105
105.	Perubahan kountur pola gerusan dasar dengan kemiringan dasar saluran S2 dengan krib permeable pada Q2 dk1 ak1 Lk2	105

106.	Perubahan kountur pola gerusan dasar dengan kemiringan dasar saluran S3 dengan krib permeable, pada Q2 dk1 kk1 Lk2
107.	Perubahan kountur pola gerusan dasar dengan kemiringan dasar saluran S3 dengan
107.	krib permeable, pada Q2 dk1 ak1 Lk2
108.	Perubahan kountur pola gerusan dasar dengan kemiringan dasar saluran S1 dengan
100.	krib permeable pada Q2 dk1 ak2 Lk1
109.	Perubahan kountur pola gerusan dasar dengan kemiringan dasar saluran S2 dengan
10).	krib permeable pada Q2 dk1 kk2 Lk1
110.	Perubahan kountur pola gerusan dasar dengan kemiringan dasar saluran S3 dengan
110.	krib permeable, pada Q2 dk1 kk2 Lk1
111.	Perubahan kountur pola gerusan dasar dengan kemiringan dasar saluran S3 dengan
111.	krib permeable, pada Q2 dk1 kk2 Lk1
112.	Perubahan kountur pola gerusan dasar dengan kemirin gan dasar saluran S1 dengan
112.	krib permeable pada Q2 dk1 kk2 Lk2
113.	
113.	Perubahan kountur pola gerusan dasar dengan kemiringan dasar saluran S2 dengan krib permeable pada Q2 dk1 kk2 Lk2
114.	Perubahan kountur pola gerusan dasar dengan kemiringan dasar saluran S3 dengan
114.	krib permeable, pada Q2 dk1 kk2 Lk2
115.	Pola permeable, pada Q2 ak1 kk2 Lk2 Pola perubahan gerusan dasar dengan kemiringan dasar saluran S3 dengan krib
113.	
116	permeable, pada Q2 dk1 kk2 Lk2
116.	Perubahan kountur pola gerusan dasar dengan kemiringan dasar saluran SI dengan
117	krib permeable pada Q2 dk2 kk1 Lk1
<i>117</i> .	Perubahan kountur pola gerusan dasar dengan kemiringan dasar saluran S2 dengan
110	krib permeable pada Q2 dk2 kk1 Lk1
118.	Perubahan kountur pola gerusan dasar dengan kemiringan dasar saluran S3 dengan
110	krib permeable, pada Q2 dk2 kk1 Lk1
119.	Perubahan kountur pola gerusan dasar dengan kemiringan dasar saluran S3 dengan
	krib permeable, pada Q2 dk2 kk1 Lk1
<i>120</i> .	Perubahan kountur pola gerusan dasar dengan kemiringan dasar saluran S1 dengan
	krib permeable pada Q2 dk2kk1 Lk2
<i>121</i> .	Perubahan kountur pola gerusan dasar dengan kemiringan dasar saluran S2 dengan
	krib permeable pada Q2 dk2 kk1 Lk2
<i>122</i> .	Perubahan kountur pola gerusan dasar dengan kemiringan dasar saluran S3 dengan
	krib permeable, pada Q2 dk2 kk1 Lk2
<i>123</i> .	Perubahan kountur pola gerusan dasar dengan kemiringan dasar saluran S3 dengan
	krib permeable, pada Q2 dk2 kk1 Lk2
<i>124</i> .	Perubahan kountur pola gerusan dasar dengan kemiringan dasar saluran S1 dengan
	krib permeable pada Q2 dk2 kk2 Lk1
<i>125</i> .	Perubahan kountur pola gerusan dasar dengan kemiringan dasar saluran S2 dengan
	krib permeable pada Q2 dk2 kk2 Lk1
<i>126</i> .	Perubahan kountur pola gerusan dasar dengan kemiringan dasar saluran S3 dengan
	krib permeable, pada Q2 dk2 kk2 Lk1
<i>127</i> .	Perubahan kountur pola gerusan dasar dengan kemiringan dasar saluran S3 dengan
	krib permeable, pada Q2 dk2 kk2 Lk1
<i>128</i> .	Pola perubahan gerusan dasar dengan kemiringan dasar saluran S1 dengan krib
	permeable pada Q2 dk2 kk2 Lk2
129	. Pola perubahan gerusan dasar dengan kemiringan dasar saluran S2 dengan krib
	permeable pada Q2 dk2 kk2 Lk2
<i>130</i> .	Pola perubahan gerusan dasar dengan kemiringan dasar saluran S3 dengan krib
	permeable, pada Q2 dk2 kk2 Lk2
<i>131</i> .	Pola perubahan gerusan dasar dengan kemiringan dasar saluran S3 dengan krib
	permeable, pada O2 dk2 kk2 Lk2

<i>132</i> .	Hubungan bilangan Reynolds dengan koefisien gaya gesek (CD penelitian akibat krib	
	permeable	117
<i>133</i> .	Hubungan bilangan Reynolds dengan koefisien gesek (CD empiris) akibat krib	
	permeable, hasil validasi.	117
<i>134</i> .	Hubungan bilangan Reynolds dengan gaya hambat (FD) pada krib permeable	118
<i>135</i> .	Bilangan Reynolds (Re) dengan angkutan sedimen (qb)	123
<i>136</i> .	Bilangan Reynolds (Re) dengan volume angkutan sedimen (qb)	123
<i>137</i> .	Kecepatan aliran dengan angkutan sedimen (qb)	124
<i>138</i> .	Hubungan tegangan geser kritik $\mathbf{u2g}$. $\mathbf{h\rho s} - \mathbf{\rho w}$ dengan angkutan sedimen (qb)	125

DAFTAR SINGKATAN DAN ARTI SIMBOL

Lambang/singkatan	Arti dan Keterangan
$\overline{k_k}$	Kerapatan krib (cm)
d_z	Diameter butiran sedimen (mm)
d_k	Diameter krib (mm)
L_k	jarak krib (cm)
C_{v}	Konsentrasi sedimen
C_d	Koefisien debit
d_{50}	Diameter butir tengah sedimen (50 mm)
d_b	Ketebalan endapan sedimen (cm)
g	Percepatan gravitasi bumi (m/s²)
u	Kecepatan aliran, (m/dt)
Q	Debit aliran (m³/dt)
q_b	Angkutan sedimen (ton/hr)
R_e	Angka Reynolds
V_{g}	Volume gerusan sedimen (kg)
γ_w	Berat isi air (kg/m³)
γ_s	Berat isi butiran sedimen (kg/m³)
$arphi_{o}$	Viskositas dinamik semula
φ	Viskositas dinamik suspesi
μ	Viskositas kinematik
ρ	Rapat massa air (kg/m³)
$ ho_s$	Rapat massa sedimen (kg/m³)
$ au_b$	Tegangan geser turbulel (kg/m²)
h	Kedalaman aliran (m)
K	kekasaran dinding strikler,
R	Jari-jari hidrolis (m),

S_o Kemiringan saluran, (m, %)

A Luas penampang saluran (cm²)

C_D koefisien seret/koefisien hambat

 V_D Kecepatan pengendapan S_E Kemiringan energy (%) μ Kekentalan dinamis air

σ Standar deviasi dari distribusi ukuran material dasar saluran

f_s Gaya resapan (seepage force) pada dasar dan tebing saluran

C_T Konsentrasi material dasar saluran

 C_s Konsentrasi material halus Ω Kecepatan jatu partikel

 au_{c} Tegangan geser kritis, (kg/m²) au_{o} Tegangan geser dasar, (kg/m²)

τ Tegangan geser, (kg/m²)

u* Kecepatan geser arah x dan y pada kondisi normal
u_{cr} Kecepatan geser arah x dan y pada kondisi kritis

u*_{cr} Kecepatan geser kondisi normal padda titik tinjau

9 Visikositas kekentalan kinematic

F_D Gaya gesek

Y Koefisien empiris

σ Standar deviasi dari distribusi ukuran material dasar saluran

S_p Faktor bentuk partikel

Se faktor bentuk saluran melintang zf_s Gaya resapan (seepage force)

Cd_T Konsentrasi material dasar saluran

C_s Konsentrasi material halusώ Kecepatan jatuh partikel

f Factor gesek Darcy-Weisbach.

u* Kecepatan geser (m/dt)

C Koefisien Chezy

T Waktu (detik)

ψ	Menghitung Intensitas pengaliran
ϕ	Menghitung Intensitas angkutan sedimen
γ_B	Koefisien yang tergantung pada kekasaran dinding.
C_{Df}	Koefisien drag gesekan
F_L	Gaya angkat (Lif force)
F_D	Drag force (gaya gesek)
F_G	Weight
$d_{\rm s}$	Kedalaman gerusan

BABI

PENDAHULUAN

1.1 Latar Belakang

Sungai memberikan manfaat yang sangat besar terhadap kehidupan manusia sebagai penyediaan sumber daya air, seperti untuk penyediaan air irigasi, air minum, energi PLTA, transportasi air, rekreasi, perikanan air tawar, industri, dll.

Pemanfaatan potensi sungai sering menjadi masalah karena pemanfaatan yang berlebihan dengan tanpa menggunakan sistem konservasi dan berkelanjutan (*sustainable*) sehingga berdampak negative terhadap ekosistem sungai.

Pembukaan dan perluasan lahan di daerah DAS sebagai area pertanian mempunyai peranan utama meningkatkan limpasan permukaan dan sedimen yang mengalir ke sungai. Pengaruh vegetasi terhadap limpasan permukaan dapat dapat menghambat jalannya air limpasan permukaan dan memperbesar jumlah air yang tertahan di atas permukaan tanah (surface detention). Konsekwensi perubahan tataguna lahan menyebabkan tingginya limpasan permukaan, sehingga berimplikasi langsung terhadap potensi tingginya banjir yang terjadi di sungai semakin besar. Banjir yang relatif tinggi menyebabkan potensi gerusan dan kerusakan di sungai akibat kecepatan aliran yang sangat tinggi. Penyesuaian terutama perluasan lahan meningkatnya di sebagian besar DAS dimana erosi dan aliran permukaan (Lenhart et al., 2018).

Penelitian tentang aliran dan turbulensi aliran antara lain; penomena aliran turbulen (Rodi, 2017), (Safarzadeh et al., 2016), menggunakan Particle Image Velocity (PIV) dan The Large-Eddy simulation (LES) untuk menggambarkan phenomena karakter kecepatan aliran turbulen (Constantinescu et al., 2013), Analisis kuadran telah banyak digunakan untuk mengamati pentingnya kejadian aliran turbulen, khususnya di sekitar kekasaran besar elemen (Baki et al., 2015), (Fang et al., 2017), (Tan & Curran, 2012), kejadian turbulen mempengaruhi pengangkutan sedimen dasar dan layang (Bretón et al., 2013). Penempatan krib pada tikungan saluran menyebabkan phenomena baru aliran turbulen, sehingga memicu tegangan geser menyebabkan gerusan lokal(A. A. Rahim et al., 2017), (Mansida et al., 2020). Bongkahan batu yang lebih padat menyebabkan kontribusi yang

lebih seragam kejadian aliran turbulen (*Reynolds*) (Golpira, Huang, et al., 2020). Model bangunan berkontribusi signifikan meningkatkan total aliran energi kinetik turbulen (Cea et al., 2007). Ejeksi sedimen aliran mengubah pola struktur turbulen dan distribusi interaksi turbulensi aliran (Bustamante-Penagos & Niño, 2020). Namun masih perlu variasi pola konstribusi kejadian turbulen pada tegangan geser untuk beberapa material dasar saluran atau sungai.

Penelitian tentang krib telah lama dilakukan sampai sekarang, antara lain tentang bentuk dan panjang yang berbeda, terendam atau tidak terendam, mengubah aliran arus dengan tujuan melindungi tebing sungai (B. A. Zaid & Tait, 2017). Pengaturan aliran dan pencegahan gerusan dengan menggunakan krib dengan dua bentuk yaitu krib lurus dan krib bentuk T (Safarzadeh et al., 2016). Beberapa penelitian lain dilakukan pada krib dan pengaruhnya (Vaghefi et al., 2019). Efek dari bentuk krib pada pola aliran (B. Zaid et al., 2018). Pola erosi dan sedimentasi, kedalaman kedalaman gerusan, dan variasi tegangan dasar sungai di sekitar krib dalam berbagai kondisi (Al-Khateeb et al., 2016), (Möws & Koll, 2019). Perubahan morfologi dan struktur aliran disekitar krib vegetasi (Aziz & Kadota, 2018). (Yi et al., 2013) dan (Kurdistani & Pagliara, 2017).

Penelitian tentang tegangan geser dan distribusi kecepatan aliran seperti pada belokan 65° di hulu saluran menyebabkan distribusi kecepatan tidak merata pada aliran sehingga memberikan pengaruh kepada distribusi kecepatan dan tegangan geser (Ikhsan et al., 2016) (A. A. Rahim et al., 2017) di tikungan saluran (RibkhiFalah, 2017), Karateristik aliran berkontribusi cukup tinggi terhadap pengikisan dan pengendapan sedimen (Jamieson et al., 2013b). Pengamatan aliran turbulen di sekitar struktur dan distribusi kecepatan gesekan dasar pada tumpukan kerang (Constantinescu et al., 2013), Bongkahan batu yang lebih padat menyebabkan kontribusi yang lebih seragam kejadian aliran turbulen (Reynolds) dan tegangan geser (Golpira, Huang, et al., 2020), Tegangan geser terdistribusikan secara linear di sepanjang sumbu vertikal, dan profil vertikal intensitas turbulensi seuai dengan hukum eksponensial (Li, Zeng, & Bai, 2020), (Koutrouveli et al., 2019).

Pengaruh krib vegetasi pada aliran turbulen di sekitar struktur krib lapangan, (Ali & Uijttewaal, 2013). Tekanan aliran pada hambatan (Widyastuti et al., 2021) vegetasi

terhadap tinggi muka air (Koutrouveli et al., 2019). Jarak krib sebagai pengontrol tekanan geser pada saluran terbuka (Möws & Koll, 2019). Pengaruh kekasaran bidang krib terendam dengan variasi panjang, jarak, dan jenis krib, (Mostafa et al., 2019). Perubahan hidrolika aliran mempengaruhi sedimentasi di sekitar krib dan kondisi geometric saluran. (Choufu et al., 2019) dan (I. Rahim et al., 2017).

Bangunan krib menyebabkan terjadi turbulensi aliran (*vortex*) (Kumar & Ojha, 2019) telah lama dipelajari oleh para ilmuwan dan Insinyur seperti Leonardo da Vinci, Tennekes dan Lumley (1972). Dinamika gaya turbulen aliran yang dapat menyebabkan gerusan pada tebing ataupun dasar sungai (Rodi, 2017). Aliran turbulen menggambarkan penomena karakter tingginya aliran turbulen (Constantinescu et al., 2013). Turbulenasi aliran menyebabkan penomena resistensi aliran (Li, Zeng, & Zha, 2020). Karateristik aliran berkontribusi cukup tinggi terhadap pengikisan dan pengendapan sedimen (Jamieson et al., 2013a), (Latif et al., 2020). Pengujian prediksi perubahan morfologi pada cabang sungai dengan menggunakan model 2D numerical (Karmaker & Dutta, 2016). Distribusi kecepatan aliran dan memicu aliran turbulen dengan adanya bangunan (Constantinescu et al., 2013). Mengendalikan muatan endapan di dasar kearah hilir aliran sungai (Rodi, 2017), (Safarzadeh et al., 2016). Mencegah gerusan tebing dan dapat mengendapkan sedimen di krib. (Shields Jr et al., 2017).

Penempatan krib pada saluran terbuka sebagai salah satu pengaturan kecepatan aliran dan pencegahan gerusan tebing maupun dasar belum menjadi solusi yang baik. Penempatan dengan mempertimbangkan karakter aliran menyebabkan persoalan baru yaitu, perubahan dinamika karakteristik aliran berdampak terhadap perubahan dasar saluran (Mostafa et al., 2019), (Mona et al., 2018) dengan penomena resistensi turbulen aliran di sekitar bangunan krib (Ali & Uijttewaal, 2013), mengeser area gerusan akibat kesalahan penempatan krib, beberapa hasil penelitian menunjukkan bahwa penempatan krib sebagai pengaturan kecepatan aliran relative baik sebagaimana dijelaskan (Sukhodolov et al., 2017) bahwa; (1) Penggunaan krib vegetasi sangat signifikasn mengurangi besarnya kecepatan aliran, (2) menyebabkan dinamika tegangan geser pada dasar saluran tanah, (3) dinamika aliran krib bervegetasi dapat dimodelkan dengan cukup baik. Hambatan aliran secara tiba-tiba menyebabkan terjadinya tekanan aliran dengan struktur bangunan, sehingga terjadi perubahan aliran yang berdampak terhadap pada dasar

saluran. Peningkatan kepadatan hambatan menyebabkan penomena *backwater* dan yang signifikan, sehingga bertambahnya kedalaman aliran (Zhu et al., 2014). Penempatan krib di saluran menyebabkan kecepatan aliran menurun namun tidak signifikan menurukan tegangan *Reynolds* dan geser (Li, Zeng, & Zha, 2020), (Matinfard et al., 2013).

Pengaruh bangunan krib permeabel terhadap perubahan morfologi dasar sungai diperlukan suatu kajian khusus. Oleh karena itu menjadi fokus kami dalam penelitian ini untuk dilakukan kajian lebih lanjut untuk mempelajari penomena aliran karakteristik aliran, resistensi dan perubahan morfologi dasar saluran sebagai upaya mendapatkan formula teori pengaturan kecepatan aliran dan mengurangi resitensi aliran maupun pencegahan gerusan dasar.

1.2 Rumusan Masalah

Berdasarkan uraian tersebut atas, maka dapat dirumuskan permasalahan yang menjadi objek utama dalam penelitian ini, agar lebih terarah dan fokus. Adapun rumusan masalah sebagai berikut :

- 1) Bagaimana pengaruh krib permeabel terhadap perubahan karateristik aliran pada saluran terbuka?
- 2) Bagaimana pengaruh krib permeabel terhadap perubahan morfologi dasar saluran terbuka?
- 3) Bagaimana persamaan empiris akibat krib permeabel terhadap perubahan morfologi dasar saluran?

1.3 Tujuan Penelitian

Untuk mengukur pembahasan dalam tulisan ini, maka tujuan utama penelitian ini dengan mengacu pada rumusan masalah adalah sebagai berikut :

- 1) Menemukan pengaruh krib permeabel terhadap perubahan karateristik aliran pada saluran terbuka.
- 2) Menemukan pengaruh krib permeable terhadap perubahan morfologi dasar saluran terbuka.
- 3) Merumuskan persamaan empiris akibat krib permeabel terhadap perubahan morfologi dasar saluran.

1.4 Manfaat penelitian

Dengan selesainya penelitian ini diharapkan dapat diperoleh manfaat sebagai berikut:

- 1) Diperoleh alternatif referensi solusi untuk mencegah dan menangani gerusan pada dasar saluran,
- 2) Diharapkan menjadi wahana terhadap ilmu pengetahuan khusus hidrolika sungai akan perubahan morfologi dasar saluran tanah dengan adanya bangunan krib.
- 3) Menambah referensi khasana ilmu pengetahuan terhadap dampak perubahan dasar saluran tanah akibat krib pada pengelolaan sumber daya air.
- 4) Memberi kontribusi dalam wawasan penelitian dalam bidang rekayasa pengelolaan sumber daya air.

1.5 Batasan Penelitian

Dalam penelitian ini dibatasi pada kondisi permasalahan antara lain :

- 1) Penelitian tidak membahas ketahanan dan kedalaman krib pada dasar saluran tanah,
- 2) Menggunakan saluran lurus dan persegi panjang
- 3) Mengunakan campuran tanah pasir sebagai sedimen di dasar saluran,
- 4) Tidak menggunakan variasi jenis campuran tanah-pasir.
- 5) Bangunan krib digunakan tipe krib permeabel (lolos air)
- 6) Krib tipe permeabel yang digunakan adalah kayu bulat dipotong dengan tinggi dan diameter sesuai variasi model,
- 7) Tidak melakukan variasi sudut belokan, variasi ketinggian krib dan variasi bentuk saluran, namun lebih fokus kepada variasi debit, kemiringan dasar saluran, kerapatan, diameter, jarak krib.
- 8) Tidak membahasa kualitas pengaliran
- 9) Krib permeable ditempatkan pada sisi kanan kiri saluran dengan ziq-zaq pada area sedimen sepanjang 200 cm.
- 10) Pengambilan data di fokuskan pada area titik sedimen sepanjang 200 cm, dengan tidak memperhitungan kejadian perubahan sebelum dan sesudah area titik sedimen pada saluran.

1.6 Sistematika Penelitian

Penelitian ini didahului dengan penelurusan daftar pusta dan telaah penelitian terdahulu, kemudian disusun kerangka pikir penelitian, teori pendukung dan metode penelitian. Penelitian ini akan disusun dalam 5 Bab, yang terdiri dari:

BAB I PENDAHULUAN; memuat tentang latar belakang, rumusun masalah, tujuan penelitian, manfaat penelitian, batasan masalah, sistematika penelitian dan kebaruan atau *novelty* penelitian;

BAB II TINJAUN PUSATAKA, berisikan tentang, hidrolika aliran sungai, morfologi sungai, gerusan sungai, bangunan krib, analisis dimensi, hipotesis, penelitian terdahulu, kerangka pikir penelitian.

Bab III METODE PENELITIAN berisikan tentang, tempat dan waktu penelitian, jenis penelitian dan sumber data, perencanaan penelitian, variabel-variabel penelitian, analisis penelitian dan began alir penelitian.

Bab IV HASIL DAN PEMBAHASAN berisikan tentang validasi kecepatan aliran sebelum ada krib permeable, validasi data gerusan sedimen dan analisis data peneltian, pengaruh krib permeable terhadap perubahan karakteristik aliran saluran terbuka, pengaruh krib permeabel terhadap perubahan morfologi dasar saluran terbuka dan persamaan empiris akibat krib permeabel terhadap perubahan morfologi dasar saluran.

Bab V PENUTUP, berisikan uraian kesimpulan hasil penelitian dan saran yang diperlukan.

1.7 Kebaruan/novelty Penelitian

Temukan kebaharuan yang diharapkan dari penelitian ini dengan perubahan morfologi dasar saluran akibat bangunan krib permeable. Temuannya adalah menemukan pengaruh krib permeabel terhadap perubahan karateristik aliran dan pengaruh krib permeable terhadap perubahan morfologi dasar saluran terbuka; serta rumusan empiris koefisien gesek (C_D) dan angkutan sedimen (q_b) akibat bangunan krib permeable. Perubahan morfologi dasar saluran digambarkan sebagai proses terjadinya angkutan sedimen (q_b). Proses degradasi dan agradasi tidak terlepas dari terjadinya angkutan sedimen (q_b). Parameter angkutan sedimen (q_b) sebagai dampak proses dinamika hidrolika aliran pada dasar saluran.

BAB II

TINJAUAN PUSTAKA

2.1 Hidrolika Aliran Sungai

2.1.1 Perlawanan Terhadap Aliran

Aliran pada saluran terbuka mengalami perlawanan sangat kompleks, karena dipengaruhi oleh banyak variabel, dimana tergantung antara satu dengan lainnya dan interaksinya tidak dapat diketahui dengan baik. Kesulitan lainnya, terutama pada kondisi lokasinya adalah bagaimana menentukan variabel-variabel yang mempengaruhi aliran dan sebaliknya variabel-variabel yang mana dihasilkan oleh aliran. Namun demikian indikator utama variabel-variabel untuk menjelaskan pada sungai alluvial dapat ditulis dalam persamaan umum (Richardson dkk., 1990; Sinoms dan Senturk, 1992 dalam buku Robert J. Kodoate, (2013) sebagai berikut :

$$\Phi (u, h, S_E, \rho, \mu, g, d_z, \sigma, \rho_s, S_p, S_R, S_o, f_s, C_T, C_s, \phi, \tau_c) = 0$$
(1)

Dimana; u: kecepatan aliran (m/dt), h; kedalaman aliran (m), S_0 ; kemiringan dasar saluran (%), ρ ; kerapatan air (kg/m³), μ ; kekentalan dinamis air, g; percepatan gravitasi bumi (m/dt²), d_z ; diameter material dasar saluran (mm), σ ; standar deviasi dari distribusi ukuran material dasar saluran, ρ_s ; kerapatan butiran (sedimen) saluran (kg/m³), S_p ; faktor bentuk partikel, S_c ; faktor bentuk saluran melintang, f_s : gaya resapan (*seepage force*) pada dasar dan tebing saluran, Cd_T ; konsentrasi material dasar saluran, C_s ; konsentrasi material halus, ω : Kecepatan jatuh partikel, τ_c : tegangan geser kritis.

Pengaruh variabel yang lain masih spekulatif, sehingga masih terus dilakukan pengamatan, dimana bentuk persamaan perlawanan yang disederhanakan sebagai berikut :

$$S = F_r^2 \cdot f \cdot \left(R_e, \frac{d_z}{h} \right) \tag{2}$$

Dimana: F_r= bilangan Froude, R_e; angka bilangan *Reynolds*, d_z; diameter material dasar saluran (mm), h; kedalaman aliran (m), f; factor gesek Darcy-Weisbach.

Factor geser Darcy Weisbach digunakan persamaan berikut:

$$f = \frac{8S_f}{F_r} \tag{3}$$

Sedangkan evaluasi perlawanan (resistance) dapat digunakan persamaan berikut:

$$S_f = \frac{V_*^2}{C_*^2 \cdot a \cdot R} \tag{4}$$

Dan kecepatan geser digunakan persamaan berikut :

$$u_* = \sqrt{\frac{\tau_o}{\rho}}_{w} \tag{5}$$

Dimana: τ_0 = tegangan geser (kg/cm²), u_* = kecepatan geser (m/dt), ρ_w =kerapatan air (kg/m³), R= jari-jari hidrolis (m), R = h untuk penampang segi empat, C koefisien Chezy tak berdimensi, g adalah percepatan gravitasi

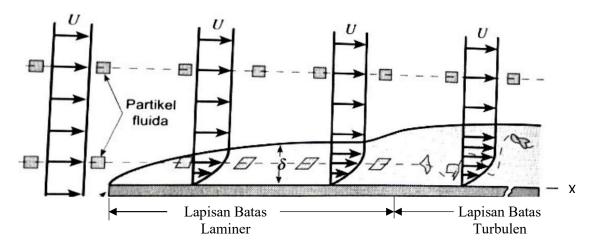
2.1.2 Klasifikasi Aliran berdasarkan Angka Reynolds

Umumnya aliran terjadi pada saluran terbuka atau di sungai adalah aliram turbulen, sehingga phenomena aliran ini menyebabkan perubahan hidrolika sungai, material dasar dan tebing sungai serta angkutan sedimen. Dalam teori angka *Reynolds* (Re) mengklasfikasi jenis aliran berdasarkan kekentalan zat cair (μ), rapat massa zat cair (ρ), panjang karakteristik atau jari-jari hidrolis (L/R). (Victor L. Sreeter, dkk,1998), Bambang Triatmadjo, (2008) dan Suwarno, (1991). Variabel yang dipakai untuk klasifikasi ini adalah angka *Reynolds* yang didefinisikan sebagai :

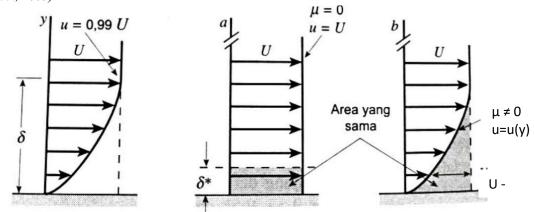
$$Re = \rho.u.L / \mu.$$
 (6)

Dimana: R_e ; Angka Reynolds, u; kecepatan aliran (m/det), L; panjang karakteristik (m), pada saluran muka air bebas L = R., R; Jari – jari hidrolis saluran (m), μ = Viskositas kinematik (m²/det) (1,14 – 0,013 (T° – 15) + 0,00068 (T° – 15)²) 10⁻⁶) (m²/dt).

Beberapa penelitian disimpulkan bahwa bilangan Reynolds untuk saluran terbuka adalah:


R< 500 = Aliran laminer 500<R<12,500 = Aliran transisi R>12,500 = Aliran turbulen

2.1.3 Persamaan Empiris Kecepatan Aliran


Ketergantungan tegangan geser yang sama terjadi pada aliran saluran terbuka dengan bilangan *Reynolds* yang besar, maka persamaan empiris : (Robert J. Kodoatie, (2013)

$$\mathbf{u}^* = C\sqrt{R.S_0} \tag{7}$$

Dimana C = koefisien Chezy, R = jari-jari hidrolis (m), $S_o = kemiringan saluran$.

Gambar 1. Distorsi dari partikel Fluida ketika mengalir di dalam lapisan batas (Bruce R Monson, , dkk, 2005)

Gambar 2. Ketebalan lapisan batas (a) ketebalan lapisan batas standar, (b) ketebalan perpindahan lapisan batas (Bruce R Monson, dkk., 2005)

Hubungan rumus Chezy dengan rumus Manning dapat ditulis sebagai berikut:

$$C = \frac{R^{1/6}}{n} \tag{8}$$

Dimana: R = jari-jari hidrolis (cm), n = koefisien manning

Untuk hidraulika dengan retensi aliran biasa digunakan koefisien Chezy (C), koefisien Manning (1/n) dan koefisien Strickler (k_{st}), persamaan digunakan adalah; (Agus Maryono, 2007)

$$\mathbf{u} = C \sqrt{R.S} \tag{9}$$

$$u = \frac{1}{2} R^{2/3} . I^{1/2}$$
 (10)

$$c = \frac{87}{1 + \frac{M}{R}} \tag{11}$$

Dimana; R = jari-jari penampang basah (m), u kecepatan aliran (m/dt), S = kemiringan dasar sungai, M adalah koefisien kekasaran permukaan (**Tabel 1**). Sedangkan aliran pada saluran terbuka dapat dihitung dengan persamaan Manning, Chezy dan Strickler ditulis sebagai berikut : (I Made Kaimana, 2018)

$$u = \frac{1}{n} R^{2/3} S_o^{1/2}$$
 (12)

$$u = k R^{2/3} S_o^{1/2}$$
 (13)

$$Q = \frac{1}{n} A. R_h^{2/3}. S_0^{1/2}$$
 (14)

Dimana: $k = kekasaran dinding strikler, R = jari-jari hidrolis (m), S_o = kemiringan saluran, A= luas penampang saluran, Q = Debit Aliran (m³/dt), u = kecepatan aliran (m/dt), n = kekasaran Manning ($ **Tabel**2) dan Tabel 3 untuk koefisien kekasaran Strickler (ks).

Tabel 1. Nilai M yang disarakan oleh Bazin

No	Deskripsi Saluran	Nilai M
1	Papan diserut, disemen halus	0.11
2	Papan tak diserut, beton atau bata	0.21
3	Batu temple, pasangan batu belah, plesteran bata kasar	0.85
4	Saluran tanah yang licin	1.54
5	Saluran Tanah yang sedang	2.36
6	Saluran tanah yang kasar	3.17

Sumber: I Made Kaimana, 2018

Tabel 2. Nilai koefisien kekasaran Manning (n)

No	Jenis bahan	Nilai n
1	Besi tuan dilapis	0.014
2	Kaca	0.010
3	Saluran beton	0.013
4	Bata dilapis mortal	0.015
5	Pasangan batu disemen	0.025
6	Saluran tanah bersih	0.022
7	Saluran tanah	0.030
8	Saluran dengan dasar batu dan tebing rumput	0.040
9	Saluran pada galian batu padas	0.040

Sumber: I Made Kaimana, 2018

Tabel 3. Nilai koefisien kekasaran Strickler (ks)

No	Jenis bahan	Nilai ks
1	Tanah	45
2	Pasangan batu	60
3	Benton, bentuk kayu	70
4	Baja beton	76
5	Besi baja	80

2.1.4 Karakteristik Aliran Melewati Sebuah Benda

Aliran yang melewati suatu benda menyebabkan berbagai macam variasi fenomena mekanika fluida yang sangat beragam. Dimana karakter medan aliran adalah sebuah fungsi dari bentuk benda. Walaupun demikian benda yang bentuk sederhana pun tetap menghasilkan aliran yang agak kompleks. (Bruce R Monson, dkk., (2005). Karakteristik aliran dipengaruhi oleh berbagai parameter seperti ukuran, orientasi, kecepatan dan sifat aliran. Karakter aliran ini juga dipengaruhi pada berbagai parameter tak berdimensi sesuai analisis argumentasi dimensional. Parameter-parameter adalah bilangan *Reynolds*,

$$Re = \rho.u.L/\mu. \tag{15}$$

dimana : R_e = Angka Reynolds, u = Kecepatan aliran (m/det), L =Panjang karakteristik (m), pada saluran muka air bebas L=R., R= Jari – jari hidrolis saluran (m), ρ = berat jenis aliran (kg/m³), μ = Viskositas kinematik (m²/det) (1,14 – 0,013 (T° – 15) + 0,00068 (T° – 15)²) 10-6) (m²/dt).

Umumnya pada aliran yang berkaitan dengan benda berukuran sedang dan panjang karakteristik dalam orde $0.01 \text{ m} < 1 < \ell < 10 \text{ m}$. Kecepatan tambahan hulu biasanya dalam kisaran 0.01 m/dt < U < 100 m/dt pada aliran. Nilai kisaran bilangan Reynolds dihasilkan untuk aliran-aliran sekitar $10 < \text{Re} < 10^9$. Sebagai kaidah umum (*rule of thumb*), karakteritik aliran menurut bilangan *Reynolds* dipengaruhi oleh antara gaya kekentalan (viskositas) dan gaya inersia (kelembaman). Sehingg jika gaya viskositas dominan maka terjadi aliran laminar dan jika gaya inersia yang dominan maka terjadi aliran turbulen. (Bruce R. Munson, dkk. (2005). Gaya inersia merupakan gaya membuat benda cenderung menolak perubahan keadaan gerak.

2.2 Morfologi Sungai

Morfologi sungai adalah ilmu yang mempelajari tentang geometri, jenis dan perilaku sungai dengan segala aspek pembahasannya dalam dimensi ruang dan waktu. Oleh karenanya segala aspek dinamika sungai dan lingkungannya aliran berkaitan. Sifat-sifat sungai dipengaruhi oleh bentuk Daerah Pengaliran Sungai (DPS), luas dan kemiringan sungai. Indonesia terdiri dari pulau-pulau antara lain; pulau Jawa, Sumatera, Kalimantan, Sulawesi, Papua yang terdiri dari kurang lebih 70% berupa pengunungan yang berkibat DAS tidak terlalu luas, kemiringan alur yang cukup tajam.

Morfologi sungai dipengaruhi oleh berbagai faktor di antaranya, kondisi aliran, kemiringan dasar, proses angkutan sedimen, kondisi lingkungan, serta aktivitas manusia di sekitarnya. Proses geomorfologi utama yang terjadi di sungai adalah erosi, longsor tebing, dan sedimentasi. Air yang mengalir di sungai sebagai fungsi dari gaya gravitasi merupakan sarana transport material yang longsor dan atau tererosi, kemudian tersedimentasi pada daerah yang lebih rendah. Erosi adalah kombinasi proses pengikisan, pengangkutan, dan pemindahan materi lapukan batuan, kemudian dibawa ke tempat lain oleh tenaga pengangkut. Sedimentasi adalah proses pengendapan material yang berasal dari tempat lain. Sedangkan keterkaitan marfologi sungai dengan konsentrasi bidang ilmu yang lain diantaranya; geometri (bentuk) sungai, hidrologi, hidrolika, angkutan sedimen, geoteknik, lingkungan dan sebagainya.

Unsur penting morfologi sungai yang dipahami dalam penunjang pekerjaan desain bangunan teknik pengairan adalah fenomena, karakter sungai, parameter fenomena sungai dan dimensinya. Geometrik sungai adalah bentuk sungai dapat berubah dalam dimensi ruang baik horisontal dan vertikal. Morfologi sungai yang senantiasa berubah-ubah seiring dengan dinamis kondisi sungai tesebut, sehingga diharuskan untuk senantiasa memperlajari dan dipantau terus menerus. Data-data hasil pemantauan dijadikan bahan untuk keperluan desain, pembangunan konvensional dan eko-hidrolik atau pembangunan berwawasan lingkungan, eksploitasi, konservasi, restorasi dan sistem pemeliharaanya.

2.2.1 Gerusan Sungai

Gerusan tebing sungai adalah merupakan fenomena alam yang disebabkan oleh aliran air yang biasanya terjadi pada tebing dan dasar sungai. Gerusan merupakan bagian

dari keseimbangan dinamisasi sungai dapat menyebabkan perubahan morfologi dasar sungai dan perubahan akibat bangunan buatan manusia.

Jenis gerusan menurut Etterna dan Raudkivi dalam Istiarto (2002), gerusan dapat dibagi menjadi:

- 1) Gerusan umum (*general scour*), gerusan yang terjadi akibat dari proses alam dan tidak berkaitan sama sekali dengan ada tidaknya bangunan sungai.
- 2) Gerusan di lokalisir (*constriction scour*), gerusan yang diakibatkan penyempitan alur sungai sehingga aliran menjadi terpusat.
- 3) Gerusan lokal (*local scour*) merupakan akibat langsung dari struktur pada alur sungai.

Gerusan lokal (local scouring) merupakan gerusan yang terjadi disekitar abutmen jembatan atau pilar, disebabkan oleh pusaran air (vortex system) karena adanya gangguan pada pola aliran akibat hambatan. Aliran yang mendekati pilar dan tekanan stagnasi akan menurun dan menyebabkan aliran kebawah (down flow) yaitu aliran dari kecepatan tinggi menjadi rendah. Kekuatan down flow akan mencapai maksimum ketika berada tepat pada dasar saluran. Menurut Laurser (1952) menjelaskan bahwa penomena gerusan mempunyai sifat alami yaitu:

- Besar gerusan akan sama selisihnya antara jumlah material yang ditranspor keluar daerah gerusan dengan jumlah material yang ditranspor masuk ke dalam daerah gerusan.
- 2) Besar gerusan akan berkurang apabila penampang basah di daerah gerusan bertambah (karena erosi).
- 3) Untuk kondisi aliran akan terjadi suatu keadaan gerusan yang disebut gerusan batas, besarnya akan asimtotik terhadap waktu.

Penggerusan local (Garde & Raju, 2000) terjadi akibat adanya turbulensi air yang disebabkan terganggunya aliran, baik besar maupun arahnya, sehingga menyebabkan hanyutnya material-material dasar atau tebing sungai. Turbulensi disebabkan oleh berubahnya kecepatan terhadap tempat, waktu dan keduanya. Pengerusan lokal pada material dasar dapat terjadi secara langsung oleh kecepatan aliran sedemikain rupa sehingga daya tahan material terlampui. Secara teoristik tegangan geser yang terjadi lebih besar dari tegangan geser kritis dari butiran dasar.

Faktor variabel-variabel yang berpengaruh pada gerusan lokal, seperti; gaya gravitasi (g), kerapatan fluida (ρ_w), kecepatan aliran (u), kekentalan air (μ), Kedalaman aliran (h), material dasar sungai (diameter butiran sedimen, d_z), kerapatan massa (ρ_s), Distribusi butiran, jenis butiran, faktor ginetik pilar (tebal pilar, diameter (d_k), panjang krib (L), bentuk krib, sudut arah krib (α), kerapatan krib (jarak antar krib dalam satu kelompok) (k_k). Variabel yang berpengaruh cukup banyak, sehingga variabel dominan yang menjadi bahan uji dengan kedalaman gerusan (d_s) merupakan fungsi:

$$d_s = \int \rho_s, \ \mu, u, d_z, h, L, d_k, \rho_w, \alpha \tag{16}$$

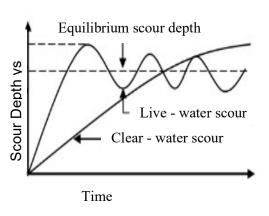
2.2.2 Faktor yang Mempengaruhi Gerusan

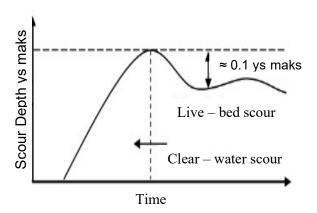
Gerusan terjadi disekitar bangunan air, jembatan dan penyempitan aliran dipengaruhi oleh beberapa faktor antara lain sebagai berikut:

a) Kecepatan aliran

Kedalaman gerusan lokal maksimum rata-rata di sekitar pilar sangat tergantung pada nilai relatif kecepatan alur sungai (perbandingan antara kecepatan rerata aliran dan kecepatan geser), nilai diameter butiran dasar (butiran seragam/ tidak seragam) dan diameter pilar. Sehingga gerusan lokal maksimum rerata tersebut merupakan gerusan lokal maksimum dalam kondisi setimbang.

Gerusan lokal terus terjadi dan semakin luas ke arah hilir seiring dengan bertambahnya waktu dan debit, sehingga bangunan akan mengalami kegagalan konstruksi seperti yang sering kita jumpai pada kasus rusaknya bangunan sungai setelah banjir besar. Kedalaman gerusan lokal maksimum rerata di sekitar pilar sangat tergantung nilai relatif kecepatan alur sungai (perbandingan antara kecepatan rerata aliran dan kecepatan geser), nilai diameter butiran (butiran seragam/ tidak seragam) dan lebar pilar. Gerusan lokal maksimum rerata tersebut merupakan gerusan lokal maksimum dalam kondisi setimbang. Pengaruh kecepatan relatif pada gerusan dapat ditunjukan pada (u/uc) pada kedalaman gerusan tak berdimensi (ds/dk).


Menurut Chabert dan Engeldinger dalam (Breusers & Raudkivi, 1991), melakukan penelitian secara intensif pengaruh berbagai variabel terhadap gerusan lokal disekitar pilar. Variabel utama adalah kecepatan aliran, dimensi pilar, kedalaman air (0,1-3,5 m), ukuran butir dan bentuk pilar. Berdasarkan studi kecepatan aliran menunjukan bahwa ada dua resim yang berpengaruh yaitu untuk kecepatan aliran pada atau dibawah kecepatan kritik


(u < u_c), kedalaman gerusan hanya pada batas asimtosis, seperti terlihat pada gambar sedangkan untuk kecepatan yang lebih besar (u>uc), kedalaman gerusan berfluktuasi akibat pengendapan material secara periodik pada lubang gerusan oleh gerakan bukit pasir, seperti terlihat pada gambar kedalaman gerusan maksimal diperoleh pada kecepatan aliran yang mendekati kecepatan aliran kritik dan gerusan dimulai pada kira-kira setengah kecepatan aliran kritik.

Chabert dan Engeldinger (1956) dalam (Breusers & Raudkivi, 1991) menyatakan lubang gerusan yang terjadi pada alur sungai umumnya merupakan korelasi antara kedalaman gerusan dengan kecepatan aliran sehingga lubang gerusan tersebut merupakan fungsi waktu (Gambar 3), sedangkan Breusers dan Raudkivi (1991) menyatakan bahwa kedalaman gerusan maksimum merupakan fungsi kecepatan geser (Gambar 4).

b) Gradasi sedimen

Gradasi sedimen merupakan salah satu faktor yang mempengaruhi kedalaman dan luas gerusan pada kondisi air bersih (*clear water scour*). **Gambar** 3 dan **Gamba**r 4 di atas digambarkan kedalaman gerusan (d_s/d_k) tak berdimensi sebagai fungsi dari karakteristik gradasi sedimen material dasar (σ/d_{50}). Dimana σ adalah standar deviasi untuk ukuran butiran dan d₅₀ adalah ukuran partikel butiran rerata Nilai kritikal dari σ/d₅₀ untuk melindunginya hanya dapat dicapai dengan bidang dasar, tetapi tidak dengan lubang gerusan dimana kekuatan lokal pada butirannya tinggi yang disebabkan meningkatnya aliran turbulen (pusaran air).

Gambar 3. Hubungan kedalaman gerusan Gambar 4. Hubungan kedalaman gerusan 1991)

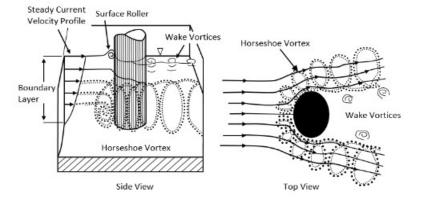
(d_s) dengan waktu. (Breusers & Raudkivi, (d_s) dengan kecepatan. (Breusers & Raudkivi, 1991)

2.2.3 Mekanisme Gerusan

Gerusan terjadi dimulai saat partikel yang terbawa bergerak mengikuti pola aliran bagian hulu kebagian hilir saluran. Seiring dengan kecepatan aliran yang lebih tinggi membawah partikel tinggi, baik ukuran halus sampai yang kasar. Kecepatan gerusan relatif tetap meskipun terjadi peningkatan kecepatan yang berhubungan dengan transpor sedimen baik yang masuk maupun yang terjadi gerusan.

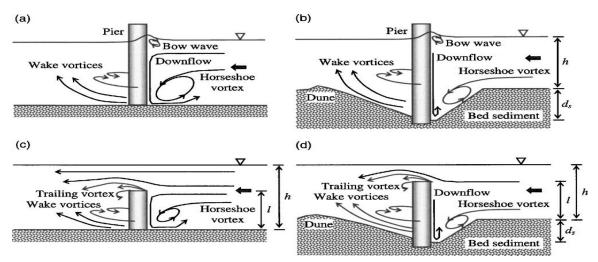
Gerusan lokal umumnya terjadi pada alur sungai yang terhalang struktur bangunan air akibatnya menyebabkan adanya pusaran. Pusaran tersebut terjadi pada bagian hulu bangunan. Isnugroho (1992) dalam (Aisyah, 2004) menyatakan bahwa adanya pilar akan menggangu kestabilan butiran dasar. Bila perubahan air hulu tertahan akan terjadi gangguan pada elevasi muka air di sekitar pilar. Selanjutnya aliran akan berubah secara cepat. Karena adanya percepatan aliran maka elevasi muka air akan turun. Menurut Melville dalam Miller (2003) menjelaskan tahap-tahap gerusan yang terjadi antara lain sebagai berikut (Breusers & Raudkivi, 1991):

- 1) Peningkatan aliran yang terjadi pada saat perubahan garis aliran di sekeliling pilar
- 2) Pemisahan aliran dan peningkatan pusaran tapal kuda yang lebih intensif sehingga menyebabkan pembesaran lubang gerusan.
- 3) Longsor/turunnya material disekitar lubang gerusan pada saat lubang cukup besar setelah terkena pusaran tapal kuda.


Menurut Nakagawa dan Suzuki dalam Miller (2003) membedakan gerusan dalam empat tahap (Breusers & Raudkivi, 1991):

- 1) Gerusan di sisi (kanan dan kiri) pilar yang disebabkan kekuatan tarikan dari arus utama (main flow).
- 2) Gerusan di depan pilar yang diakibatkan pusaran tapal kuda (horseshoe vortex).
- 3) Pembesaran gerusan oleh pusaran stabil yang mengalir melewati pilar.
- 4) Periode reduksi gerusan selama penurunan kapasitas transpor di lubang gerusan.

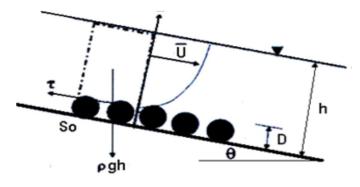
Struktur yang dibangun di sungai menjadi tenggelam ketika kedalaman aliran lebih tinggi dari ketinggian struktur. Misalnya, fondasi dermaga jembatan terendam ketika menerima banjir besar selama pembangunannya. Kadang-kadang struktur yang dibangun di sepanjang tepi sungai untuk perlindungan tebing berperilaku seolah-olah struktur yang tenggelam selama banjir besar.


Penggerusan lokal (Garde & Raju, 2000) terjadi akibat adanya turbulensi air yang disebabkan terganggunya aliran, baik besar maupun arahnya, sehingga menyebabkan hanyutnya material-material dasar atau tebing sungai. Turbulensi disebabkan oleh berubahnya kecepatan terhadap tempat, dan waktu. Pengerusan lokal pada material dasar dapat terjadi secara langsung oleh kecepatan aliran sedemikain rupa sehingga daya tahan material terlampui. Secara teoristik tegangan geser yang terjadi lebih besar dari tegangan geser kritis dari butiran dasar.

Variabel-variabel yang berpengaruh pada gerusan lokal, meliputi kondisi fluida (kerapatan (ρ), kekentalan (ν), percepatan gravitasi (g), kecepatan aliran (U), kedalaman aliran (g), diameter butiran sedimen (g), kerapatan massa (g), distribusi butiran, bentuk butiran), Faktor ginetik pilar (panjang pilar (g), bentuk muka pilar, Sudut arah pilar (g), jenis antar pilar (g).

Gambar 5. Mekanisme gerusan akibat pola aliran air disekitar pilar

Struktur yang dibangun di sungai menjadi tenggelam ketika kedalaman aliran lebih tinggi dari ketinggian struktur. Misalnya, fondasi dermaga jembatan terendam ketika menerima banjir besar selama pembangunannya. Kadang-kadang struktur yang dibangun di sepanjang tepi sungai untuk perlindungan tebing berperilaku seolah-olah struktur yang tenggelam selama banjir besar, seperti pada **Gambar** 6 berikut ini pergerakan aliran turbulen mempengaruhi gerusan disekitar bangunan slinder.



Gambar 6. Aliran pada sekeliling silinder: (a) silinder yang tidak terendam pada alas datar yang kaku; (b) silinder tidak terendam dengan lubang gerusan; (c) silinder terendam di dasar datar kaku; dan (d) silinder terendam dengan lubang gerusan. (Imam R., 2019).

2.2.4 Tegangan Dasar Sungai

Kondisi aliran *uniform flow* pada saluran terbuka digunakan pendekatan analisis tenganan geser *(shear stress)* digambar pada Gambar 7 berikut ini, dijelaskan sebagai berikut:

- 1) Sudut kemiringan dasar saluran (θ) relative kecil, maka sin (θ) \approx tan (θ) = S_o , dimana S_o adalah kemiringan dasar saluran
- 2) Saluran dengan penampang segi empat
- 3) Kedalaman alirah (h) adalah jauh lebih besar dari diameter butir D
- 4) Kondisi aliran merupakan aliran turbulen uniform flow
- 5) Profil kecepatan rata-rata menurut hukum logaritmik (log-law)

Gambar 7. Profil gaya pada dasar miring

Pada aliran turbulen digunakan persamaan tegangan geser adalah (Mansida et al., 2021):

$$\tau_o = \rho. g. R. Sin(\theta) = \rho. g. R. S_o \tag{17}$$

Dengan;

$$\tau_o = \rho_w \cdot g \cdot h \cdot S_o \tag{18}$$

$$u_* = \sqrt{g.R.S_o} \tag{19}$$

Dimana : τ_t = tegangan geser turbulen (kg/m²), g : percepatan gravitasi (m/dt²), ρ ; massa jenis air (kg/m³), S_o; kemiringan dasar saluran (%), R \approx h; kedalaman aliran (cm).

Untuk aliran seragam biasanya diasumsikan distribusi kecepatan memanjang. Sehingga kondisi ini tegangan geser rata-rata untuk aliran turbulen berkembang secara maksimal dapat dihitung dengan persamaan:

$$\sigma_o = \rho \left[\frac{\ddot{\mathbf{U}}}{2.5 \ln\left(12.3 \frac{h}{k_s}\right)} \right]^2 \tag{20}$$

Dimana: $\ddot{U} = \text{kecepatan aliran rata-rata kedalaman, (cm/dt)}, k_s$; ketinggian rata-rata kekasaran, h; ketinggian aliran (cm), ρ ; berat jenis aliran (kg/m³).

Perubahan tegangan geser yang direduksi turbulensi aliran karena transfer momentum turbulen. Simons dan Li (1983) menyatakan bahwa koefisien variasi (yaitu nilai rms). Artinya dari kecepatan aliran pada saluran bentuk trapesium sekitar 0,20, tetapi koefisien yang sama untuk tegangan geser dasar kira-kira 0,37. Aliran sekunder dapat meningkatkan tegangan geser lokal dan nilai kedalaman air hingga tiga kali lipat. Masalah ini dipertimbangkan secara rinci oleh Ippen dan Drinker (1962), Hooke (1975), Nouth et. al. (1987).

2.2.5 Gerak Awal Sedimen

Gerak awal butir sedimen sangat penting pada suatu system angkutan sedimen khususnya pada degradasi dasar sungai ataupun salun. Pergerakan butir sedimen tidak teratur sehingga sangat sulit untuk mendefisikan butiran sedimen mulai bergerak. Namun beberapa pendekatan untuk mendefenisikan gerak awal butir sedimen:

- a) Pendekatan kecepatan aliran (competent velocity)
- b) Pendekatan gaya angkat (*lift force*)
- c) Pendekatan tegangan geser kritis
- d) Pendekatan dengan teori probabilitas

Pendekatan tegangan geser kritic dengan mengasumsikan bahwa gaya-gaya aliran (gaya *hidrodinamik*) bekerja pada butir sedimen mencapai suatu nilai tertentu, yaitu gaya

sedikit ditambahkan maka menyebabkan butir sedimen bergerak atau disebut kondisi kritic. Gerak dasar ini biasanya disebut dengan kondisi kritis (Muhammad Saleh Pallu, 2010). Parameter pada kondisi kritis adalah tegangan geser dasar (τ_0), kecepatan aliran (u). Bila tegangan geser dasar (τ_0) lebih besar dari nilai tegangan geser kritis (τ_c), maka butiran sedimen bergerak, atau $\tau_0 > \tau_c$, jika butiran sedimen mulai bergerak (awal) apabila tegangan geser (τ_0) dengan tegangan geser kritic (τ_c) nilai sama atau $\tau_0 = \tau_c$, dan jika butiran sedimen dasar diam apabila tegangan geser kritic (τ_c) lebih besar dari tegangan geser dasar (τ_0), atau $\tau_0 < \tau_c$.

Sedangkan nilai tegangan geser kritic (τ_c) dapat dianalisis dengan menggunakan persamaan berikut (Hermawan & Afiato, 2021) :

$$\tau_{c*} = \frac{\tau_c}{(\rho_s - \rho_w)d_z} \tag{21}$$

Dimana; τ_c = tegangan geser, dz =diameter ukuran butiran (mm), ρ_s =berat jenis butiran sedimen (kg/m³) dan ρ_w =berat jenis aliran (kg/m³). Nilai parameter tegangan geser (τ_{c*}) dapat diperoleh melalui kurva diagram pergerakan partikel butiran *Shields* dengan tergantung terhadap nilai bilangan *Reynolds* (Re). Bilangan Reynolds merupakan factor tak berdimensi dengan persamaan berikut :

$$R_e = \frac{u_* \cdot d_Z}{\mu} \tag{22}$$

Dimana; R_e = bilangan *Reynolds*, u_* = kecepatan geser (m/dt), d_z = diameter ukuran butiran sedimen (mm), μ = viskositas kinematik (m²/det).

2.2.6 Angkutan sedimen melayang (suspended load)

Kecepatan pengendapan dari partikel tersuspensi pada air yang tenang diperkirakan dengan menggunakan hukum Stokes. (Ray K. Linsley JR., dkk. 1986) sebagai berikut :

$$q_b = \frac{2(\rho_g - \rho)gR^2}{9\mu} \tag{23}$$

Dimana : ρ_g = berat jenis partikel (kg/cm³) ρ = berat jenis air (kg/cm³), R = jari-jari partikel (mm), μ = viskositas air. Persamaan 20 tersebut di atas diasumsikan bahwa viskositas hanya memberikan ketahanan terhadap pengendapan, bahwa partikel bersifat tegar dan berbentuk bulat dan jatuhnya tidak dipengaruhi oleh partikel-partikel lain, untuk partikel dari diameter 0,0002 sampai 0,2 mm.

2.2.7 Angkutan Sedimen dasar (bedload)

Pergerakan sedimen oleh aliran di sungai terdiri dari sedimen melayang (suspended load) dan muatan dasar (bedload) yang bergerak disempanjang dasar sungai dengan bergeser, mengguling dan melompat. Angkutan sedimen ke arah pusasar turbulen menyebabka terjadi pengendapan partikel akibat gravitasi. Konsentrasi bahan tersuspensi terbesar di dekat dasar sungai, maka pusaran gerakan ke atas mengangkut sedimen lebih banyak daripada pusaran gerakan ke bawah. Sistem ini dalam keadaan seimbang apabila gerakan akibat gravitasi dan angkutan turbulen dan jumlah material tersuspensi tetap konstan. (Ray K. Linsley JR., dkk. 1986) . Partikel sedimen ukuran kecil seperti tanah lempung dan debu dapat diangkut aliran dalam bentuk terlarut (suspedead load). Sedangkan partikel yang lebih besar, antara lain pasir cenderung bergerak dengan melompat. Partikel yang lebih besar dari pasir seperti kerikil (gravel) bergerak dengan cara merayap atau menggelinding di dasar sungai (bed load).

Besarnya volume sedimen tersususpensi tergantung dari perubahan kecepatan aliran dipengaruhi oleh perubahan musim hujan, kering dan perubahan kecepatan aliran yang dipengaruhi oleh aktivitas manusia. Bentuk marfologi sungai, kekasaran dasar dan tebing sungai, serta kemiringan sungai. Akibat berinteraksi dari kesemua factor di atas sngat menentukan jumlah dan tipe sedimen terhadap kecepatan angkutan sedimen. Sebagai akibat perubahan volume angkutan sedimen akibat terjadi *degradasi* di beberapa tempat di bagian sungai seperti di tebing dan dasar sungai, sehingga akan berdampak terhadap *agradasi* pada bagian hilir area pengikisan dengan demikian umumnya terjadi perubahan dasar sungai.

Tabel 4. Faktor-faktor gerakan muatan dasar (bed load movement)

No	Diameter partikel (dz)	Koefisien empiris	Besar gaya geser
	(mm)	(Υ)	$(au_{ m c})$
1	1/8	0.0032	0.078
2	1/4	0.0019	0.083
3	1/2	0.0011	0.107
4	1	0.0007	0.156
5	2	0.0004	0.249
6	4	0.0002	0.439

Sumber: (Ray K. Linsley JR., dkk. 1986)

Aliran turbulen digunakan persamaan dari Kalinske (Muhammad Saleh Pallu, 2010) sebagai berikut :

$$\frac{U_s}{U_*} = f\left(\frac{\tau_c}{\tau}\right) \tag{24}$$

$$U_s = b (u - u_c) \tag{25}$$

Dimana: u_s dan u adalah kecepatan sedimen dan aliran; u_c adalah kecepatan aliran kritis pada saat bergerak (m/dt), b adalah nilai konstanta 1, u_s = nilai kecepatan rata, u_{*} adalah kecepatan geser (m/dt). Sedangkan untuk konsentrasi sedimen dasar digunakan pendekatan persamaan van Rijn (1987) sebagai berikut:

$$C_{bed} = 0.015 \cdot \frac{d^{0.3} \left(\frac{\tau - \tau_c}{\tau_c}\right)^{1.5}}{g\left(\frac{\rho_S - \rho_W}{\rho_W \mu^2}\right)^{0.1}}$$
(26)

Di mana d adalah diameter partikel sedimen, τ adalah tegangan geser dasar, τ_c adalah tegangan geser kritis untuk motivasi partikel sedimen berdasarkan diagram Shields, ρ_s dan ρ_w masing-masing adalah partikel sedimen dan kepadatan air, μ adalah viskositas kinematik air, dan g adalah percepatan gravitasi.

Sedimen dasar yang bergerak merupakan jumlah dari fraksi butir yang lepas dari permukaan dasar dan bergerak. Jumlah sedimen dasar total yang terangkut persatuan lebar dirumuskan sebagai berikut:

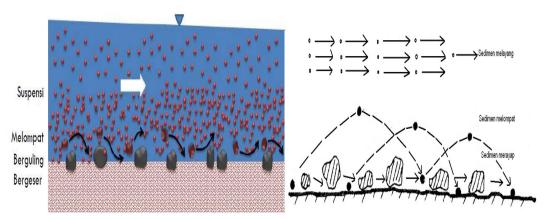
$$q_{bT} = \sum_{i=1}^{N} q_{bi} \tag{27}$$

Sedangkan rasio sedimen yang bergerak merupakan perbandingan jumlah sedimen yang terangkut tiap fraksi butir dengan jumlah total yang terangkut dirumuskan sebagai berikut:

$$P_{bi} = \frac{q_{bi}}{q_{bT}} \tag{28}$$

Pada tegangan geser untuk non dimensional grainsize spesifik shields number dirumuskan;

$$\tau^* = \frac{\tau_b}{\rho.R.g.D_i} \tag{29}$$


Dimana:

$$\tau_b = \rho. g. R. S_o \text{ atau } \tau_b = \rho. u_*^2 \tag{30}$$

Sehingga besar tegangan geser non dimensional dapat dirumuskan sebagai berikut:

$$\tau_i^* = \frac{\rho \cdot u_*^2}{\rho \cdot R \cdot q \cdot D_i} = \frac{u_*^2}{R \cdot q \cdot D_i} \tag{31}$$

Angkutan sedimen dasar bergerak dengan cara bergeser (*sliding*), mengguling (*rolling*) dan melompat (*saltation*), seperi pada **Gambar** 8 dibawah ini.

Gambar 8. Proses pergerakan sedimen dasar (bedload) dan melayang (suspensi)

Pendekatan yang digunakan dalam memperkirakan besarnya sedimen dasar pada pengaliran saluran terbuka dengan persamaan empiris metode Meyer Peter Muller (MPM), Einstein dan DuBoys. Persamaan-persamaan dari ketiga metode ini diuraikan di bawah ini.

a. Metode Meyer Peter Muller (MPM)

Penggunaan metode empiris ini harus memenuhi persyaratan seperti partikel sedimen yang dapat digunakan untuk ukuran seragam berkisar 0.4 mm - 29 mm dan berat jenis sedimen $1,25 \text{ ton/m}^3 - 4.0 \text{ ton/m}^3$ pada kondisi kemiringan dasar saluran berkisar $4 \times 10^{-4} - 2 \times 10^{-2}$. (Suwarno, 1991).

Persamaan Meyer Peter Muler (MPM) sebagai berikut :

$$q_b = \phi \sqrt{\left[\frac{(\rho_s - \rho_w)}{\rho_w}\right]} x \ g \ D_{50}^3 \tag{32}$$

b. Metode Einstein

Metode Einstein menggunakan persamaan yang persamaan dengan metode Meyer Peter Muler (MPM), dengan perbedaan pada penggunaan dimeter material sedimen. Untuk metode Einstein menggunakan ukuran sedimen D₃₅ sedangkan MPM menggunakan D₅₀. Sehingga hasil analisis umumnya menunjukan perbedaan tidak signifikan atau tidak berbeda jauh. Persamaan metode Einstein (Hermawan & Afiato, 2021) adalah:

$$q_b = \phi \sqrt{\left[\frac{(\rho_s - \rho_w)}{\rho_w}\right]} x g D_{35}^3$$
 (33)

Tahapan analisis dengan menggunakan kedua metode ini adalah:

(1) Menghitung koefisien kekasaran Manning aktual

Dengan kecepatan aliran telah diperoleh melalui pengukuran, maka nilai n dapat dihitung berdasarkan persamaan Manning sebagai berikut;

$$U = \frac{1}{n} x R^{2/3} S_o^{1/2} \tag{34}$$

(2) Menghitung koefisien kekasaran Manning untuk dasar rata

$$n' = \frac{D_{90}^{1/6}}{26} \tag{35}$$

(3) Menghitung jari-jari hidrolis yang menampung muatan sedimen dasar

$$R' = R x \left(\frac{n'}{n}\right)^{1.5} \tag{36}$$

(4) Menghitung Intensitas pengaliran (ψ)

$$\psi = \frac{\rho_s - \rho_w}{\rho_w} x \frac{D_{50}}{R\left(\frac{n'}{n}\right)^{1.5} x S} \tag{37}$$

(5) Menghitung Intensitas angkutan sedimen (ϕ)

$$\phi = \left[\left(\frac{4}{\psi} \right) - 0.188 \right]^{1.5} \tag{38}$$

Berdasarkan konsep aliran turbulen dan variasi statistic dari gaya-gaya aliran di suatu titik. Pendekatan banyak digunakan adalah dari Einstein, menetapkan intesitas pengakutan sedimen muatan dasar sungai sebagai berikut:

$$\Phi = \frac{G_i}{\rho_W} \sqrt{\frac{\rho}{\rho_S - \rho} \frac{1}{g d_{50}^3}} \tag{39}$$

Dan intensitas aliran sebagai :

$$\Phi = \frac{\rho_{s-\rho}}{\rho} \frac{d_{50}}{SR} \tag{40}$$

Dimana; ρ_w adalah berat jenis air, ρ adalah kerapatan air; ρ_s adalah kerapatan sedimen dasar, d₅₀ adalah diemater butiran sedimen (mm), s adalah kemiringan saluran; dan R adalah jari-jari hidrolis. Sedangkan besar gaya seret (*tractive force*) dapat dihitung dengan menggunakan persamaan berikut:

$$\tau_o = \rho w \cdot h \cdot S_o \tag{41}$$

Dimana; τ_o adalah gaya seret (*tractive force*), ρ w adalah berat jenis air (kg/cm²); h adalah kedalaman air (m); S adalah kemiringan garis energi.

c. Metode DuBoys

Prinsip penggunaan metode empiris DuBoys bahwa pengangkutan sedimen diawali dari tegangan gesek atau gaya angkat sampai mencapai nilai kritis. Pengangkutan sedimen merupakan fungsi dari perbedaan antara tegangan gesek sebenarnya dan nilai kritis. Metode DuBoys disarankan pada ukuran partikel berkisar 0.1 mm sampai 4 mm dengan ukuran partikel rata-rata sedimen dan tegangan gesek kritis. (Soemarto, 1986). Persamaan besarnya angkutan sedimen dasar (*Bed Load*) metode DuBoys adalah:

$$q_b = \Psi_D \frac{\tau_0}{\rho_W} \left(\frac{\tau_0 - \tau_c}{\rho_W} \right) \tag{42}$$

Dengan nilai tegangan geser dasar dapat dihitung dengan menggunakan persamaan :

$$\tau_o = \rho_w h. S_o \tag{43}$$

Sedangkan nilai parameter dari fungsi ukuran sedimen menggunakan persamaan:

$$\Psi_D = \left(\frac{\rho_S d_{50} U}{2 \tau_C}\right) \tag{44}$$

Dimana; q_b = sedimen dasar (kg/dt/m), ϕ = intensitas angkutan sedimen, ρ_s = berat jenis sedimen (kg/m³), ρ_w = berat jenis air (kg/m³), percepatan gravitasi bumi (9.807 (m/dt²), d_{50} = diameter butiran sedimen (mm) untuk metode MPM, d_{35} = diameter butiran sedimen (mm) untuk metode Einstein, R= jari-jari hidrolis (m), U = kecepatan pengaliran (m/dt). ψ = intensitas pengaliran, τ =tegangan geser (kg/m²), τ_c = tegangan geser kritic di dasar (kg/m²), d_{50} = diameter butiramn sedimen untuk metode DuBoys, h=kedalaman pengaliran (m), S = kemiringan dasar saluran.

2.2.8 Sifat sedimen gabungan

Dalam teknik sipil klasifikasi sedimen dibedakan menjadi lempung (*clay*), lumpur (*slit*), pasir (*sand*), kerikil (*gravel*), koral (*pebble*) atau kerakal (*cabbles*), dan batu (*boulders*). Menurut Wentworth klasifikasi berdasar ukuran butir dapat disajikan dalam Tabel 5.

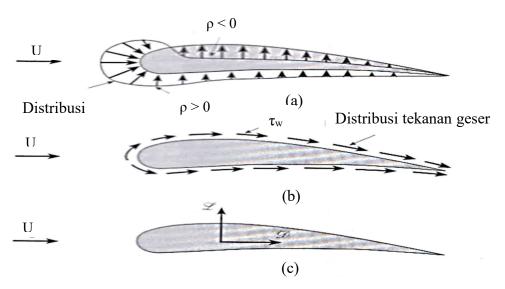
Tabel 5. Klasifikasi ukuran butir sedimen menurut Wentworth

Klas	ifikasi	Diameter partikel (mm)
Berangkal	Sangat besar	4096 – 2048
	Besar	2048 - 1024
	Sedang	1024 - 512
	Kecil	512 – 256
Kerakal	Besar	256 – 128
	Kecil	128 – 64
Koral (kerikil besar)	Sangat kasar	64 - 32
	Kasar	32 – 16
	Sedang	16 - 8
	Halus	8-4
Kerikil		4 – 2
Pasir	Sangat kasar	2 - 1
	Kasar	1 - 0.5
	Sedang	0.5 - 0.25
	Halus	0.25 - 0.125
	Sangat Halus	0.125 - 0.062
Klas	ifikasi	Diameter partikel (mm)
Lumpur	Kasar	0.062 - 0.031
	Sedang	0.031 - 0.016
	Halus	0.016 - 0.008
	Sangat Halus	0.008-0.004
Lempung	Kasar	0.004 - 0.002
	Sedang	0.002 - 0.001
	Halus	0.001 - 0.0005
	Sangat Halus	0.0005 - 0.00024

Menurut (Bambang Triatmodjo, 2008), ukuran butir median d_{50} adalah paling banyak digunakan untuk ukuran butir pasir. Berdasarkan distribusi log normal tersebut, ukuran butir rerata D_m dan Standar deviasi σ_{D_i} derajat penyebaran ukuran butir terhadap nilai rerata sering digunakan koefisien S_o dapat dihitung dengan cara berikut:

$$d_{m} = \sqrt{d_{16} \cdot d_{84}} \tag{45}$$

$$S_{o} = \sqrt{\frac{d_{75}}{d_{25}}} \tag{46}$$


$$\sigma_{D} = \sqrt{\frac{d_{84}}{d_{16}}} \tag{47}$$

Apabila $1,0 < S_o \le 1,5$ ukuran butir pasir seragam, untuk $1,5 \le S_o \le 2,0$ penyebaran ukuran butir pasir sedang, sedangkan jika $2,0 \le S_o$ gradasi ukuran pasir sangat bervariasi (tidak seragam). Rapat massa dan berat jenis merupakan fungsi dari komposisi mineral. Rapat

massa ρ adalah massa tiap satuan volume, sedangkan berat jenis tanah γ adalah berat tiap satuan waktu volume. Terdapat hubungan antara ρ dengan γ yaitu $\gamma = \rho.g$.

2.2.9 Gaya-gaya yang bekerja pada butiran sedimen dalam air

Sebuah benda apapun bergerak melalui sebuah fluida berinteraksi antara benda dengan fluida, efek ini dapat digambarkan dalam bentuk gaya-gaya gesekan aliran dengan benda. Tegangan-tegangan geser dinding, τ_w akibat efek viskositas dan tekanan normal akibat tekanan normal ρ. Distribusi tegangan geser dan tekanan ditunjukkan pada **Gambar** 9 a dan **Gambar** 9 b, baik τ_w dan ρ bervariasi besar dan arahnya disepanjang permukaan. Gaya resultan dalam arah yang sama dengan kecepatan hulu disebut sebagai *drag force* (gaya seret). Gaya resultan yang tegak lurus terhadap arah kecepatan hulu disebut sebagai gaya angkat (*lift*) seperti pada **Gambar** 5 c. di bawah ini.

Gambar 9. Gaya – gaya dari fluida di sekeliling pada sebuah benda dua dimensi (Bruce R Monson, dkk., 2005)

Drag ini bukan hanya merupakan fungsi dari besar tegangan geser dinding, tetapi juga arah horizontal permukaan dimana gaya bekerja. Apabila permukaan sejajar dengan kecepatan hulu, seluruh gaya geser berkontribusi langsung terhadap *drag*. Dan jika permukaan tegak lurus terhadap kecepatan hulu, tegangan geser tidak memberikan konstribusi apapun terhadap *drag*. Namun demikian, untuk benda-benda yang sangat *streamlined* atau untuk aliran dengan bilangan Reynolds rendah, sebagian besar *drag* mungkin disebabkan oleh *drag* gesekan. Untuk berapa besar nilai *drag* gesekan (D_f) pada

pelat datar dengan lebar b dan panjang ℓ yang sejajar dengan hulu dihitung dengan persamaan berikut :

$$D_f = \frac{1}{2} \cdot \rho \cdot U^2 \cdot b \cdot \ell \, C_{Df} \tag{48}$$

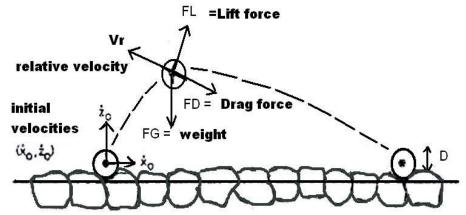
Dimana; C_{Df} adalah koefisien drag gesekan. Nilai dari C_{Df} diberikan sebagai fungsi dari bilangan Reynolds,

$$Re = \frac{\gamma_w.u.L}{\mu} \tag{49}$$

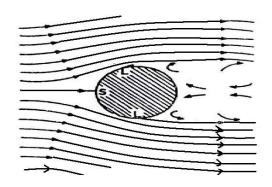
Koefisien hambatan pada pelat datar aliran turbulen digunakan persamaan berikut:

$$C_{Df} = [1.89 - 1.62 \, Log \, \epsilon \iota - l]^{-2.5}$$
 (turbulen penuh) (50)

$$C_{Df} = 0.455/[LogRe]^{2.58}$$
(turbulen, pelat licin) (51)


Tabel 6. Persamaan Empiris untuk koefisien Drag Pelat Datar

No	Persamaan	Kondisi Aliran
1	$C_{Df} = 1.328 / (Re_l)^{0.5}$	Aliran Laminer
2	$C_{Df} = 0.455 / log (Re_l)^{2.58} - \frac{1700}{Re_l}$	Transisi dengan Re _{xcr} = 5 x 10 ⁵
3	$C_{Df} = 0.455/[LogRe_l]^{2.58}$	Turbulen, pelat licin
4	$C_{Df} = [1.89 - 1.62 Log \epsilon \iota - l]^{-2.5}$	Turbulen penuh


Sumber; (Bruce R Monson, dkk., 2005)

Suatu butiran sedimen dalam aliran fluida akan menerima gaya-gaya fluida jika terdapat pergerakan relative antara butiran dan fluida tersebut. Gaya fluida yang bekerja searah dengan pergerakan butiran disebut gaya seret (*drag force*), sedangkan gaya fluida yang bekerja dengan arah normal atau tegak lurus arah pergerakan butiran disebut gaya angkat (*lift force*) (Muh. Arsyad Thaha, 2006). **Gambar** 10 memperlihatkan gaya seret dan gaya angkat pada butiran sedimen dasar. Koefisien C_D dan C_L merupakan fungsi Re.

Daerah aliran terbagi (*disamping slinder*) terlihat kondisi pada kedua kasus tersebut sama, tetapi pada daerah belakang (*wake regions*) memperlihatkan dimensi yang berbeda menyebabkan koefisien seret C_D berbeda pula. Titik S disebut titik stagnasi dan titik L disebut titik separasi. Aliran melalui silinder pada R_e yang berbeda seperti pada Gambar 10.

Gambar 10. Gaya seret (*drag force*) dan gaya angkat (*lift force*) pada butiran sedimen (Muhammad Arsyad Thaha, 2006)

Gambar 11. Aliran turbulen disekitar slider (Muhammad Arsyad Thaha, 2006)

Pada umumnya gaya seret hanya diuraikan dalam komponen tekanan saja, karena di samping lebih dominan bekerja pada butiran kecil, juga pengaruh gesekan dan diperhitungkan dalam C_D tersebut. Dengan menggunakan persamaan Bernoulli pada garis aliran stagnasi (titik S pada **Gambar** 11), maka dapat diturunkan persamaan gaya seret F_D adalah:

$$\frac{U_0^2}{2g} + \frac{P_o}{\rho g} + Z_o = \frac{U_s^2}{2g} + \frac{P_s}{\rho g} + Z_s$$
 (52)

Pada kondisi stagnasi U_s = 0, dan pada elevasi yang sama z_o = z_s , maka persamaan di atas dapat ditulis :

$$P_s - P_o = \frac{1}{2} \rho U_o^2$$
 (53)

Persamaan (55) mengekspessikan kelebihan tekanan pada titik S sebesar $\frac{1}{2}\rho U_0^2$

dan pada daerah belakang mengalami kekurangan tekanan. Berdasarkan hal tersebut, maka gaya seret (F_D): (Muhammad Saleh Pallu, 2010, 2012)

$$F_D = \frac{1}{2}\rho \ U^2 C_D A \tag{54}$$

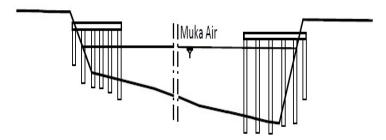
Dimana F_D ; adalah gaya hambatan (N), ρ adalah berat jenis air (kg/m³), U adalah kecepatan pengaliran (m/dt), C_D adalah koefisien hambatan, A adalah luas lintasan pengaliran (m²). Dengan koefisien hambatan (C_D) adalah :

$$C_{\rm D} = \frac{h}{\frac{1}{2} \rho \, U^2 \, A} \tag{55}$$

Sedangkan gaya seret (*drag force*) digunakan pendekatan persamaan berikut :

$$F_D = C_2 \tau_c d_s^2 \tag{56}$$

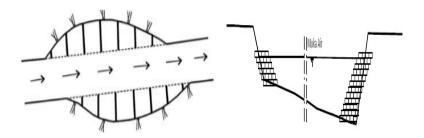
2.3 Bangunan Krib (Groyne Structure)


Bangunan krib merupakan salah satu bagian dari penanganan gerusan yang terjadi di tebing sungai. Untuk maksud mengarahkan aliran dan menghindarkan kuat arus dari sepanjang tepi sungai, termasuk pada belokan sungai perlindungan semacam ini merupakan perlindungan tak langsung.

Konstruksi krib diklasifikasikan menjadi 3 (tiga) tipe konstruksi krib yaitu: tipe permeabel (permeabel type) dimana air sungai dapat mengalir melalui krib tersebut, tipe impermeabel (impermeabel type) dimana air sungai tidak dapat mengalir melalui krib tersebut dan tipe semi-permeabel (combined of both the permeabel type and the impermeabel type). Berdasarkan formasinya, krib dapat diklasifikasikan ke dalam 2 tipe, yaitu tipe silang (transversal type) dan tipe memanjang (longitudinal type). (Suyuno Sasrodarsono, dkk., 1986), (SNI 2400.1.2016).

2.3.1 Klasifikasi Krib

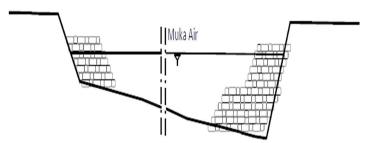
a. Krib permeabel


Krib permeabel ini melindungi tebing sungai terhadap gerusan aliran dengan cara meredam energy yang terkandung dalam aliran sepanjang tebing sungai dan dapat mengendapkan sedimen. Krib permeabel dapat dilalui aliran, oleh karenya dapat menurunkan ketahanan terhadap aliran sungai. Maknya diperlukan stabilitas yang lebih tinggi dibandingkan dengan krib impermeable. Konstruksi krib permeable ditunjukkan pada **Gambar** 12 di bawah ini.

Gambar 12. Konstruksi krib permeabel

b. Krib impermeabel

Krib impermeable yang disebut dengan krib padat, karena air sungai tidak dapat mengalirkan melalui tubuh krib. Tipe krib untuk membelokan arah arus sungai dan mencegah gerusan yang cukup dalam di depan ujung krib-krib atau bagian sungai di sebelah hilirnya. Krib permeable dapat dibedakan menjadi 2 jenis, yaitu terbenam dan tidak terbenam. Jenis terbenam terjadi penggerusan yang dalam di sisi hilir krib, akibat terlimpas aliran, sehingga sisi hilirnya berfungsi sebagai kolam olakan. Sedangkan jenis yang tidak terbenam dapat menyebabkan terjadinya turbulen aliran di bagian ujung bagunan krib dan menyebabkan gerusan yang cukup dalam. Untuk mencegah gerusan haruslah dipertimbangkan penempatan pelindung dengan konstruksi flexible, seperti matras ataupun hambaran pelindung batu, sebagai pelengkap dari krib padat. (Suyuno Sasrodarsono, dkk., 1986), (SNI 2400.1.2016). Ilustrasi konstruksi krib impermeable ditunjukkan pada Gambar 13, di bawah ini.



Gambar 13. Lokasi dan konstruksi krib impermeable

c. Krib semi permeable

Krib semi permeable ini digunakan untuk mendapatkan efek positif dari kedua tipe krib, yaitu meningkatkan pengaturan aliran sungai dan meningkatkan stabilitas krib. Krib ini berfungsi gandaa yaitu sebagai krib permeable dan krib impermeable atau padat.

Biasanya yang padat ditempatkan pada bagian bawah sebagai fondasi, sedangkan bagian atasnya merupakan konstruksi permeable disesuaikan dengan fungsi dan kondisi setempat. (Suyuno Sasrodarsono,dkk., 1986), (SNI 2400.1.2016).

Gambar 14. Konstruksi krib semi permeable

d. Krib-krib silang dan memanjang

Krib yang formasinya tegak lurus atau hampir tegak lurus arah arus sungai dapat merintangi arus tersebut dan dinamakan krib melintang (*transversal dyke*), sedang krib yang formasinya hampir sejajar arah arus sungai disebut krib memanjang (*longitudinal dyke*). (Suyuno Sasrodarsono, dkk., 1986), (SNI 2400.1.2016).

e. Perencanaan krib

Persiapan yang perlu diperhatikan untuk perencanaan (planning) stuktur krib, seperti denah, bentuk memanjang, debit air sungai, kecepatan arus sungai, bahan-bahan dasar sungai. Hal ini menjadi pertimbangan untuk menentukan jenis krib, sehingga harus dilakukan survey dengan baik untuk bahan analisis metode pembuatannya ditetapkan secara empiris dengan memperhatikan pengalaman-pengalaman pada krib-krib yang telah dibangun diwaktu-waktu yang lalu. Hal-hal yang perlu diperhatikan dalam proses perencanaan krib-krib adalah sebagai berikut (Suyuno Sasrodarsono, dkk., 1986):

- 1) Mengingat metode pembuatan krib-krib sangat tergantung dari resim sungainya perlu diperoleh data mengenai pengalaman pembuatan krib pada sungai yang sama atau yang hampir sama, kemudahan pelaksanaanya dan besarnya pembiayaan.
- 2) Sungai-sungai yang terlalu lebar dan untuk mengurangi turbulensi aliran, maka permukaan air sungai normalnya harus dinaikkan sedemikian rupa dengan krib yang panjang, akan tetapi panjangnya harus dibatasi secukupnya, karena krib yang terlalu panjang disamping biaya pembangunannya lebih tinggi, pemeliharannya akan lebih mahal dan lebih sulit.

- 3) Krib-krib yang akan dibangun antara lain untuk melindungi tebing sungai terhadap pukulan air, maka panjang krib sepanjang ini harus dibatasi, karena krib yang terlalu panjang akan menyebabkan timbulnya pukulan air pada tebing sungai disebelahnya.
- 4) Krib-krib tidak dapat berfungsi dengan baik pada sungai-sungai yang kecil atau yang sempit alurnya.
- 5) Pembuatan krib-krib yang dimaksudkan untuk menaikan permukaan normal air sungai, maka perlu dipertimbangkan kapasitasnya disaat terjadinya debit yang lebih besar atau debit banjir dan juga pertimbangan mengenai trase serta kapasitas alur sungai, guna mempertahankan stabilitas sungai secara keseluruhan.

Adapun fungsi dari parameter penting dalam perencanaan bangunan krib sebagai berikut (Blazejewski et al., 1995):

- a) Variable aliran, antara lain kedalaman dan aliran banjir, jumlah angkutan sedimen suspensi dan angkutan sedimen dasar.
- b) Parameter saluran, antara lain kemiringan dasar, kecepatan aliran sungai, sifat-sifat material dasar, dimensi umum saluran (lebar, tinggi dan kedalaman air terendah)
- c) Beberapa faktor lain, seperti : adanya aliran debris selama banjir, kemungkinan kerusakan bangunan oleh gempa, ketersediaan material dan pondasi.

Penetapan tinggi krib dilakukan lebih menguntungkan apabila evaluasi mercu krib dapat dibuat serendah mungkin ditinjau dari stabilitas bangunan terhadap gaya yang mempengaruhinya, sebaiknya elevasi mercu dibuat 0,50 - 1,00 meter di atas elevasi ratarata permukaan air rendah. Hasil pengamatan terhadap tinggi berbagai jenis krib yang telah dibangun dan berfungsi dengan baik, diperoleh angka perbandingan antara tinggi krib dan kedalaman air banjir (hg/H) sebesar 0,20 – 0,30. (Suyuno Sasrodarsono, dkk., 1986).

Panjang dan jarak krib antara satu krib dengan lainnya ditetapkan secara empiris (tanpa menggunakan aturan khusus) akan tetapi didasarkan pada perkiraan dan data-data sungai bersangkutan, diantaranya topografi sungai, lebar sungai, kemiringan, debit banjir, kedalaman air, debit normal, material dasar sungai, kondisi disekeliling sungai, dll. Perbandingan antara panjang krib (L) dan lebar sungai digunakan lebih kecil dairi 10%.

$$L < \alpha \frac{c^2 h}{2a} \tag{57}$$

Dimana: L adalah Jarak antar krib (m), α adalah parameter empiris (\approx 0,6), C adalah koefisien Chezy, m^{1/2}/det, h adalah kedalaman air rerata (m), g adalah percepatan gravitasi, (\approx 9,81 m/det²)

Untuk menentukan koefisien Chezy dapat menggunakan rumus bazin dimana koefisien Chezy berdasarkan Bazin (1869), adalah fungsi dari jari-jari hidraulis (R) dan berat jenis fluida (γ).

$$C = \frac{87}{1 + \frac{\gamma_B}{\sqrt{B}}} \tag{58}$$

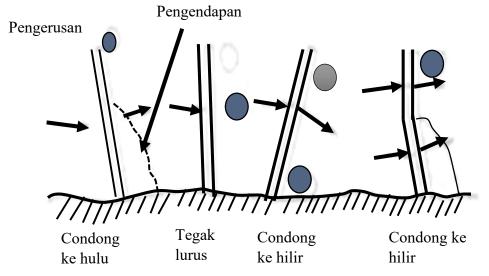
Dimana: C adalah Koefisien Chezy, m $^{1/2}$ /det, R adalah Jari-jari hidrolis, γ_B adalah koefisien yang tergantung pada kekasaran dinding.

Tabel 7. *Bazin* untuk Koefisien yang Tergantung pada Kekasaran Dinding (Suyuno Sasrodarsono, dkk., 1986)

No	Jenis Dinding	γ_B
1	Dinding sangat halus (semen)	0,06
2	Dinding halus (papan,batu,bata)	0,16
3	Dinding batu pecah	0,46
4	Dinding tanah sangat teratur	0,85
5	Saluran tanah dengan kondisi biasa	1,30
6	Saluran tanah dengan dasar batu pecah dan	1 75
	tebing rumput	1,75

Tabel 8. Hubungan antara panjang dan interval krib (*Suyuno Sasrodarsono, dkk., 1986*), (*SNI 2400.1.2016*)

No	Lokasi pembuatan krib sungai	Hubungan jarak (d) Panjang krib (L)
1	Bagian lurus	d = (1.7 - 2.3) L
2	Belokan luar	d = (1.4 - 1.8) L
3	Belokan dalam	d = (2.8 - 3.6) L


Klasifikasi krib berdasarkan kebutuhan desain dibagi menjadi dua yaitu; krib terendam atau tidak terendam. Dalam banyak kasus, krib impermeable dirancang untuk tidak terendam. Untuk kondisi terendam, krib padat rentan terhadap erosi cukup tinggi disepanjang bagian saluran menyebabkan aliran di bagian atas krib. Di sisi lain, krib permeabel lebih cocok untuk kondisi yang terendam karena tidak menciptakan gangguan aliran melayani seperti krib padat.

2.3.2 Formasi Krib

Formasi krib yang umum digunakan terdapat tiga macam formasi krib yang umum diterapkan dalam membangun bangunan krib yaitu tegak lurus arus, condong kearah hulu dan condong ke arah hilir.

Tabel 9. Arah Aliran dan Sudut Sumbuh Krib

Lokasi Pembuatan Krib di sungai	Arah Aliran dan	sudut sumbuh krib θ
Bagian lurus	$10^{\circ} - 15^{0}$	
Belokan luar	5° – 15°	θ /
Belokan dalam	0° - 10 ⁰	7
Sumber: Suyuno Sasrodarsono, dkk., 1986	j	
		arah

Gambar 15. Formasi krib dan penggerusan-pengendapan pada dasar Sungai (Suyuno Sasrodarsono, dkk., 1986).

2.3.3 Pemilihan Tipe Krib

Tipe krib harus mempertimbangkan berdasarkan fungsi hidrolika dari krib pengalaman-pengalaman yang pemah ada dan contoh-contoh bangunan krib-krib yang dibuat di waktu-waktu yang lalu.

Dalam proses penentuan tipe krib diperlukan perhatian khusus pada hal-hal sebagai berikut :

a) Krib permeabel yang rendah dengan konsolidasi pondasi biasanya cukup memadai untuk melindungi tebing sungai.

- b) Krib tidak cocok untuk sungai-sungai yang sempit alurnya atau untuk sungai-sungai kecil.
- c) Krib permeabel bercelah besar, seperti krib tiang pancang.
- d) Krib impermeable dapat mengurangi gerusan pada dasar saluran.

2.4 Analisis Dimensi

Analisis dimensi adalah teknik matematika menggunakan dimensi sebagai alat bantu menyelesaikan beberapa permasalahan teknik. Setiap fenomena fisik dapat dinyatakan dalam persamaan, yang tersusun dari variable-variabel berdimensi ataupun tak berdimensi (Suripin, 2019). Eksperimen penelitian dapat diketahui hubungan antara parameter-parameter tak berdimensi sehingga solusi masalah dapat ditentukan. Analisis dimensi mempunyai peran penting dalam perencanaan eksperimen terutama pada bidang mekanika fluida dan hidrolika aliran. Dimana konsep dasar analisis dimensi adalah menyederhanakan jumlah variable-variabel terpisah yang tercakup dalam suatu system fisik tertentu menjadi gaya variable tak berdimensi dengan jumlah yang lebih kecil. Sehingga grop variable dipilih sedemikian rupa masing-masing menggambarkan karakteristik fisik yang signifikan. Analisis dimensi merupakan murni matematika dimensi dan kuantitas, yang terdiri dari metode pembentukan variable-variabel yang signifikan ke dalam grup yang tak berdimensi. (Suripin, 2019).

Adapun metode analisis dimensi yang sering digunakan pada penelitian mekanika fluida dan hidrolika aliran yaitu :

- 1) Metode *Reyleigh* dan
- 2) metode Buckingham

Namun dalam penelitian ini dipilih metode Buckingham memenuhi syarat variable lebih dari 4. Secara umum penggunaan metode ini adalah :

- 1) Variabel-variabel yang terpilih harus variabel-variabel fisik yang terpenting,
- 2) Variabel-variabel terpilih harus meliputi semua dimensi
- 3) Variabel-variabel tak tergantung yang tidak berulang sedapat mungkin harus dimasukkan,
- 4) Variable-variabel aliran dasar yang relevan harus dimasukkan yaitu;
 - (a) Variable geometric (L)
 - (b) Variabel kinematic (L,T)

(c) Variabel dinamis (L.T, M)

Parameter-parameter analisis dimensi untuk angkutan sedimen (q_b) dikelompokan sesuai karakteristik variable aliran yaitu variable geometris, kinematis dan dinamis pada **Tabel** 10. Sedangkan **Tabel** 11 analisis koefisein gesek (C_D) dengan membagi sesuai variabel relevan menjadi variable geometris, kinematis dan dinamis seperti di bawah ini.

Tabel 10. Analisis Dimensi untuk angkutan sedimen (qb)

Variabel			Geon	netrik				K	inematik				Dinam	nik
Variabei	b	h	d _k	L _k	k _k	S	U	g	q _b	t	Q	ρ_{w}	ρ_{s}	μ (mu)
Satuan	cm	cm	cm	cm	cm	cm	cm/dt	cm/s ²	cm ³ /hr	menit	cm3/dt	(gr/cm ³)	(gr/cm ³)	(Kg.m/s2) s/m2 $= N.s/m2$
Dimensi	L	L	L	L	L	L	LT ⁻¹	LT ⁻²	L3 T-1	Т	L ³ T ⁻¹	ML ⁻³	ML^{-3}	$ML^{-1}T^{-2}$
M	0	0	0	0	0	0	0	0	0	0	0	1	1	1
L	1	1	1	1	1	1	1	1	3	0	3	-3	-3	1
Т	0	0	0	0	0	0	-1	-2	-1	1	-1	0	0	-2

Tabel 11. Analisis Dimensi koefisien gesek/koefisien hambat (CD) krib permeabel

	Geometrik		Kine	matik	Dinamik		
Variabel	h	dk	U	g	$\gamma_{ m w}$	F	μ
Satuan	Cm	Cm	Cm/dt	Cm/dt ²	Kg/cm ³	N	Kg. m/s ²
Dimensi	L	L	LT ⁻¹	LT ⁻²	ML ⁻³	MLT ⁻²	ML ⁻¹ T ⁻²
M	0	0	0	0	1	1	1
L	1	1	1	1	-3	1	1
T	0	0	-1	-2	0	-2	-2

2.5 Hipotesis

Hipotesis yang dibangun pada penelitian ini dengan berdasarkan variabel geometrik yaitu lebar (b) dan panjang saluran (L), diameter krib (d_k), kerapatan krib (k_k), jarak krib (L_k), kemiringan saluran (S), diameter sedimen (d_z), variabel kinematic yaitu debit aliran (Q), kecepatan aliran (u) dan grafitasi bumi (g) dan variable dinamik yaitu; berat sedimen (W), berat jenis air (ρ_w), berat jenis sedimen (ρ_s), dengan menggunakan pengaturan aliran krib permeable dapat mempengaruhi perubahan kecepatan aliran, karakteristik aliran dan gerusan di sekitar krib permeable. Penomena aliran turbulen disekitat krib permeabel menyebabkan dinamisasi perubahan morfologi dasar.

Pengaruh perubahan morfologi dasar sungai merupakan fungsi dari $q_b = \int (d_z, \rho_s, \rho_w, u, h, S, k_k, L_k, d_{k,}Q, g, \mu)$, dan perubahan karakter aliran berdasarkan bilangan *Reynolds* (Re) merupakan fungsi dari $\int (u, R, \mu, \rho_w)$, sedangkan tegangan geser (τ_o) yang merupakan fungsi dari $\int (\rho_w, g, R, S_i)$, serta tegangan geser kritic (τ_c) yang merupakan fungsi dari $\int (\tau_{c*}, \rho_s, \rho_w, h, u, d_{50})$.

2.6 Penelitian Terdahulu

Beberapa penelitian tentang penggunaan krib sebagai pengaturan kecepatan aliran dan pencegahan gerusan sungai sebagai berikut :

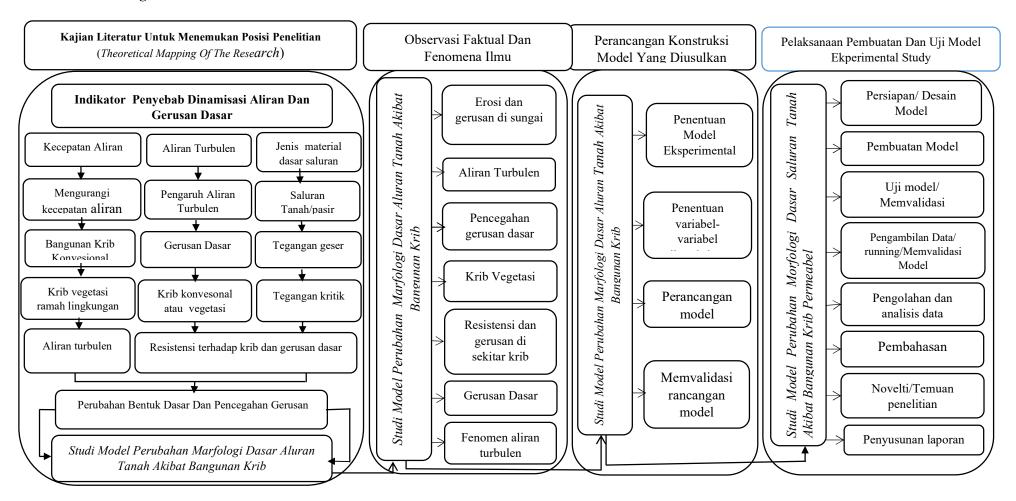
No	Peneliti / Judul /	Metode Penelitian	Hasil Penelitian	Persamaan	Perbedaan
	Publikasi Jornal				
1	Amir Golpira ; Kaitlyn	(1) Pengujian karakteristik	(1) Karakter aliran turbulen	(1) Karakter aliran	(1)Penempatan bahan uji
	Koehler; Andrew All;	aliran turbulen menggunakan	sangat komplek di dasar	turbulen; (2)	di dasar saluran dengan
	and Abul B. M. Baki,	variasi kerikil; (2) Dasar	saluran dan perubahan	Menggunakan bahan-	kerikil; (2) Pengamatan
	(2020) An Experimental	saluran dengan tebal 5 cm	peningkatan seiring dengan	bahan untuk mengatur	perubahan morfologi
	Study: Effects of Boulder	sepanjang 2.40 m dari	penurunan kerikil; (2)	kecepatan aliran; (3)	tidak dilakukan;
	Spacing on Mean and	Panjang flum 13 m;. (3)	Meningkatkan pengetahuan	Pencegahan gerusan	(3) Analisis karakter
	Turbulent Flow	Pengukuran kecepatan 3D	tentang pola trasnportasi	dasar saluran; (4)	aliran akibat bongkahan
	Characteristics, World	dilakukan dengan alat	sedimen dan sesuai dengan	Peredam energi aliran	kerikil di dasar saluran
	Environmental and Water	Velocimeter Doppler akustik	benda-benda yang ada di dasar		tidak dilakukan.
	Resources Congress 2020.	Vectrino (ADV).	saluran.		
2	Hui Cao, Chen Ye, Xu-	(1) Pengujian dilakukan	(1) Karateristik aliran dan	(1) Karakter aliran	(1) Penempatan bahan
	Feng Yan, Xing-Nian Liu	untuk menguji aliran	intensitas aliran turbulen,	turbulen; (2)	uji di dasar saluran
	and Xie-Kang Wang,	turbulen di dasar saluran	energi kinetic turbulen	Menggunakan bahan-	dengan batu besar dan
	(2020), Experimental	dengan menempatkan batu	(TKE); (2) Penempatan batu-	bahan untuk mengatur	bola plastik, (2)
	investigation of turbulent	alam dan bola plastic dia. 40	batu besar dengan bola plastic	kecepatan aliran; (3)	Pengamatan perubahan
	flows through a boulder	mm; (2) Pengukuran	dapat menurunkan kecepatan	Pencegahan gerusan	morfologi tidak
	array placed on a	kecepatan 3D dilakukan	aliran dan tekanan geser	dasar saluran; (4)	dilakukan,
	permeable bed, Water	dengan alat Velocimeter	dasar.	peredam energi aliran	
	Supply 2020	Doppler akustik Vectrino			
		(ADV).			
3	Amir Golpira, Fengbin	(1) Pengujian Tegangan	(1) Pengaruh bongkahan	(1) Pencegahan gerusan	(1) Pengamatan
	•	Geser dasar dan Aliran	<u> </u>		perubahan morfologi
			mengurangi tegangan geser;		, , ,
	Habitat Structure Boulder	variasi kerikil; (2) Dasar	(2) Pengaruh bongkahan	tegangan geser turbulen	Penempatan bahan uji

	Shear Stress and Turbulent Events in a Gravel Bed Channel, Water 2020, 12, 1423.	sepanjang 2.40 m dari Panjang flum 13 m; (3) Pengukuran kecepatan 3D dilakukan dengan alat Velocimeter Doppler akustik Vectrino (ADV).	kejadian aliran turbulen seragam dan tegangan geser Raynolds; (3) Bongkahan kerikil yang terendam menyebabkan berkurangnya tegangan geser dan sedimen	kinetic turbulen (TKE); (4) Mengatur kecepatan aliran	di dasar saluran dengan kerikil,
4	Qian Li, Yu-hong Zeng, Wei Zha (2020), Velocity distribution and turbulence structure of open channel flow with floating-leaved vegetation, Journal of Hydrology 590 (2020) 125298.	kecepatan aliran vertikal dan turbulensi struktur aliran saluran terbuka dengan vegetasi berdaun mengambang; (2)	kecepatan diantara batas daun dengan batas dasar saluran; (2) Konstribusi tekanan turbulensi di bagian dasar saluran; (3) Tegangan Reynolds pada daerah daun terapung terjadi penurunan, tetapi berdampak terhadap dasar saluran yang tidak	(1) Pengaturan kecepatan aliran; (2) Mengamati turbulensi aliran; (3) Mengurangi energy kinetic turbulen (TKE)	(1) Pengujian morfologi dasar sungai tidak dilakukan; (2) Penggunaan vegetasi berdaun mengambang sebagai pengaturan kecepatan aliran; (3) Pengujian karakteristik aliran tidak dianalisis; (4) Tidak menampilkan formula analisis.
5	(2019). Investigation of Flow, Erosion, and Sedimentation Pattern around Varied Groynes	Van-Rijn pada transpor sedimen menggunakan numerik eksperimen; (2) Simulasi numerik dilakukan	menurunkan kedalaman gerusan hingga 55%; (2) Pengaturan yang kecil ke		 Variasi jarak krib; Tidak menampilkan Formula; (3) Jenis material dasar saluran; Aliran turbulen

	and Geometric		mengurangi kedalaman		
	Conditions: A Numerical		gerusan hingga 72%.		
	Study, Water 2019, 11,				
	235. MDPI.				
6	Ronald Möws and	(1) Eksperimen laboratorium	(1) Efek backwater yang	(1) Menggunakan krib;	(1)Krib tidak terendam;
	Katinka Koll, dkk., 2019.	dilakukan meneliti efek	lebih tinggi untuk krib	(2)Kecepatan aliran; (3)	(2) Tegangan geser dan
	Roughness Effect of	backwater dan ketahanan	sederhana yang terbuat dari	Aliran turbulen; (4) Uji	kecepatan geser kritik;
	Submerged Groyne Fields	aliran bidang krib terendam	pelat multipleks dibanding	Laboratorium	(3) Tidak ada Formula;
	with Varying Length,	dengan bervariasi dan jarak	krib yang terbuat dari kerikil;		(4) Gerusan local
	Groyne Distance, and	krib; (2) Efek dari bentuk	(2) Kekasaran tertinggi		
	Groyne Types, Water	model krib diselidiki dengan	bidang krib pada kepadatan		
	2019, 11, 1253. MDPI.	menggunakan dua jenis krib	kekasaran.		
7	Mona M. Mostafaa, dkk.	(1)Menggunakan saluran	(1) Peningkatan daya tahan	(1) Menggunakan krib	(1) Variasi jenis krib;
	(2019) Experimental	campuran yang berbeda	hingga 60%, pengurangan	permeable; (2) Studi	(2) Variasi jarak; (3)
	study off low	dengan satu dan dua lebar;	daya hingga 30% ke tingkat	Laboratorium	kerapatan krib; (4) Tidak
	characteristics around	(2) Gelombang banjir	maksimum dan 22% untuk		menampilkan formula;
	flood plain single groyne.	simetris yang simetris	kecepatan diamati; (2)		(5) Menguji katahanan
	Journal of Hydro-	dengan masing-masing 1	Panjang krib permeabel		krib terhadap banjir
	environment Research,	dan 2 kali lebar saluran	memiliki pengaruh terbatas		
	Elsevier.	utama	pada struktur aliran		
8	Mohammad Hemmatia	Pengujian efek bending	(1) Memodifikasi morfologi	(1) Pengamatan	(1) Menggunakan
	dan Pejman Daraby.	bendway pada proses	tikungan sungai dan efisiensi	gerusan; (2)	pengujian dengan
	(2019). Erosion and	sedimen, percobaan	mereka dalam mengurangi	Pengendapan sedimen	bending sebagai
	sedimentation patterns	dilakukan di tikungan 90°	, ()		pencegahan erosi; (2)
	associated with	dengan kelengkungan relatif	Kedalaman gerusan		Tidak menggunakan
	restoration structures of	3,3 dengan dan tanpa	maksimum menurun dengan		kiri; (3) Tidak
	bendway weirs, KSCE	bendung.	peningkatan kemiringan		menampilkan formula
	Journal of Civil		puncak		

	Engineering. Hydraulic				
	Engineering, Springer.				
9.	0 0 1	(1) Penelitian lapangan	(1) Dengan <i>riffle</i> buatan dapat	(1) Mengamati	(1)Dilakukan di
'	1 ,	` '	menghambat laju tranportasi	pengendapan sedimen;	Laboratorium; (2)
			sedimen, penyebabnya adalah	(2) Mengamati	Aliran turbulen tidak
	and sedimen transport in		tidak cukup tekanan aliran	penyebab pengendapan	dijelaskan; (3)
	_	-	_	1	, , , , ,
	a Montain Stream. Jorunal	` '	dasar; (2) Endapan sedimen	sedimen; (3) Prilaku	Menggunakan material
	of Ecological	66	sangat tinggi di reservoir.	aliran	dasar saluran dari tanah
	Engineering. ASCE	Perangkat GPS Hiper II.			
10.	Pratiwi Azis dan	` ' ' ' ' '	(1) Mereduksi mengurangi	` /	(1) Variasi sudut krib
	Akihiro Kadota, 2018.	objek variasi diameter krib	1 0 / (/	•	vegetasi; (2) Pengaruh
	Experimental Study of	vegetasi diameter, 10 mm,	Mengendapkan sedimen	(2) Meneliti kinerja	-
	Marphological Changes	8 mm, (2) Kerapatan krib	dan mengurangi gerusan	krib terhadap aliran	disekitar krib; (3)
	and Flow Structure	1/10 dan 1/5	local; (3) Pengaruh krib	dan gerusan local; (3)	Pengaruh aliran
	around the Vegetation		vegetasi signifikan terhadap	Variasi diameter krib	turbulen; (4) Dasar
	Groyne. Advanced		perubahan aliran	vegetasi dan	saluran tanah; (5)
	Science Engineering			keraptannya; (4) Uji	Jenis material dasar
	Irmatioan Teknologi			Laboratorium	saluran
				Laboratorium	Saiui aii
_				Laboratorium	Satut an
111.	Theofano, dkk., 2018	(1) Menggunakan metode	(1) Krib jarak seragam		
11.		(1) Menggunakan metode dengan variasi iarak krib	(1) Krib jarak seragam konfigurasi paling efektif	(1) Meneliti pengaruh	(1) Variasi diameter dan
11.	Groyne spacing role on	dengan variasi jarak krib	konfigurasi paling efektif	(1) Meneliti pengaruh tegangan geser;	(1) Variasi diameter dan kerapatan krib;
11.	Groyne spacing role on the effective control of	dengan variasi jarak krib dengan jarak seragam dan	konfigurasi paling efektif adalah jarak sama dengan	(1) Meneliti pengaruh tegangan geser; (2) Kinerja gerusan	(1) Variasi diameter dan kerapatan krib;(2) Pengaruh perubahan
11.	Groyne spacing role on the effective control of wall shear stress in open-	dengan variasi jarak krib dengan jarak seragam dan non seraga; (2) Patokan	konfigurasi paling efektif adalah jarak sama dengan enam groyne Panjang; (2)	(1) Meneliti pengaruh tegangan geser; (2) Kinerja gerusan pada saluran; (3)	(1) Variasi diameter dan kerapatan krib;(2) Pengaruh perubahan dasar saluran; (3) Tidak
11.	Groyne spacing role on the effective control of wall shear stress in open- channel flow. Taylor dan	dengan variasi jarak krib dengan jarak seragam dan non seraga; (2) Patokan jarak adalah D/b≤6 dan D	konfigurasi paling efektif adalah jarak sama dengan enam groyne Panjang; (2) Efektifitas dicapai dengan	(1) Meneliti pengaruh tegangan geser; (2) Kinerja gerusan	(1) Variasi diameter dan kerapatan krib;(2) Pengaruh perubahan
11.	Groyne spacing role on the effective control of wall shear stress in open-	dengan variasi jarak krib dengan jarak seragam dan non seraga; (2) Patokan	konfigurasi paling efektif adalah jarak sama dengan enam groyne Panjang; (2) Efektifitas dicapai dengan konfigurasi non-seragam	(1) Meneliti pengaruh tegangan geser; (2) Kinerja gerusan pada saluran; (3)	(1) Variasi diameter dan kerapatan krib;(2) Pengaruh perubahan dasar saluran; (3) Tidak
	Groyne spacing role on the effective control of wall shear stress in open- channel flow. Taylor dan Francis	dengan variasi jarak krib dengan jarak seragam dan non seraga; (2) Patokan jarak adalah D/b \le 6 dan D / b \le 1.5	konfigurasi paling efektif adalah jarak sama dengan enam groyne Panjang; (2) Efektifitas dicapai dengan konfigurasi non-seragam jarak antar krib	(1) Meneliti pengaruh tegangan geser; (2) Kinerja gerusan pada saluran; (3) Variasi Jarak krib	(1) Variasi diameter dan kerapatan krib; (2) Pengaruh perubahan dasar saluran; (3) Tidak menampilkan formula
11.	Groyne spacing role on the effective control of wall shear stress in open-channel flow. Taylor dan Francis Baafour Nyantekyi-	dengan variasi jarak krib dengan jarak seragam dan non seraga; (2) Patokan jarak adalah D/b≤6 dan D /b≤1.5	konfigurasi paling efektif adalah jarak sama dengan enam groyne Panjang; (2) Efektifitas dicapai dengan konfigurasi non-seragam jarak antar krib Pengaruh kekasaran dapat	(1) Meneliti pengaruh tegangan geser; (2) Kinerja gerusan pada saluran; (3) Variasi Jarak krib	(1) Variasi diameter dan kerapatan krib; (2) Pengaruh perubahan dasar saluran; (3) Tidak menampilkan formula (1) Material dasar
	Groyne spacing role on the effective control of wall shear stress in open- channel flow. Taylor dan Francis	dengan variasi jarak krib dengan jarak seragam dan non seraga; (2) Patokan jarak adalah D/b \le 6 dan D / b \le 1.5	konfigurasi paling efektif adalah jarak sama dengan enam groyne Panjang; (2) Efektifitas dicapai dengan konfigurasi non-seragam jarak antar krib Pengaruh kekasaran dapat	(1) Meneliti pengaruh tegangan geser; (2) Kinerja gerusan pada saluran; (3) Variasi Jarak krib (1) Aliran turbulen: (2) Tegangan geser; (3)	(1) Variasi diameter dan kerapatan krib; (2) Pengaruh perubahan dasar saluran; (3) Tidak menampilkan formula

	Roughness effect on turbulent flow structure beneath a simulated ice	dalam 0,6 m; (2) Flum terbuat lapisan kayu lapis kepadatan tinggi (HDO)	tekanan di bagian ujung bawah media penghalang.	Media penghalang aliran di dasar saluran	bangunan; (3) Tidak mengamati pengendapan; (4) Tidak
	<i>jam.</i> Journal of Hydraulic Research, Taylor & Francis.	pada kemiringan dasar 0,0025; (3) Menggunakan media penghalang kasar dan halus.			variasi media struktur
13.	Xingnian Liu, 2018. Experimental study on flow structure in riffle-	(1) Menggunakan panjang tangki uji 18 m dan gradien palung lebar dengan lebar 0,8 m dan titik tersempit hanya 0,38 m: (2) Kemiringan	(1) Permukaan air kurang dipengaruhi oleh geometri saluran sungai; (2) Hukum logaritma tidak hanya berlaku untuk area dekat tembok aliran seragam saluran terbuka; (3) Fluktuasi Reynolds dari permukaan dinding dekat besar, dan tebing memiliki efek geser	turbulen; (2) Pengaruh tegangan geser turbulen;	(1) Materil dasar saluran pasir; (2) Tidak menggunakan struktur sebagai penghalang aliran; (3) Menggunakan media dasar saluran tanah
14	Pagliara, 2017. Experimental Study on Cross-Vane Scour Morphology in Curved	(1) Uji Ekperimental Menggunakan air bersih; (2) Menggunakan saluran melengkung tiga tikungan R= 1,2 dan 4 m); (3) Saluran lurus transisi sepanjang 2 m antara tikungan yang lainnya.	(1) Tikungan saluran pada nilai dan posisi kedalaman pengikisan maksimum; (2) Meningkatnya radius tikungan mempengaruhi penurunan nilai kedalaman pengikisan maksimum		(1) Tindak menggunakan perlakuan krib pencehan gerusan; (2) Tidak menampilkan formula; (3) Jenis material dasar saluran
15	Wolfgang Rodi, dkk. 2017. <i>Turbulence</i> <i>Modeling and Simulation</i>	Metode yang digunakan dengan : (1) Hubungan eksperimental; (2) metode statistic memecahkan	terjadi ketika aliran turbulen	aliran aliran turbulen;	(1) Pengaruh aliran turbulen terhadap gerusan; (2) Tidak menampilkan formula;


	: II I 1:		1		(2) I
	in Hydraulics: A	persamaan Raynolds average	berperan dominan terhadap		(3) Jenis material dasar
	Historical Review. ASCE	Navier-Stokes (RANS)	turbulensi		saluran
16	F. Douglas Shields J,	Mengunakan vegetasi di	1	\	(1) Tidak mengamati
	Kevin G. Coulton, Heidi	dataran banjir dengan model	ketahanan aliran dan	vegetasi sebagai krib;	gerusan; (2) Tidak
	Nepf. 2017.	dinamik simulasi dua	Protiper berskala lebih besar	(2) Meneliti ketahanan	dilakukan variasi
	Representation of	dimensi.	seperti vegetasi peredam	vegetasi terhadap	perlakuan vegetasi; (3)
	Vegetation in Two-		energy aliran	energy aliran	Jenis material dasar
	Dimensional				saluran
	Hydrodynamic Models.				
	ASCE				
17	Akbar Safarzadeh, dkk.	(1) Metode digunakan	Pada bentuk krib lurus tidak	(1) Meneliti karakter	(1) Variasi jarak krib;
	2016. Experimental	bentuk krib lurus dan krib	memberikan efek pusaran	aliran turbulen; (2)	(2) Formasi bentuk dasar
	Investigation on 3D	berbentuk T dua buah pada	aliran yang lebih kecil	Pengaruh aliran	akibat krib: (3) Tidak
	Turbulent Flow around	saluran lurus; (2)	disbanding dengan krib	turbulen terhadap	menampilkan formula;
	Straight and T-Shaped	Menggunakan flum tiga	berbentuk T, sehingga dapat	gerusan local	(4) Jenis material dasar
	Groynes in a Flat Bed	dimensi untuk mengamati	mencegah terjadinya gerusan		saluran
	Channel. Zarrati, ASCE	turbulensi aliran.	lokal.		
18	Alexander N.	Menggunakan dua jenis	(1) Pengaruh signifikan	(1) Menggunakan krib	(1) Tidak ada variasi
	Sukhodolov, Tatiana A.	vegetasi Penelitian - Woody	mengubah tanaman air dan	vegetasi sebagai model	bentuk krib: (2) Tidak
	Sukhodolova, Dan Julian	cylinders mewakili vegetasi	hambalan vegetasi sungai	mengurangi tekanan	dijelaskan jenis
	Krick, 2016. Effects of	riparian yang keras Strip	dengan mengubah sistem	aliran; (2) Meneliti	material dasar saluran;
	vegetation on turbulent	silikon digunakan sebagai	sirkulasi besarnya kecepatan	prilaku aliran	(3) Tidak meneliti
	flow structure in groyne	vegetasi akuatik yang	aliran; (2) Krib vegetasi dapat		gerusan; (4) Perubahan
	fields. Taylor dan Francis	fleksibel.	mengurangi tekanan aliran;		marfologi saluran
			(3) Dimamika aliran krib		
			vegetasi dapat dimodelkan,		
			cukup baik.		
19	Cayono Iksan, dkk. 2016.	(1) Penelitian di	(1) Kemiringan dasar saluran	(1) Pengamatan	(1)Tidak mengamati
	Efek Tegangan geser	Laboratorium dengan flume,	yang berdampak pada	dilakukan di	pola perubahan lapisan

	D	1 11 .7 .		T 1 (2)	(2) 77 1
		menggunakan a small tilting,	peningkatan nilai tegangan	Laboratorium; (2)	dasar; (2) Krakteristik
		sediment feed flume; (2)	geser; (2) Sedimen yang	Menggunakan material	aliran; (3) Tidak
	±	Dimensi panjang 10 m, tinggi	terangkut sudah mencapai	sedimen dasar, namun	menggunakan
	Kemiringan Dasar	0.45 m, dan lebar 0.6 m.	maksimal dan berkurang	mengunakan kerikil	bangunan untuk
	saluran. Jornal Teoritis	material dasar digunakan	secara bertahap sampai	(gravel); (3)	mempengaruhi
	dan Terapan Bidang	gradasi kerikil (gravel) Kaca	mendekati nol;	Mengamati pengaruh	perubahan dasar saluran
	Rekayasa Sipil.	flume terbuat dari plexiglass.		tegangan geser.	
20	Daniel S. Hersberger;	(1) Penelitian eksperimental	(1) Konfigurasi kekasaran	(1) Meneliti gerusan	(1) Formasi bentuk
	Mário J. Franca; and	dinding tikungan saluran 90°	tebing menunjukkan hasil	tebing saluran; (2)	gerusan; (2) Aliran
	Anton J. Schleiss. 2015.	pada laboratorium; (2) Tes	yang optimal mengurangi	Pencegahan gerusan	turbulen tidak
	Wall-Roughness Effects	sistematis dilakukan dengan	pengikisan/gerusan; (2)	dan aliran	dilakukan; (3) Variasi
	on Flow and Scouring in	menggunakan distribusi	Punggung dinding tikungan		perlakukan krib tidak
	Curved Channels with	ukuran batuan dan kasar; (3)	berfungsi sebagai		dilakukan; (4) Variasi
	Gravel Beds. ASCE.	Formasi gerusan dan	pendistribusian kekasaran		material dasar; (5)
		distribusi kecepatan aliran di	secara merata; (3)		Tidak ada
		saluran; (4)	Pengurangan lebar melintang		menampilkan Formula
		Menggunakan tebing kasar	sungai meningkatkan		
		dengan batuan dan dasar	kecepatan aliran.		
		aluran kerikil			
21	C. Jamieson,; C. D.	(1) Menggunakan krib	(2) Hasil diperoleh pada	(1) Meniliti gerusan;	(1) Formasi bentuk
	Rennie, ; and R. D.	tenggelam (submerged); (2)	daerah melengkung saluran	(2) Pengaruh kecepatan	dasar gerusan; (2)
	Townsend, 2013. <i>3D</i>	Menggunakan kecepatan	potensi gerusan sangat tinggi;	aliran terhadap gerusan	Aliran turbulen terhadap
	Flow and Sediment	aliran cepat; (3) Saluran	(2) Pengikisan lebih besar jika		gerusan; (3) Variasi
	Dynamics in a Laboratory	melengkung 135°	tanpa ada krib pencegahan		bentuk krib; (4) Variasi
	Channel Bend with and		gerusan; (3) Aliran cepat		jarak krib
	without Stream		terjadi secara alami pada		
	Barbs.ASCE		saluran tikungan		
22	G. Constantinescu,	(1) Eksperimental dan	(1) Kerang memberikan	(1) Meneliti aliran	(1) Pengaruh aliran
	M.ASCE, S. Miyawaki,	numerik state-of-the-art; (2)	medan aliran turbulen sangat	turbulen; (2) Pengujian	turbulen terhadap

	and Q. Liao. 2013. Flow	Menggunakan karang air	kompleks, cukup menantang	di laboratorium; (3)	tegagan geser; (2) Aliran
	and Turbulence Structure	tawar sebagai struktur aliran	menggunakan model	Menggunakan	turbulen terhadap
	past a Cluster of	turbulen; (3) Menggunakan	nomerik; (2) The Large-eddy	hambatan aliran	gerusan; (3) Krib tidak
	Freshwater Mussels)	Large-eddy Simulation	Simulation (LES) aliran		digunakan untuk
	ASCE	(LES) dan <i>particle image</i>	fisika dan peran struktur		pencegahan gerusan
		velocimetry	secara komprehensif untuk		
		,	berskala besar pada sebuah		
			kasus seperti ini.		
22.	E. C. Jamieson,	Spasial rapat, tinggi	(1) Mengkarakterisasi peran	(2) Meneliti fenomena	(1) Tidak menggunakan
	M.ASCE, C. D. Rennie,	kecepatan frekuensi	dinamika medan aliran pada	kecepatan aliran; (2)	bangunan pengatur pola
	M.ASCE and R. D.	dikumpulkan dan dianalisis	pola pengendapandan erosi;	Pola pengendapan; (3)	aliran; (2) Tengangan
	Townsend. 2013.	untuk menggambarkan pola	(2) Pengukuran	Pola aliran turbulen	geser; (3) Variasi krib;
	Turbulence and Vorticity	dan amplitudo kecepatan tiga	eksperimental memberikan		(4) Jenis materil saluran
	in a Laboratory Channel	dimensi (3D). melengkung	pola aliran berkontribusi		
	Bend at Equilibrium	dan mendekati akhir aliran	terhadap gerusan lokal, dan		
	Clear-Water Scour with		(3) kinerja struktur mengatur		
	and without Stream		aliran		
	Barbs. ASCE				
23	Hasdaryatmin Djufri,	Material pembentuk saluran	(1) Krib permeabel hulu	(1) Krib permeable; (2)	(1) Tidak menguji
	Mary Selintung, dan	berupa pasir diameter butiran	belokan berdampak pada	Media dasar saluran	pengaruh tegangan
	Mukhsan Putra Hatta.	rata-rata 0,47 mm, krib	pengurangan gerusan; (2)	pasir; (3) Pengujian di	geser; (2) Di bagian
	2012. The Impact Of	permeabel besi tulangan	Penurunan kecepatan aliran	laboratorium; (4)	hulu krib; (3) Tidak
	Permeable Type	diameter 0,30 cm, alat ukur	di belakang krib; (3) Krib	Pengmatan kecepatan	mengamati endapan
	Upstream Groin	kecepatan, alat ukur	hulu tipe permeabel	aliran	sedimen; (4) Tidak
	On Scour Of River Bend.	kedalaman aliran.	denganjarak antar tiang yang		dilakukan variasi
	Jurusan Sipil		kecil lebih efektif; (4) Krib		kerapatan krib
	Universitas Hasanuddin		hulu tipe permeabel lebih		
	Makassar		efektif pada sudut belokan		
			yang besar		

24	4	Amrullah M, Mary	(1) Material sebagai	(1) Krib permeable	(1) Krib Permeabel; (2)	(1) Pengujian dengan
		Selintung, Muh. Saleh	sedimen; tanah-pasir	menyebabkan perubahan	Pengujian di	krib permeable kayu
		Pallu dan Mukhsan Putra	diameter $d_{30} = 0.236$ mm, d_{50}	dinamika sifat aliran; (2)	laboratorium; (3)	bulat; (2) Variasi
		Hatta, (2022), Studi	= 0.265 mm; (2) Krib	Penurunan kecepatan aliran	Pengamatan kecepatan	digunakan, kerapatan
		Model Perubahan	permeable kayu bulat (d _{k1} = 9	akibat krib kayu bulat	aliran; (4) Karakteristik	$krib(a_k)$, jarak $krib(L_k)$,
		Morfologi Dasar Saluran	mm dan $d_{k2}=17$ mm); (3)	permeable; (3) Krib	aliran; (5) Perubahan	diameter krib (d _k),
		Tanah Akibat bangunan	Kerapatan krib (a _{k1} = 9 mm	permeable kayu bulat	tegangan geser	kemiringan dasar
		Krib	dan a_{k1} = 12 mm), (4) Panjang	menyebabkan resistensi alira		saluran, Debit aliran;
			krib p=25 cm; (5) Jarak krib	turbulen meningkat; (4)		(3) Perubahan
			$(L_{k1}=60 \text{ cm dan } L_{k1}=90 \text{ cm});$	Perubahan tegangan geser		morfologi dasar saluran
			(5) Variasi kemiringan dasar	dan tegangan geser kritik		di sekitar krib; (4)
			saluran $(S_1=0.5\%, S_2=1.7\%,$	akibat resistensi aliran		Perubahan tegangan
			S ₃ =2.4%); (6) Variasi debit	turbulen; (5) Peningkatan		geser (To) akibat krib;
			$(Q_1=1.03 \text{ cm}^3/\text{dt}, Q_2=1.21)$	gerusan disekitar krib		(5) Perubahan gaya
			cm^3/dt , $Q_3=1.31 cm^3/dt$,); (7)	permeable akibat resistensi		seret/hambat (Df)
			Pengkuran kecepatan aliran	aliran turbulen; (6) Terjadi		
			(U) dan pola gerusan serta	pengendapan sedimen di		
			volume gerusan	antara krib akibat gerusan di		
				sekitar krib akibat resistensi		
				aliran turbulen		

2.7 Kerangka Pikir Penelitian

Gambar 16. Kerangka Pikir Penelitian