REFERENCES

- Abdul, F. (2014). Studi Pengaruh Rasio Feed Material pada Proses Smelting Mineral Tembaga Karbonat menggunakan Mini Blast Furnace (MBF). Surabaya: Tesis Magister, Institut Teknologi Sepuluh November.
- Dong, B., Tian, Q., Xu, Z., Guo, X., Wang, Q., & Li, D. (2023). The effect of preroasting on atmospheric sulfuric acid leaching of saprolitic laterites. *Hydrometallurgy*, 1-8.
- Fan, R., & Gerson, A. R. (2013). Mineralogical Characteridation of Indonesia Laterites Prior to and post Atmospheric Leaching. *Hidrometallurgy Journal*, 102-135.
- Hasria, Harimu, L., & Fatmawati, C. (2015). Ekstraksi Logam Kromium (Cr) dan Tembaga (Cu) pada Batuan Ultrabasa dari Desa Puncak Monapa Kecamatan Lasusua Kolaka Utara menggunakan Ligan Polieuganol. *Jurnal Aplikasi Fisika*, 11(1), 31-39.
- Kang, C.-U., Ji, S.-E., Pabst, T., Choi, K.-W., Khan, M. A., Kumar, R., ... Kim, D.-H. (2021). Copper Extraction from Oxide Ore of Almalyk Mine by H2SO4 in Simulated Heap Leaching: Effect of Particle Size and Acid Concentration. *Multidiciplinary Digital Publishing Institute Journal*, 11(1020), 1-14.
- Kulkarni, S. (2015). A Review on Studies and Research on Various Aspects of Leaching. *International Journal of Research & Review, Vol.2*, 579-583.
- Kusdarini, E., Saleky, D. B., & Sari, A. S. (2023). Recovery Tembaga Menggunakan Asam Sulfat. *Jurnal GEOSAPTA*, 09(01), 33-39.
- Li, J., Bai, Y., & Zhang, Y. (2019). The Leaching Kinetics of Magnesite in Sulfuric Acid Solution. *Journal of Thermal Analysis and Calorimetry*, 9(01), 973-980.
- Lusty, P. A., & Hannis, S. D. (2009). *Commodity Profile: Copper*. Nottingham: British Geological Survey.
- Murta, I. R., & Pintowantoro, S. (2012). Studi Proses Ekstraksi Tembaga Menggunakan Gelombang Mikro Dengan Variasi Waktu Radiasi dan Jenis Reduktor. Jurnal Teknik ITS, 1, 87-91.
- Natanael, D. (2012). Analisis Kualitatif Pemanggangan Bijih Tembaga Kalkopirit Dengan Beberapa Variasi Waktu Serta Leaching Dengan Asam Sulfat 2 Molar. Depok: Skripsi Sarjana, Universitas Indonesia.
- Oktaviani, N. (2017). Studi Ekstraksi Mangan dari Bijih Oksida dengan Proses Pelindian Menggunakan Asam Sulfat. . Makassar: Skripsi Sarjana niversitas Hasanuddin.

P., Pramusanto, & Sriyanti. (2018). Analisis Pengaruh Ukuran Partikel rhadap Perolehan Logam Emas dalam Konsentrat Tembaga di PT Amman lineral Nusa Tenggara Batu Hijau Kabupaten Sumbawa Barat Provinsi usa Tenggara Barat. *Prosiding Teknik Pertambangan. 4 No. 1*, pp. 319-

328. Bandung: Universitas Islam Bandung.

- Putra, H., Fadhilah, & Nasra, E. (2014). Pengolahan Tembaga (Cu) dalam Sampel Batuan menggunakan Metode Ekstraksi Pelarut Kelat Ditizon dengan Variasi Waktu dan PH Optimum. Padang: Universitas Negeri Padang.
- Setyawan, G., & Mubarok, M. Z. (2015). Pelindian Tembaga dari Bijih Kalkopirit Dalam Larutan Asam Sulfat dan Ozon sebagai Oksidator. Jurnal Teknologi Mineral dan Batubara, 11(2), 118-128.
- Shabani, M., Irannajad, M., & Azadmehr, A. R. (2012). Investigation on Leaching of Malachite by Citric Acid. *International Journal of Minerals, Metallurgy, and Materials, 19*, 782-786.
- Subagja, R., Prasetyo, A. B., & Sari, W. M. (2016). Peningkatan Kadar Nikel dalam Nikel Laterit Jenis Limonit dengan Cara Peletasi, Pemanggangan Reduksi, dan Pemisahan Magnet Campuran Bijih, Batubara, dan Na2SO4. Jurnal Material Metalurgi, 5(2), 103-115.
- Sukamto, U., Probowati, D., & Sudiyanto, A. (2015). Proses Pengolahan dan Pemurnian Bijih Tembaga dengan Cara Konvensional dan Biomining. *Prosiding Seminar Nasional Teknik Kimia Kejuangan* (pp. G2-1 - G2-10). Yogyakarta: Pengembangan Teknologi Kimia untuk Pengolahan Sumber Daya Alam Indonesia.
- Tanaydin, M. K., Demirkiran, N., & Ekmekyapar, A. (2020). Kinetic Model of Copper Leaching From a Malachite Ore by Acetic Acid Solutions. *Journal* of Chemical Technology Metallurgy, 55, 852-859.

APPENDICES

Optimized using trial version www.balesio.com 44

APPENDICE 1 MICROSCOPIC ANALYSIS RESULT

Mineralogy					
Mineral	Symbol	Mineral optical description			
Coatit	(Cth)	Triclin crystal system, pale red in shape (anhedral-subhedral), the			
Guent	(Gui)	visible mineral size is 50 µm-100 µm.			
Maghamita	(Mgh)	Trigonal crystal system, white in shape (anhedral-subhedral), the			
Wiagneninte		visible mineral size is 10 µm-100 µm			
Descrident als shifts (Decla)		Monoclin crystal system, yellow-green with a shape (anhedral-			
I seudomatacinte	(Finic)	subhedral), a visible mineral measurement of 10 μ m-50 μ m.			
Quartz	(Qz)	has a crystal shape with imperfections up to anhedral-subhedral.			

Photo

APPENDICE 2 SULFURIC ACID (H₂SO₄) DILUTION CALCULATION

M1 = 6

*1 M Solution

 $M_{1}V_{1} = M_{2}V_{2}$ 6 x V₁ = 1 x 150 mL $V_{1} = \frac{1 x 150 mL}{6}$ = 25 mL

*2 M Solution

$$M_{1}V_{1} = M_{2}V_{2}$$

6 x V₁ = 2 x 150 mL
$$V_{1} = \frac{2 x 150 mL}{6}$$

= 50 mL

*3 M Solution

$$M_{1}V_{1} = M_{2}V_{2}$$

6 x V₁ = 3 x 150 mL
$$V_{1} = \frac{3 x 150 mL}{6}$$

= 75 mL

*4 M Solution

$$M_{1}V_{1} = M_{2}V_{2}$$

6 x V₁ = 4 x 150 mL
$$V_{1} = \frac{4 x 150 mL}{6}$$

= 100 mL

APPENDICE 3

ATOMIC ABSORPTION SPECTROMETER (AAS) ANALYSIS RESULTS

/

LABORATORIUM PENELITIAN DAN PENGEMBANGAN SAINS FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM UNIVERSITAS HASANUDDIN

JI. Perintis Kemerdekaan Km. 10 Tamalanrea, Makassar 90245 Telp. 0411-586016 • Fax. 0411-588551 • Email : <u>lpps.fmipa.unhas@gmail.com</u>

LAPORAN HASIL PENGUJIAN

CERTIFICATE OF ANALYSIS

Nomor Pekerjaan

: LPPS.AJ-2310-13/8

Job Number

Dipersembahkan Kepada

Presented To

Kepada Yth	: Zalsa Vionatha	Jabatan	: Peneliti
Attention		Job Title	
Nama Pelanggan	: Zalsa Vionatha	Tujuan Pengujian	: Analisis Logam
Customer Name		Purpose of analysis	
Alamat/Universitas	: Perumahan Griya Rezki abadi Blok A01,	No. Faks/ Fax No.	1-
Address/University	Mawang, Gowa		
Tanggal Sampel Diterima	: 16 Oktober 2023	No. Telp./ Phone No.	: 0882022471463
Date of Sample Receipt			
Email	:-	Tanggal Sampel	: 10 - 20 Oktober
		Dianalisis	2023
Email		Date of Sample Analysed	
Nama Pengujian	: Analisis Tembaga (Cu) pada Larutan dan	Total Halaman	: 2
Name of analysis	Padatan Menggunakan AAS	Total of pages	

Hasil hanya berhubungan dengan contoh yang diuji dan laporan ini tidak boleh digandakan kecuali seluruhnya. The result relate only to the samples tested and this report shall not be reproduced except in full

No. Dok: FSOP-7.8-LPPS-FMIPAUH-01.1

No.Revisi/Terbit:1/1

Halaman 1 dari 2

LABORATORIUM PENELITIAN DAN PENGEMBANGAN SAINS FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM UNIVERSITAS HASANUDDIN Jl. Perintis Kemerdekaan Km. 10 Tamalanrea, Makassar 90245

Telp. 0411-586016 • Fax. 0411-588551 • Email : lpps.fmipa.unhas@gmail.com

LAPORAN HASIL PENGUJIAN CERTIFICATE OF ANALYSIS

Nomor Pekerjaan

: LPPS.AJ-2310-13/8

- Pelanggan / Principal I. 1.1 Nama / Name
 - 1.2 Alamat / Address
 - 1.3 Telepon / Phone 1.4 Personil Penghubung / Contact Person
 - 1.5 Email / Email
- Contoh Uji / Sample II.
 - 2.1 Kode Sampel / Sampel Code
 - 2.2 Kemasan / Packaging
 - 2.3 Nama Sampel / Sample Name
 - 2.4 Jumlah Sampel / Number of Sample
 - 2.5 Tanggal Sampling / Date of Sampling
 - 2.6 Diterima / Date of Received
 - 2.7 Tanggal Uji / Date of Analysis
 - 2.8 Jenis Uji / Type of Analysis

III. Hasil Uji / Result

- : Zalsa Vionatha : Perumahan Griya Rezki abadi Blok A01, Mawang, Gowa
- : 0882022471463
- -
- :-
- : LPPS.A-2310-13/8a-8h : Botol Plastik dan Plastik Sampel : Larutan (7) dan Padatan (1)
- :8
- $2 \sim$
- : 16 Oktober 2023
- : 17 23 Oktober 2023
- : Logam Cu AAS

Kode Sampel	Nama Sampel	Satuan	Konsentrasi Logam Cu
LPPS.A-2310-13/8a	ZV 01	mg/L	512.25
LPPS.A-2310-13/8b	ZV 02	mg/L	507.70
LPPS.A-2310-13/8c	ZV 03	mg/L	522.76
LPPS.A-2310-13/8d	ZV 04	mg/L	516.46
LPPS.A-2310-13/8e	ZV 05	mg/L	481.79
LPPS.A-2310-13/8f	ZV 06	mg/L	506.30
LPPS.A-2310-13/8g	ZV 07	mg/L	563.03
LPPS.A-2310-13/8h	ZV 08	mg/kg	3223.13

Catatan:

- Hasil Uji hanya berlaku untuk contoh tersebut di atas
- Dilarang mengutip/menyalin sebagian isi hasil uji ini

No. Dok: FSOP-7.8-LPPS-FMIPAUH-01.1

No.Revisi/Terbit:1/1

Halaman 2 dari 2

	FSOP-	FORMULIR NO: 7.8-LPPS-FMIPAUH-01.4	Tanggal Berlaku : 1 April 2019		
			Edisi/Revisi Ke : 1/0		
LAB. PPS FMIPA UNHAS	REKA	AMAN HASIL ANALISIS	Halaman	: 1/3	
		REKAMAN HASIL ANALIS	IS		
Nomor Pekerjaan		: LPPS.A-2310-13/8a-h			
Tanggal Penerimaan		: 16 Oktober 2023			
Tanggal Analisis		: 17 – 23 Oktober 2023			

: 26,1 °C : 56% RH

Suhu Ruangan
Kelembapan Ruangan

1. Analisis Logam Tembaga (Cu) Optimasi Analisa Tembaga (Cu) Slit width : 1.8 L/min Type Alat: AA 7000 Shimadzu : 0.7 nm Fuel Gas Flow Rate (0.8-4.0) : ASC-7000 Flame type : Air-C₂H₂ Support gas flow rate (13.5-17.50) : 15 L/min HCL Cu Hamamatsu : 324,62 nm Burner Height : 7,0 nm P. Gelombang Max : 324,8 nm P. gelombang Burner angle : 0 degree Lamp Current Low (Peak) (mA) : 8 Lamp Mode : BGC-D2

Kontrol sampel	Absorban	[Cu] mg/I	
%R	75%-120%	78.87	Memenuhi
MDL (mg/L)		0.0076	

		[00]8/0
Cu 0.4 mg/l	0.0531	0.32
Cu 0,4 mg/ L	0.0528	0.31
Rata-rata	0.0530	0.32

Kadar Air	B. Cawan	Berat Sebelum	B. Sampel	Berat setelah	B. Sampel	Kadar
Kode	Kosong	Pemanasan	(B. Basah)	Pemanasan	(B. Kering)	Air
Sampel	(G)	(G)	(G)	(G)	(G)	(%)
LPPS.A-2310-13/8h	30.0142	30.5150	0.5008	30.3676	0.3534	29.43
Berat sampel peleburan	B. Cawan	B. Cawan+sampel	B. Sampel		B.cawan+sam	Berat sampel
				B.cawan+sampel	pel +pelebur	
Kode	Kosong	sblm di+pelebur	(B. kering)	+pelebur sblm dilebur	setelah	setelah dilebur
					dilebur	
Sampel	(G)	(G)	(G)	(G)	(G)	(G)
LPPS.A-2310-13/8h	30.0142	30.3676	0.3534	31.8726	30.7684	0.7542

No. Dok: FSOP-7.8-LPPS-FMIPAUH-01.1

No.Revisi/Terbit: 0/1

Halaman 1 dari 3

		FO	RMULII	R NO:		Tanggal R	erlaku • 1 A	nril 2019	-
	F	SOP-7.8-1	LPPS-FN	IIPAUH	I-01.4	i aliggai D	ci laku . I A	pm 2019	
						Edisi/Revi	si Ke :1/0		
AB. PPS FMIPA	1	REKAMA	N HASI	L ANAI	ISIS	Halaman	- 2/2		
UNHAS						пататтап	: 2/3		
			[Cu]	fa	[Cul y fr	D. Compol	V. Samnal K	anaantrasi Cu	
Kode Samnel		Absorban	[Cu]	ib	[Cu] x ip	в. samper	v. samperk	(mg/kg=	
Noue sumper		Absorball	(mg/L)	(kali)	(mg/L)	(G)	(mL)	ppm)	
LDDS A-2310-13/8h	_	0.0539	0.32						
LIT 3.A 2310 13/01		0.0541	0.32	100	32.28	0.5008	50	3223.13	
Rata-Rata	=	0.0540	0.3228						
		Absorban	[Cu]	fp	[Cu]	Kesimpulan	_		
Kode Sampel			(mg/L)	(kali)	(mg/L)	Hasil			
		0.0812	0.51	(Kall)	(1116/12)		_		
LPPS.A-2310-13/8a		0.0809	0.51	1000	512.25				
Rata-Rata	=	0.0811	0.512						
LDDS A-2310-13/8h		0.0801	0.51				_		
LFF3.A-2310-13/80		0.0807	0.51	1000	507.70				
Rata-Rata	=	0.0804	0.508				_		
LPPS.A-2310-13/8c		0.0824	0.52						
		0.0827	0.52	1000	522.76				
Rata-Rata	=	0.0826	0.523				_		
LPPS.A-2310-13/8d		0.0816	0.52						
		0.0817	0.52	1000	516.46				
Rata-Rata	=	0.0817	0.516				_		
LPPS.A-2310-13/8e		0.0755	0.49	1000	/181 70				
Pata-Pata	-	0.0755	0.47	1000	401./3				
	-	0.0799	0.50				_		
LPPS.A-2310-13/8f		0.0805	0.50	1000	506.30				
Rata-Rata	=	0.0802	0.506						
		0.0874	0.56				_		
LPPS.A-2310-13/8g		0.0892	0.57	1000	563.03				
Rata-Rata	=	0.0883	0.563				_		

Perhitungan		
	konsentrasi (mg/L) x Volume (mL)	
mg/kg (ppm) -	berat sampel (g)	
% Kadar Aira	(berat cawan kosong + sampel setelah pemanasan - berat cawan kosong + sampel sebelum pemanasan) g	× 100%
% Kadar Air -	berat sampel (g)	X 100%

Perhitungan

ernitungun		
mg/L =	Volume Akhir (mL)	- v koncontraci (mg/l) v fa
mg/L =	Volume Awal (mL)	- x konsentrasi (mg/L) x tp

No. Dok: FSOP-7.8-LPPS-FMIPAUH-01.1

No.Revisi/Terbit: 0/1

Halaman 2 dari 3

LAB. PPS FMIPA UNHAS	FORMULIR NO: FSOP-7.8-LPPS-FMIPAUH-01.4	Tanggal Berlaku : 1 April 2019
		Edisi/Revisi Ke : 1/0
	REKAMAN HASIL ANALISIS	Halaman : 3/3

Makassar, 25 Oktober 2023

Wakil Penanggung Jawab Teknis

Mahdalia, S.Si, M.Si NIP. 197508261996012001

Analis

Fibiyanthy, S.Si NIP. 19810202 200604 2 001

Halaman 3 dari 3

No. Dok: FSOP-7.8-LPPS-FMIPAUH-01.1

No.Revisi/Terbit: 0/1

APPENDICE 4 EXTRACTION RATE CALCULATION

The copper extraction rate was calculated using the leaching efficiency formula in Dong et al. (2023) in equation 4 below:

$$\eta = \frac{C_i \, x \, V}{m \, x \, W_i} \, x \, 100$$

Where:

$$\begin{split} \eta &= & \text{Extraction rate (\%)} \\ \text{C}_i &= & \text{Metal consentration (mg/L) in pregnant leach solution (PLS)} \\ \text{V} &= & \text{PLS volume (L)} \\ \text{m} &= & \text{Mass (Kg)} \\ \text{W}_i &= & \text{Metal content (mg/Kg)} \end{split}$$

PLS volume (V) = 0,05 LMass sampel (m) = 0,015 KgCu Contentration (Wi)= 3223,13 mg/Kg

1. Extraction rate at 60 mins extraction time and 1 M acid concentration (C_i = 512,25 mg/L)

Extraction rate (%)
$$= \frac{C_i \times V}{m \times W_i} \ge 100\%$$
$$= \frac{512,25 \times 0,05}{0,015 \times 3223,13} \ge 100\%$$
$$= 52,98\%$$

2. Extraction rate at 30 mins extraction time and 2 M acid concentration (C_i = 507,7 mg/L)

Extraction rate (%)
$$= \frac{C_i \times V}{m \times W_i} \ge 100\%$$
$$= \frac{507,70 \times 0,05}{0,015 \times 3223,13} \ge 100\%$$
$$= 52,51\%$$

3. Extraction rate at 60 mins extraction time and 2 M acid concentration (C_i = 522,76 mg/L)

raction rate (%)
$$= \frac{C_i \times V}{m \times W_i} \ge 100\%$$
$$= \frac{522,76 \times 0.05}{0.015 \times 3223,13} \ge 100\%$$

4. Extraction rate at 90 mins extraction time and 2 M acid concentration ($C_i = 516,46 \text{ mg/L}$)

Extraction rate (%)
$$= \frac{C_i \times V}{m \times W_i} \ge 100\%$$
$$= \frac{516,46 \times 0,05}{0,015 \times 3223,13} \ge 100\%$$
$$= 53,41\%$$

5. Extraction rate at 120 mins extraction time and 2 M acid concentration (C_i = 481,79 mg/L)

Extraction rate (%)
$$= \frac{C_i \times V}{m \times W_i} \ge 100\%$$
$$= \frac{481,79 \times 0,05}{0,015 \times 3223,13} \ge 100\%$$
$$= 49,83\%$$

6. Extraction rate at 60 mins extraction time and 3 M acid concentration ($C_i = 506,30 \text{ mg/L}$)

Extraction rate (%)
$$= \frac{C_i \times V}{m \times W_i} \ge 100\%$$
$$= \frac{506,30 \times 0.05}{0.015 \times 3223,13} \ge 100\%$$
$$= 52,36\%$$

7. Extraction rate at 60 mins extraction time and 4 M acid concentration ($C_i = 563,03 \text{ mg/L}$)

Extraction rate (%)
$$= \frac{C_i \times V}{m \times W_i} \ge 100\%$$
$$= \frac{563,03 \times 0,05}{0,015 \times 3223,13} \ge 100\%$$
$$= 58,23\%$$

APPENDICE 5

X-RAY DIFFRACTION (XRD) ANALYSIS RESULTS

OXIDE ORE FROM TONRA X-RAY DIFFRACTION (XRD) ANAYSIS

RESULTS

Match! Phase Analysis Report

Sample: ZV-01

Sample Data File name File path Data collected Data range Original data range Number of points Step size Rietveld refinement converged Alpha2 subtracted Background subtr. Data smoothed Radiation Wavelength

ZV-01.txt C:/Users/ACER/Documents/MATCH3/ZV-01 Nov 2, 2023 12:21:59 5.000° - 70.000° 3251 0.020 No No No Yes X-rays 1.541874 Å

Analysis Results

Phase composition (Weight %)

Elemental composition (Weight %)

Index Amount (%) Name Formula sum O2 Si Cu5 H4 O12 P2 Δ 30.6 Quartz Pseudomalachite B 32 Fe21 H O33 С 33.4 Maghemite 7.5 Langite Kaolinite Cu4 H10 O12 S 25.3 Al2 H4 O9 Si2 Е 11.9 Unidentified peak area

Amounts calculated by RIR (Reference Intensity Ratio) method

O2 Si 96-900-5019

140

0.798095*

Details of identified phases

A: Quartz (30.6 %)* Formula sum Entry number Figure-of-Merit (FoM) Total number of peaks Peaks in range

Optimized using trial version www.balesio.com 36 23 0.65^{*} P 32 2 1 S trigonal (hexagonal axes) a= 4.9209 Å c= 5.4091 Å 2.93 2.639 g/cm³ Kihara K., "An X-ray study of the temperature dependence of the quartz structureSample: at T = 398 K", European Journal of Mineralogy **2**, 63-77 (1990)

Element Amount (weight %)

0

Fe

Cu

AI

P

*LE (sum)

44.8%(*) 23.0%

5.7%

5.3%

<mark>0.3%</mark> 45.4%

B: Pseudomalachite (3.2 %)	
Formula sum	Cu5 H4 O12 P2
Entry number	96-900-0590
Figure-of-Merit (FoM)	0.00000
Total number of peaks	1000
Peaks in range	355
Peaks matched	56
Intensity scale factor	0.04
Space group	P 1 21/c 1
Crystal system	monoclinic
Unit cell	a= 4.4728 Å b= 5.7469 Å c= 17.0320 Å β= 91.043 °
l/lc	1.92
Calc. density	4.368 g/cm ³
Reference	Shoemaker G. L., Anderson J. B., Kostiner E., "Refinement of the crystal structure of pseudomalachite",
	American Mineralogist 62 , 1042-1048 (1977)
C: Maghemite (33.4 %)	
Formula sum	Fe21 H O33
Entry number	96-901-7846
Figure-of-Merit (FoM)	0.00000
Total number of peaks	196
Peaks in range	64
Peaks matched	11
Intensity scale factor	1.00
Space group	P -4 3 m
Crystal system	cubic
Unit cell	a= 8.3500 Å
l/lc	4.16
Calc. density	4.854 g/cm ³
Reference	Sinha K. P., Sinha A. P. B., "Ein Fehlstellenuberstruktur - Modell fur gamma-Fe2O3", Zeitschrift fur
	Anorganische und Allgemeine Chemie 293 , 228-232 (1957)
D: Langite (7.5 %)	
Formula sum	Cu4 H10 O12 S
Entry number	96-901-3896
Figure-of-Merit (FoM)	0.00000
Total number of peaks	590
Peaks in range	251
Peaks matched	45
Intensity scale factor	0.28
Space group	Plcl
Crystal system	monoclinic
Unit cell	a= 7.1370 A b= 6.0310 A c= 11.2170 A γ= 90.000 °
l/lc	5.11
Calc. density	3.359 g/cm ³
Reference	Gentsch M., Weber K., "Structure of langite, Cu4[(OH)6 SO4]*2H2O", Acta Crystallographica, Section C 40,
	1309-1311 (1984)
_	
E: Kaolinite (25.3 %)	
Formula sum	AI2 H4 O9 Si2
Entry number	96-155-0599
Figure-of-Merit (FoM)	0.588432 [*]
Total number of peaks	508
Peaks in range	268
Peaks matched	61
Intensity scale factor	0.14*
Space group	P 1
Crystal system	triclinic (anorthic)
Unit cell	a= 5,1737 Å b= 8,9850 Å c= 7.3522 Å α= 91.684° β= 105 128 ° v= 89 755 °
I/Ic	074
Calc. density	2.599 g/cm ³
Reference	Richard D., Rendtorff N. M., "First principles study of structural properties and electric field gradients in
	Lastinital Applied Olar Osigna (000 07 20 (000))

(*) 2theta values have been shifted internally for the calculation of the amounts, the intensity scaling factors as well as the figure-of-merit (FoM), due to the active search-match option 'Automatic zero point adaption'.

Candidates

Name	Formula	Entry No.	FoM
	Be F2	96-153-1932	0.6302
Si O2	O2 Si	96-153-8065	0.6290
Tantalcarbide	C Ta	96-900-8732	0.3440
Aluminium silicate hydroxide * (Kaolinite 2M)	Al2 H4 O9 Si2	96-101-1046	0.0000
Trimagnesium dihydroxide phyllo-tetrasilicate (Talc 2M)	H2 Mg3 O12 Si4	96-101-1153	0.0000
(Fe2 O3)10.6667 (Maghemite)	Fe21.3334 O32.0001	96-152-8612	0.0000
	Al2 H4 O9 Si2	96-155-0599	0.0000
TTT PDF	Al2 H4 O9 Si2	96-156-6358	0.0000
	Al2 H4 O9 Si2	96-156-6359	0.0000
	Al2 H4 O9 Si2	96-156-6360	0.0000

		01	
Zinc Aluminum Hydroxide Nitrate Hydrate (Hydrotalcite polytype 3R1)	Al0.84 N1.69 O35.24 Zn2.16	96-300-0049	0.0000
Pseudomalachite	Cu5 H4 O12 P2	96-900-0590	0.0000
Titanomaghemite	Fe2.18 O4 Ti0.42	96-900-1115	0.0000
Maghemite	Fe2 O3	96-900-6317	0.0000
Maghemite	Fe2 O3	96-900-6318	0.0000
Maghemite	Fe3 O4	96-900-6319	0.0000
Talc	H2 Mg3 O12 Si4	96-900-8041	0.0000
Talc	H2 Mg3 O12 Si4	96-900-8298	0.0000
Kaolinite	AI2 H4 O9 Si2	96-900-9231	0.0000
Kaolinite	Al2 H4 O9 Si2	96-900-9235	0.0000
Langite	Cu4 H10 O12 S	96-900-9716	0.0000
Maghemite	Fe2 O3	96-901-2693	0.0000
Langite	Cu4 H10 O12 S	96-901-3896	0.0000
Talc 2M	Mg3 O12 Si4	96-901-4436	0.0000
Kaolinite	AI2 O9 Si2	96-901-5000	0.0000
Talc	H2 Mg3 O12 Si4	96-901-7404	0.0000
Maghemite	Fe2.668 O4	96-901-7490	0.0000
Maghemite	Fe2.645 O3.99	96-901-7494	0.0000
Maghemite	Fe2.645 O3.99	96-901-7520	0.0000
Maghemite	Fe1.966 O2.962	96-901-7521	0.0000
Kaolinite	Al1.992 Ca0.012 Fe0.016 H4 Mg0.008 O9 Si1.956 Ti0.018	96-901-7767	0.0000
Kaolinite	Al1.992 Ca0.012 Fe0.016 H4 Mg0.008 O9 Si1.956 Ti0.018	96-901-7768	0.0000
Maghemite	Fe21 H O33	96-901-7846	0.0000

Search-Match

Settings

0	
Reference database used	COD-Inorg 2023.06.06
Automatic zeropoint adaptation	Yes
Downgrade entries with low scaling factors	sYes
Minimum figure-of-merit (FoM)	0.60
2theta window for peak corr.	0.30 deg.
Minimum rel. int. for peak corr.	0
Parameter/influence 2theta	0.50
Parameter/influence intensities	0.50
Parameter multiple/single phase(s)	0.50

Criteria for entries added by user

Reference:

Entry number:

96-101-1153; 96-300-0049; 96-900-8041; 96-900-8298; 96-900-8732; 96-901-4436; 96-901-7404; 96-101-1046; 96-155-0599; 96-156-6358; 96-156-6359; 96-156-6360; 96-900-9231; 96-900-9235; 96-901-5000; 96-901-7767; 96-901-7768; 96-900-9716; 96-901-3896; 96-900-0590; 96-152-8612; 96-900-1115; 96-900-6317; 96-900-6318; 96-900-6319; 96-901-2693; 96-901-7490; 96-901-7494; 96-901-7520; 96-901-7521; 96-901-7846

<u>(1</u>

Peak List

No.	2theta [°]	d [A]	l/l0 (peak height)	Counts (peak area)	FWHM	Matched
1	12.32	7.1845	335.52	173.84	0.8757	D,E
2	18.94	4.6857	94.04	38.35	0.6894	В
3	20.10	4.4178	116.42	46.42	0.6739	B,D,E
4	20.96	4.2384	330.05	75.86	0.3885	A,B,D,E
5	25.22	3.5313	409.11	115.67	0.4779	B,D,E
6	26.62	3.3487	1000.00	183.75	0.3106	A,E
7	26.68	3.3413	0.53	0.10	0.3200	Á
8	31.56	2.8349	41.23	9.13	0.3744	B,E
9	33.34	2.6875	40.62	25.08	1.0437	B,D
10	33.68	2.6612	19.08	3.64	0.3221	C,D
11	35.02	2.5623	110.47	29.01	0.4438	B,D,E
12	36.60	2.4553	237.61	58.35	0.4151	A,B,E
13	39.50	2.2814	113.96	29.87	0.4431	A,E
14	40.32	2.2369	64.49	20.19	0.5292	A,B,C,D,E
15	42.52	2.1261	103.00	14.37	0.2357	A,B,D,E
16	45.04	2.0129	104.56	3.96	0.0640	B,C,D
17	50.12	1.8201	152.66	19.72	0.2184	A,B,C,D,E
18	55.06	1.6679	74.85	27.99	0.6321	A,B,C,D,E
19	59.96	1.5428	168.79	31.24	0.3129	A,B,C,D,E
20	68.34	1.3726	106.91	26.94	0.4259	A,B,C,D,E

Integrated Profile Areas

Amount

100.00% 49.89%

Counts

114022 56886

Based on calculated profile

Diffraction peaks Peak area belonging to selected phases Peak area of phase A (Quartz) Peak area of phase B (Pseudomalachite) Peak area of phase C (Maghemite) Peak area of phase D (I angite)	57136 43525 13206 2826 7290 8277	50.11% 38.17% 11.58% 2.48% 6.39% 7.26%
Peak area of phase B (Pseudomalachite) Peak area of phase C (Maghemite)	2826 7290	2.48% 6.39%
Peak area of phase C (Maghemite)	7290	6.39%
Peak area of phase D (Langite)	8277	7.26%
Peak area of phase E (Kaolinite)	11927	10.46%
Unidentified peak area	13610	11.94%

Peak data	Counts	Amount
Overall peak intensity	933	100.00%
Peak intensity belonging to selected phases	852	91.22%
Unidentified peak intensity	82	8.78%

Diffraction Pattern Graphics

Peak Residuals

Match! Copyright © 2003-2023 CRYSTAL IMPACT, Bonn, Germany

EXTRACTED X-RAY DIFFRACTION (XRD) ANALYSIS RESULTS CONCENTRATION

Match! Phase Analysis Report

Sample: ZV-R-4K

Peaks in range 355 Peaks matched 89 0.03 P 1 21/c 1 Intensity scale factor Space group Crystal system Unit cell monoclinic a= 4.4728 Å b= 5.7469 Å c= 17.0320 Å β= 91.043 ° l/lc 1.92 Calc. density 4.368 g/cm³ Shoemaker G. L., Anderson J. B., Kostiner E., "Refinement of the crystal structure of pseudomalachite", American Mineralogist 62, Reference 1042-1048 (1977) C: Maghemite (0.0 %) Fe21 H O33 96-901-7846 0.000000 Formula sum Entry number Figure-of-Merit (FoM) Total number of peaks 196 Peaks in range 64 Peaks matched 14 0.00 P -4 3 m Intensity scale factor Space group Crystal system Unit cell cubic a= 8.3500 Å I/Ic 4.16 Calc. density 4.854 g/cm³ Sinha K. P., Sinha A. P. B., "Ein Fehlstellenuberstruktur - Modell fur gamma-Fe2O3", Zeitschrift fur Anorganische und Allgemeine Chemie 293, 228-232 (1957) Reference *D: Langite (3.1 %)** Formula sum Cu4 H10 O12 S 96-900-9716 Entry number 0.636447* Figure-of-Merit (FoM) 998 Total number of peaks Peaks in range Peaks matched 401 127 Intensity scale factor 0.07* Space group P1c1 Crystal system Unit cell monoclinic a= 7.1180 Å b= 6.0340 Å c= 11.2090 Å β = 90.020 ° 5.37 I/Ic Calc. density 3.369 g/cm³ Galy J., Jaud J., Pulou R., Sempere R., "Structure cristalline de la langite, Cu4[SO4(OH)6H2O]*H2OLocality: Mazega, Aveyrone, France", Bulletin de Mineralogie **107**, 641-648 (1984) Reference E: Kaolinite (28.3 %) Al1.992 Ca0.012 Fe0.016 H4 Mg0.008 O9 Si1.956 Ti0.018 96-901-7768 Formula sum Entry number Figure-of-Merit (FoM) 0.000000 Total number of peaks Peaks in range 510 271 Peaks matched Intensity scale factor 104 0.12 Space group Crystal system C 1 triclinic (anorthic) a = 5.1528 Å b= 8.9415 Å c= 7.3985 Å α= 91.715° β= 104.756 ° γ= 89.866 ° 1.04 Unit cell I/Ic Calc. density 2.612 g/cm3 Reference

Lee S., Xu H., "Using complementary methods of synchrotron radiation powder diffraction andpair distribution functions to refine crystal structures with high qualityparameters - A reviewNote: Neutron data, chemistry data provided by author", Minerals **10**, -124 (2020)

FoM 0.0000

⁽¹⁾2theta values have been shifted internally for the calculation of the amounts, the intensity scaling factors as well as the figure-of-merit (FoM), due to the active searchmatch option 'Automatic zero point adaption'. Candidates

Name	Formula	Entry No.
Aluminium silicate hydroxide * (Kaolinite 2M)	Al2 H4 O9 Si2	96-101-1046
Silicon oxide \$-alpha (Quartz low)	O2 Si	96-101-1098
Silicon oxide (Quartz low)	O2 Si	96-101-1160

Silicon oxide \$-alpha (Quartz low)	02 Si	96-101-1098	0.0000
Silicon oxide (Quartz low)	O2 Si	96-101-1160	0.0000
Silicon oxide \$-alpha (Quartz low)	O2 Si	96-101-1173	0.0000
Silicon oxide - \$-alpha (Quartz low)	O2 Si	96-101-1177	0.0000
Silicon oxide - \b (Quartz high)	O2 Si	96-101-1201	0.0000
Silicon oxide (Quartz high)	O2 Si	96-110-0020	0.0000
(Fe2 O3)10.6667 (Maghemite)	Fe21.3334 O32.0001	96-152-8612	0.0000
Kaolinite	Al2 H4 O9 Si2	96-155-0599	0.0000
Kaolinite K-I	Al2 H4 O9 Si2	96-156-6358	0.0000
Kaolinite K-II	Al2 H4 O9 Si2	96-156-6359	0.0000
Kaolinite K-III	Al2 H4 O9 Si2	96-156-6360	0.0000
Silicon oxide (Quartz)	O2 Si	96-500-0036	0.0000
Pseudomalachite	Cu5 H4 O12 P2	96-900-0590	0.0000
Quartz	O2 Si	96-900-0776	0.0000
Quartz	O2 Si	96-900-0777	0.0000
	O2 Si	96-900-0778	0.0000
	O2 Si	96-900-0779	0.0000
	O2 Si	96-900-0780	0.0000
	O2 Si	96-900-0781	0.0000
	Fe2.18 O4 Ti0.42	96-900-1115	0.0000
	O2 Si	96-900-5018	0.0000
ARV	O2 Si	96-900-5019	0.0000
E	O2 Si	96-900-5020	0.0000
	O2 Si	96-900-5021	0.0000
100	O2 Si	96-900-5022	0.0000

Quartz	O2 Si	96-900-5023	0.0000
Quartz	O2 Si	96-900-5024	0.0000
Quartz	O2 Si	96-900-5025	0.0000
Quartz	O2 Si	96-900-5026	0.0000
Quartz	O2 Si	96-900-5027	0.0000
Quartz	O2 Si	96-900-5028	0.0000
Quartz	O2 Si	96-900-5029	0.0000
Quartz	O2 Si	96-900-5030	0.0000
Quartz	O2 Si	96-900-5031	0.0000
Quartz	O2 Si	96-900-5032	0.0000
Quartz	O2 Si	96-900-5033	0.0000
Quartz	O2 Si	96-900-5034	0.0000
Maghemite	Fe2 O3	96-900-6317	0.0000
Maghemite	Fe2 O3	96-900-6318	0.0000
Maghemite	Fe3 O4	96-900-6319	0.0000
Quartz	O2 Si	96-900-7379	0.0000
Quartz	O2 Si	96-900-8093	0.0000
Quartz	O2 Si	96-900-8094	0.0000
Kaolinite	Al2 H4 O9 Si2	96-900-9231	0.0000
Kaolinite	Al2 H4 O9 Si2	96-900-9235	0.0000
Quartz	O2 Si	96-900-9667	0.0000
Langite	Cu4 H10 O12 S	96-900-9716	0.0000
Quartz	O2 Si	96-901-0145	0.0000
Quartz	O2 Si	96-901-0146	0.0000
Quartz	O2 Si	96-901-0147	0.0000
Quartz	O2 Si	96-901-1494	0.0000
and 23 others			

Search-Match

Settings

Reference database used	COD-Inorg 2023.06.06
Automatic zeropoint adaptation	Yes
Downgrade entries with low scaling factors	sYes
Minimum figure-of-merit (FoM)	0.60
2theta window for peak corr.	0.30 deg.
Minimum rel. int. for peak corr.	0
Parameter/influence 2theta	0.50
Parameter/influence intensities	0.50
Parameter multiple/single phase(s)	0.50

Criteria for entries added by user

Reference:

Entry number:

96-101-1098;96-101-1160;96-101-1173;96-101-1177;96-101-1201;96-110-0020;96-500-0036;96-900-0776;96-900-0777;96-900-90778;96-900-0779;96-900-0780;96-900-5018;96-900-5019;96-900-5020;96-900-5021;96-900-5023;96-900-5024;96-900-5025;96-900-5026;96-900-5027;96-900-5029;96-900-5030;96-900-5031;96-900-5032;96-900-5033;96-900-5034;96-900-7379;96-900-8093;96-900-8094;96-900-9667;96-901-0145;96-901-0146;96-901-0147;96-901-1494;96-901-1495;96-901-1496;96-901-1497;96-901-2601;96-901-2602;96-901-2603;96-901-2604;96-901-2605;96-901-2606;96-901-3322;96-901-5023;96-900-0590;96-152-8612;96-900-115;96-900-6317;96-900-6318;96-901-2603;96-901-2603;96-901-7490;96-901-7494;96-901-7520;96-901-7521;96-901-7546;96-900-9716;96-901-3896;96-101-1046;96-155-0599;96-156-6358;96-156-6359;96-156-6360;96-900-9231;96-900-9235;96-901-5000;96-901-7767;96-901-7768

Peak List

No.	2theta [°]	d [Å]	l/l0 (peak height)	Counts (peak area)	FWHM	Matched
1	12.32	7.1845	89.40	91.38	0.7288	D,E
2	20.00	4.4396	77.97	118.03	1.0792	B,D,E
3	20.88	4.2545	244.23	151.92	0.4435	A,B,D
4	24.68	3.6074	94.63	116.80	0.8800	E
5	25.24	3.5286	87.94	73.79	0.5983	B,D
6	26.72	3.3364	1000.00	399.24	0.2846	A,E
7	35.00	2.5638	31.42	29.12	0.6607	B,D,E
8	35.94	2.4988	39.30	32.73	0.5938	C,D,E
9	36.58	2.4566	125.30	41.86	0.2382	A,B
10	37.82	2.3788	47.12	30.33	0.4589	B,D,E
11	38.20	2.3560	27.45	39.56	1.0277	D
12	38.50	2.3384	29.16	13.25	0.3240	B,D,E
13	39.42	2.2859	78.92	45.86	0.4143	A,D,E
14	40.30	2.2380	51.44	20.21	0.2801	A,B,C,D,E
15	42.44	2.1300	65.23	26.33	0.2877	A,B,D,E
16	45.76	1.9829	46.86	33.76	0.5137	A,B,D,E
17	48.06	1.8932	22.28	9.11	0.2916	B,D,E
18	50.16	1.8187	163.85	56.85	0.2473	A,B,C,D,E
19	53.76	1.7051	21.81	7.57	0.2473	B,C,D,E
20	54.86	1.6735	65.39	45.91	0.5005	A,B,C,D,E
21	59.98	1.5423	149.22	46.98	0.2245	A,B,C,D,E
22	62.36	1.4891	45.94	5.15	0.0800	B,D,E
23	62.48	1.4865	47.14	10.96	0.1658	B,D,E
24	64.02	1.4544	24.80	6.37	0.1830	A,B,C,D,E
2		.3837	66.95	26.38	0.2810	A,B,D,E
	DDE	.3762	89.99	52.76	0.4180	A,B,D,E
1	PDF	.3730	54.03	11.31	0.1492	A,B,C,D,E
	50			Intea	rated Pro	file Areas

Optimized using trial version www.balesio.com ofile

Counts 180530

Amount 100.00%

Background radiation	94042	52.09%
Diffraction peaks	86488	47.91%
Peak area belonging to selected phases	61292	33.95%
Peak area of phase A (Quartz)	33604	18.61%
Peak area of phase B (Pseudomalachite)	4707	2.61%
Peak area of phase C (Maghemite)	20	0.01%
Peak area of phase D (Langite)	4268	2.36%
Peak area of phase E (Kaolinite)	18694	10.35%
Peak area of phase E (Kaolinite)	18694	<i>10.35%</i>
Unidentified peak area	25196	13.96%

Peak data	Counts	Amount
Overall peak intensity	1544	100.00%
Peak intensity belonging to selected phases	1468	95.09%
Unidentified peak intensity	76	4.91%

Diffraction Pattern Graphics

Peak Residuals

Match! Copyright © 2003-2023 CRYSTAL IMPACT, Bonn, Germany

EXTRACTED X-RAY DIFFRACTION (XRD) ANALYSIS RESULTS

TIME

Match! Phase Analysis Report

Sample: ZV-R-60-W

trial version www.balesio.com

Intensity scale factor Space group Crystal system Unit cell I/Ic Calc. density Reference	0.05 P 1 21/c 1 monoclinic a= 4.4728 Å b= 5.7469 Å c= 17.0320 Å β= 91.043 ° 1.92 4.368 g/cm ³ Shoemaker G. L., Anderson J. B., Kostiner E., "Refinement of the crystal structure of pseudomalachite", American Mineralogist 62 , 1042-1048 (1977)
C: Maghemite (1.3 %) Formula sum Entry number Figure-of-Merit (FoM) Total number of peaks Peaks in range Peaks matched Intensity scale factor Space group Crystal system Unit cell I/Ic Calc. density Reference	Fe21 H 033 96-901-7846 0.000000 196 64 14 0.02 P - 4 3 m cubic a = 8.3500 Å 4.16 4.16 4.854 g/cm ³ Sinha K. P., Sinha A. P. B., "Ein Fehlstellenuberstruktur - Modell fur gamma-Fe2O3", Zeitschrift fur Anorganische und Allgemeine Chemie 293 , 228-232 (1957)
D: Langite (0.3 %) Formula sum Entry number Figure-of-Merit (FoM) Total number of peaks Peaks in range Peaks matched Intensity scale factor Space group Crystal system Unit cell I/Ic Calc. density Reference	Cu4 H10 O12 S 96-901-3896 0.00000 250 251 75 0.00 P 1 c 1 monoclinic a = 7.1370 Å b = 6.0310 Å c= 11.2170 Å γ= 90.000 ° 5.11 3.359 g/cm ³ Gentsch M., Weber K., "Structure of langite, Cu4[(OH)6 SO4]*2H2O", Acta Crystallographica, Section C 40 , 1309-1311 (1984)
E: Kaolinite (18.2 %) Formula sum Entry number Figure-of-Merit (FoM) Total number of peaks Peaks in range Peaks matched Intensity scale factor Space group Crystal system Unit cell I/Ic Calc. density Reference	Al1.992 Ca0.012 Fe0.016 H4 Mg0.008 O9 Si1.956 Ti0.018 96-901-7768 0.00000 510 270 100 0.06 C 1 triclinic (anorthic) a = 5.1528 Å b= 8.9415 Å c= 7.3985 Å a= 91.715° β = 104.756 ° γ = 89.866 ° 1.04 2.612 g/cm ³ Lee S., Xu H., "Using complementary methods of synchrotron radiation powder diffraction andpair distribution functions to refine crystal structures with high qualityparameters - A reviewNote: Neutron data, chemistry data provided by author". Minerals 10 124

⁽⁷⁾2theta values have been shifted internally for the calculation of the amounts, the intensity scaling factors as well as the figure-of-merit (FoM), due to the active searchmatch option 'Automatic zero point adaption'.

Name	Formula	Entry No.	FoM
Aluminium silicate hydroxide * (Kaolinite 2M)	Al2 H4 O9 Si2	96-101-1046	0.0000
Silicon oxide \$-alpha (Quartz low)	O2 Si	96-101-1098	0.0000
Silicon oxide (Quartz low)	O2 Si	96-101-1160	0.0000
Silicon oxide \$-alpha (Quartz low)	O2 Si	96-101-1173	0.0000
Silicon oxide - \$-alpha (Quartz low)	O2 Si	96-101-1177	0.0000
Silicon oxide - \b (Quartz high)	O2 Si	96-101-1201	0.0000
Silicon oxide (Quartz high)	O2 Si	96-110-0020	0.0000
(Fe2 O3)10.6667 (Maghemite)	Fe21.3334 O32.0001	96-152-8612	0.0000
Kaolinite	Al2 H4 O9 Si2	96-155-0599	0.0000
Kaolinite K-I	Al2 H4 O9 Si2	96-156-6358	0.0000
Kaolinite K-II	Al2 H4 O9 Si2	96-156-6359	0.0000
Kaolinite K-III	Al2 H4 O9 Si2	96-156-6360	0.0000
Silicon oxide (Quartz)	O2 Si	96-500-0036	0.0000
Pseudomalachite	Cu5 H4 O12 P2	96-900-0590	0.0000
Quartz	O2 Si	96-900-0776	0.0000
Quartz	O2 Si	96-900-0777	0.0000
Quartz	O2 Si	96-900-0778	0.0000
Quartz	O2 Si	96-900-0779	0.0000
Quartz	O2 Si	96-900-0780	0.0000
	O2 Si	96-900-0781	0.0000
CONTRACT OF CONTRACT	Fe2.18 O4 Ti0.42	96-900-1115	0.0000
PDF	O2 Si	96-900-5018	0.0000
	O2 Si	96-900-5019	0.0000
	O2 Si	96-900-5020	0.0000
	O2 Si	96-900-5021	0.0000
	O2 Si	96-900-5022	0.0000
An	O2 Si	96-900-5023	0.0000
E	O2 Si	96-900-5024	0.0000
	O2 Si	96-900-5025	0.0000
10	O2 Si	96-900-5026	0.0000
Optimized using trial version www.balesio.com			

Candidates

O2 Si	96-900-5027	0.0000
O2 Si	96-900-5028	0.0000
O2 Si	96-900-5029	0.0000
O2 Si	96-900-5030	0.0000
O2 Si	96-900-5031	0.0000
O2 Si	96-900-5032	0.0000
O2 Si	96-900-5033	0.0000
O2 Si	96-900-5034	0.0000
Fe2 O3	96-900-6317	0.0000
Fe2 O3	96-900-6318	0.0000
Fe3 O4	96-900-6319	0.0000
O2 Si	96-900-7379	0.0000
O2 Si	96-900-8093	0.0000
O2 Si	96-900-8094	0.0000
Al2 H4 O9 Si2	96-900-9231	0.0000
Al2 H4 O9 Si2	96-900-9235	0.0000
O2 Si	96-900-9667	0.0000
Cu4 H10 O12 S	96-900-9716	0.0000
O2 Si	96-901-0145	0.0000
O2 Si	96-901-0146	0.0000
O2 Si	96-901-0147	0.0000
O2 Si	96-901-1494	0.0000
	02 Si 02 Si 02 Si 02 Si 02 Si 02 Si 02 Si 02 Si 7e2 03 Fe2 03 Fe2 03 Fe3 04 02 Si 02 Si 02 Si 02 Si 02 Si 02 Si Cu4 H10 012 S 02 Si 02 Si 02 Si 02 Si 02 Si 02 Si 02 Si	$\begin{array}{llllllllllllllllllllllllllllllllllll$

Search-Match

Settings	
Reference database used	COD-Inorg 2023.06.06
Automatic zeropoint adaptation	Yes
Downgrade entries with low scaling factors	sYes
Minimum figure-of-merit (FoM)	0.60
2theta window for peak corr.	0.30 deg.
Minimum rel. int. for peak corr.	0
Parameter/influence 2theta	0.50
Parameter/influence intensities	0.50
Parameter multiple/single phase(s)	0.50

Criteria for entries added by user

Entry number:

Reference:

96-101-1098;96-101-1160;96-101-1173;96-101-1177;96-101-1201;96-110-0020;96-500-0036;96-900-0776;96-900-0777;96-900-0778;96-900-5021;96-900-5021;96-900-5022;96-900-5023;96-900-5024;96-900-5025;96-900-5026;96-900-5027;96-900-5029;96-900-5029;96-900-5031;96-900-5032;96-900-5032;96-900-5032;96-900-5032;96-900-5032;96-900-5032;96-900-5032;96-900-5032;96-900-5032;96-900-5032;96-900-5032;96-900-5032;96-901-1495;96-901-1495;96-901-1495;96-901-1495;96-901-1495;96-901-1495;96-901-1495;96-901-1495;96-901-1495;96-901-1495;96-901-2602;96-901-2602;96-901-2603;96-901-2605;96-901-2605;96-901-312;96-901-312;96-901-312;96-901-2602;96-901-2602;96-901-2603;96-901-2768

Peak List

No.	2theta [°]	d [Å]	l/l0 (peak height)	Counts (peak area)	FWHM	Matched
1	12.30	7.1962	70.73	80.09	0.7639	D,E
2	20.04	4.4309	92.53	120.10	0.8756	B,D,E
3	20.82	4.2666	242.51	142.67	0.3969	A,B,D
4	25.00	3.5619	100.14	160.32	1.0800	D,E
5	25.24	3.5286	120.82	93.12	0.5200	В
6	26.68	3.3413	1000.00	394.78	0.2663	A,E
7	35.06	2.5595	53.50	41.90	0.5284	B,D,E
8	36.54	2.4592	142.12	67.63	0.3210	A,B
9	37.80	2.3800	48.49	67.61	0.9407	B,D,E
10	38.62	2.3314	55.35	65.22	0.7949	B,C,D,E
11	39.46	2.2837	99.63	47.26	0.3200	A,D,E
12	40.20	2.2433	40.58	7.22	0.1200	A,B,C,D,E
13	42.46	2.1290	88.21	30.39	0.2324	A,B,D,E
14	45.78	1.9820	50.72	24.76	0.3294	A,B,D,E
15	50.14	1.8194	160.74	57.59	0.2417	A,B,C,D,E
16	53.90	1.7010	20.57	9.42	0.3089	B,C,D,E
17	54.84	1.6741	55.99	35.29	0.4253	A,B,C,D,E
18	55.38	1.6590	32.81	25.89	0.5323	A,B,D,E
19	59.96	1.5428	137.02	50.51	0.2487	A,B,C,D,E
20	62.40	1.4882	47.90	41.46	0.5839	B,D,E
21	64.00	1.4548	30.88	11.93	0.2606	A,B,C,D,E
22	67.74	1.3833	74.32	39.65	0.3599	A,B,D,E
23	68.16	1.3758	93.10	53.37	0.3867	A,B,D,E
24	68.30	1.3733	39.72	8.03	0.1363	A,B,C,D,E

Integrated Profile Areas

Based on calculated profile

DDE		Counts	Amount
PDF		174232	100.00%
		83640	48.00%
		90592	52.00%
LAX.	elected phases	59676	34.25%
	Jartz)	36359	20.87%
Ant	eudomalachite)	9337	5.36%
3	aghemite)	1319	0.76%
	ingite)	434	0.25%

69

Peak area of phase E (Kaolinite) Unidentified peak area	<i>12226</i> 30917	7.02% 17.74%	
		Peak Residua	als
Peak data	Counts	Amount	
Overall peak intensity	1676	100.00%	
Peak intensity belonging to selected phases	1556	92.82%	

ak intensity	1676	100.00%
nsity belonging to selected phases	1556	92.82%
ed peak intensity	120	7.18%

Unidentifi

Diffraction Pattern Graphics

Match! Copyright © 2003-2023 CRYSTAL IMPACT, Bonn, Germany

APPENDICE 6 CONCULTATION CARD

Lampiran B 10

Kartu Konsultasi Tugas Akhir

JUDUL: STUDY OF COPPER EXTRACTION FROM OXIDE ORE USING SULFURIC ACID SOLVENT

(Konsultasi minimal 8 kali)

TANGGAL	MATERI KONSULTASI	PARAF
06/12/2023	s. Kesalahan penulisan 2. Diagram alir 3. Grammar	Ą
08/12 2023	1. Hasil analisis mikroskopis 2. Hasil XRD 3. Grafik PLS (Extraction Rate)	M
13/02/2029	1. Grommor 2. Ambohasan disalwi mineral 3. kesimpulan	M
14 (04/2029	1. Hasil mikroskopis 2. Pembahasan extraction rak 3. Kesimpulan	M

TANGGAL	MATERI KONSULTASI	DOSEN
6 loz (2024	Kesimpulan Lampuran Abstrat	Uf
662/2029	Posler Artikel Ilmiah	M
Yo2 (2024	Artikel Ilmiah	14
19/02/2029		hee

