DAFTAR PUSTAKA

- Ahmad, W., (2006). Chapter 5: Fundamentals of weathering and soil formation. Dalam: *LATERITES Fundamentals of chemistry, mineralogy, weathering processes and laterite formation.* s.l.:PT VALE INCO, p. 26.
- Ahmad, W., (2006). Chapter 6: Formation of laterites and their characteristics. Dalam: Chapter 6: Formation of laterites and their characteristics. In: LATERITES Fundamentals of chemistry, mineralogy, weathering processes and laterite formation. s.l.:PT VALE INCO, pp. 1-31.
- Arif, I., (2018). Nikel Indonesia. 1 ed. Jakarta: PT Gramedia Pustaka Utama.
- Askaria, M. G., (2022). Geologi Dan Hubungan Antara Kendali Geologi Dan Kualitas Nikel Di Pulau Gag, Kepulauan Raja Ampat, Papua Barat, Yogyakarta: UPN Veteran Yogyakarta.
- Brand, N., Elias, C. B. and Mick, E., (1998). NIckel Laterites: Classification and features. AGSO Journal of Australian Geology and Geophysic, Volume 17, pp. 81-88.
- Bunaciu, A. A., Udristioiu, E. G. and Aboul-Enein, H. Y., (2015). X-Ray Diffraction: Instrumentation and Applications. England, Taylor & Francis.
- Butt, C. and Cluzel, D., (2013). Nickel Laterite Ore Deposits: Weathered Serpentinities. *Element International Magazine of Mineralogy, Geochemistry, and Petrology,* Volume 9, pp. 123-128.
- Cohen, A. S., Galaty, M. L. and Fisher, C. T., (2018). Petrographic Analysis of Ceramics and Clay from Angamuco, Michoacán.. Journal of Archaeological Science: Reports, Volume 19, p. 155–165.
- Elias, M., (2002). Nickel laterite deposits geological overview, resources and exploitation. *CODES Special Publication*.
- Foose, M. P., Zientek, M. and Klein, D., (1995). Magmatic Sulfide Deposits. United States Geology Survey (USGS): Open-File Report.
- Freyssinet, P., C.R.M Butt, R.C Morris, and P Piantone, (2005). Ore-Forming Processes Related to Lateritic Weathering, Economic Geology 100th Anniversary volume, pp 681-722.
- Gleeson, S., Butt, C. and El, M., (2003). Nickel Laterites : A Review. Society of Economic Geologists (SEG), July, pp. 12-18.

Optimized using trial version www.balesio.com ¹, J., (1981). Nickelliferous Laterite Deposits. *Economic Geology* 75th viversary Volume, pp. 710-735.

- Golightly, J. P. (2010). Progress in Understanding the Evolution of Nickel Laterites. Society of Economic Geologists, 451-000.
- Marsh, E., Anderson, E. and Gray, F., (2013). Nickel-cobalt Laterities-A Deposit Model. Virginia: U. S. Geological Survey.
- Kamaruddin, H., I.K., R. A., Rosana, M. F., Sulaksana, N., & Y, E. T. (2018). Profil Endapan Laterit Nikel Di Pomalaa, Kabupaten Kolaka, Provinsi Sulawesi Tenggara. *Buletin Sumber Daya Geologi*, 13(2), 84 - 105.
- Nahon, D. B., Boulange, B. and Colin, F., (1992). Mettalogeny of Weathering: an Introduction, In Martini and Chesworth.. Weathering, Soil and Paleosols, pp. 445-471.
- Panalytical, B., (2009). X-Ray Fluorescence Spectrometry. UK: Boundary Row.
- Roqué-Rosell, J., Mosselmans, J. F. W., Proenza, J. A., Labrador, M., Galí, S., Atkinson, K. D., Quinn, P. D., (2010). Sorption of Ni by "Lithiophorite– Asbolane" Intermediates in Moa Bay Lateritic Deposits, Eastern *Cuba*. *Chemical Geology*, Volume 275, p. 9 – 18.
- Rose, A. W., Hawkers, H. E. and Webb, J. S., (1979). *Geochemistry in Mineral Exploration*. 2nd ed. London: Academic Press.
- Rosika, K., Dian, A. and Djoko, K., (2007). Pengujian Kemampuan XRF untuk Analisis komposisi unsur paduan Zr-Sn-Cr-Fe-Ni. Bandung, Prosiding Seminar Sains dan Teknologi Nuklir Pusat Teknologi Nuklir bahan dan radiometri (PTNBR) BATAN.
- Samama, J., (1986). *Ore Fields and Continetal Weathering*. New York, Van Nostrand Reinhold Co.
- Shellmann, W., (1986). A new definition of laterite. *Geologycal Survey of India Memoir 120*, pp. 1-7.
- Streckeisen, A.L. (1976). Classification and Nomenclature of Igneous Rocks. N. Jahrb. Miner. Abh., 107, 144-240.
- Sufriadin dan Mulyono, P., (2013). Mineralogy, Geochemistry and Leaching Behavior of The Sorowako Nuckeliferous Laterite Deposit, South Sulawesi, Indonesia. Yogyakarta: Disertasi Fakultas Teknik Geologi, Universitas Gadjah Mada.

Sugiyono, (2012). Metode Penelitian Kuantitatif R&B. Bandung: Alfabeta.

Optimized using trial version www.balesio.com 5, J. J., (1975). Levolution Geochimique Supergene des Roches rabasiques en Zone Tropicale; Formations des Gisements Nickeliferes de welle-Caledonie. Paris, ORSTOM Mem. 78 Yildirim, H., A., T. and Yucel, O., (2012). Nickel Pig Iron (NPI) production from domestic lateritic nickel ores using induction furnace. Karabuk, Turki, Proceedings international Iron & Steel Symposium.

LAMPIRAN

LAMPIRAN 1

PETA LOKASI PENELITIAN

LAMPIRAN 2

PETA LOKASI PENELITIAN

No. Sayatan	: BTG-1	Nama Batuan : Hazburgit		
Lokasi	: PTAntam Tbk UBPN Kolaka			
Foto	Under 200 ps Disputs Disputs	ere B' B' B' B' B' B' B' B' B' B' B' B' B'		
	II-Nikol	X-Nikol		
Tipe Batuan	Batuan Beku			
Tipe Struktur	Masif			
Klasifikasi	Streckeisen, 1976			
Mikroskopis	Warna absorsi transparan (<i>colourless</i>) pada nikol sejajar dan warna interferensi warna terang pa orde II-III pada nikol silang, memiliki tekstur granularitas faneritik, kristalinitas holokristalin, bentuk euhedral-subhedral, dan relasi equigranular. komposisi mineral terdiri dari olivin, orthopiroksin dan klinopiroksin.			
Komposisi Mineral	Jumlah (%)	Keterangan Ontik Mineral		
Komposisi winiciai	Juman (70)	Warna absorsi tidak berwarna sedangkan warna		
Olivin	85	interferensi terang pada orde II-III, mineral memiliki relief tinggi, berbentuk subhedral-anhedral, pleokroisme tidak ada, ukuran mineral, belahan paralel tidak sempurna 0,1mm- 0,15 mm.		
Orthopiroksin (enstatit) 10 Warna absorsi tidak berwarna, sem atau keabu-abuan, sedangkan warn abu-abu atau putih sampai orde ting belahan prismatik yang berpotongan berbentuk anhedral dan tidak beratu ada atau lemah.		Warna absorsi tidak berwarna, semburat agak kehijauan atau keabu-abuan, sedangkan warna interferensi orde I abu-abu atau putih sampai orde tinggi I, menunjukkan belahan prismatik yang berpotongan hampir 90 derajat, berbentuk anhedral dan tidak beraturan, pleokroisme tidak ada atau lemah.		
Klinopiroksin (diopsid)	5	Warna absorsi tidak berwarna, sedangkan warna interferensi terang berada pada orde I-II, tidak memiliki pleokroisme, memiliki belahan baik dua arah, terdapat kembaran sederhana.		
Nama Batuan: Hazb	urgit			

No. Sayatan	: EVR-1	Nama Batuan : Dunit
Lokasi	: PTAntam Tbk UBPN Kolaka	
Lokasi Foto	PTAntam Tbk UBPN Kolaka	С С С С С С С С С С С С С С
I	I-Nikol	X-Nikol
Tipe Batuan	Batuan Beku	
Tipe Struktur	Masif	
Klasifikasi	Streckeisen, 1976	
Mikroskopis	Warna absorsi transparan (colo	<i>urless</i>) pada nikol sejajar dan warna interferensi warna
	terang pada orde II-III pada niko	ol silang, memiliki tekstur granularitas faneritik, kristalinitas
	dori olivin don orthonirologin	oneurai, dan relasi equigranular. Komposisi minerai terdiri
	dan onvin dan ormoproksin.	Minoral
Komposisi Mineral	Iumlah (%)	Keterangan Ontik Mineral
	o unindit (70)	
Olivin	90	warna absorsi tidak berwarna sedangkan warna interferensi terang pada orde II-III, mineral memiliki relief tinggi, berbentuk subhedral-anhedral, pleokroisme tidak ada, ukuran mineral, belahan paralel tidak sempurna 0,1mm-0,15 mm.
Orthopiroksin (enstatit)	10	Warna absorsi tidak berwarna, semburat agak kehijauan atau keabu-abuan, sedangkan warna interferensi orde I abu-abu atau putih sampai orde tinggi I, menunjukkan belahan prismatik yang berpotongan hampir 90 derajat, berbentuk anhedral dan tidak beraturan, pleokroisme tidak ada atau lemah.

LAMPIRAN 3

HASIL ANALISIS X-RAY DIFFRACTION (XRD)

Match! Phase Analysis Report

Sample: RL-EVR-03 (5-70)

1 Sample Data File name File path Data collected Data range Original data range Number of points Step size Rietveld refinement converged Background subtr. Data smoothed Radiation Wavelength

> trial version www.balesio.com

RL-EVR-03.RAW D:/Sampel Nisa/RL-EVR-03 Okt 2, 2023 16:04:46 5.000° - 70.000° 5.000° - 70.000° 3251 0.020 NoAlpha2 subtracted No No Yes X-rays 1.540600 Å

Analysis Results

Match! Copyright © 2003-2023 CRYSTAL IMPACT, Bonn, Germany

No	24hoto [0]	a ră r	1/10 (nook boight)	Counto (nook oroo)		Matchad
1		0 2010				Matcheu
1	9.42	9.3010	100.00	0.10	0.5213	A
2	14.20	7.2409 F 0720	100.20	0.35	0.7300	D
3	14.02	5.9720	3.07	0.35	0.7900	C
4	10.02	3.3260	12.03	1.20	0.00762	-
5	17.88	4.9009	89.41	10.28	0.9703	
0	18.78	4.7213	122.79	8.43	0.0001	А,В
/	21.26	4.1758	1000.00	108.32	0.9199	A,C,E
8	21.94	4.0479	0.33	0.10	2.5814	P
9	24.88	3.5759	164.49	18.96	0.9787	D
10	26.66	3.3410	363.29	17.19	0.4019	Ę
11	28.62	3.1165	61.12	2.89	0.4019	A
12	30.32	2.9455	26.39	1.89	0.6083	C
13	30.82	2.8989	24.34	2.04	0.7115	В
14	33.38	2.6822	443.29	42.53	0.8147	E
15	34.96	2.5645	285.87	50.92	1.5126	A,E
16	35.78	2.5076	605.45	45.63	0.6400	A,C,D,E
17	36.84	2.4378	948.89	76.11	0.6812	A,E
18	40.28	2.2372	195.90	38.03	1.6486	A,C,E
19	41.18	2.1904	140.84	9.54	0.5754	A,D,E
20	43.28	2.0888	14.54	1.27	0.7421	A,C,E
21	44.44	2.0369	25.93	2.77	0.9087	С
22	45.68	1.9845	0.96	0.10	0.8800	A
CTTT DDT	17.76	1.9028	34.96	2.03	0.4934	E
PDF	18.68	1.8690	0.92	0.10	0.9200	A,C
	50.12	1.8186	56.07	4.61	0.6982	A,C,E
	50.90	1.7925	0.73	0.10	1.1600	D,E
	52.16	1.7522	0.51	0.10	1.6663	A
	53.58	1.7090	352.04	51.49	1.2420	A,C,E
	57.40	1.6040	69.48	6.10	0.7461	A,C
Ontimized using	9 .36	1.5557	152.30	21.57	1.2029	A,C,E
trial version	61.68	1.5026	137.82	16.61	1.0233	A,D,E
www.balesio.com						

3 Peak List

32	63.08	1.4726	29.53	2.53	0.7277 A,C,E
33	64.08	1.4520	154.22	32.44	1.7860 A,B,C,E
34	68.42	1.3701	57.51	12.10	1.7860 A,B,C,D,E

Match! Phase Analysis Report

Sample: YL-EVR-03 (5-70)

SAMPLE DATA

File name File path Data collected Data range Original data range Number of points Step size **Rietveld refinement** converged Background subtr. Data smoothed Radiation Wavelength

YL-EVR-03.ORG D:/Sampel Nisa/YL-EVR-03 Okt 2, 2023 16:04:46 5.000° - 70.000° 5.000° - 70.000° 3251 0.020 No Alpha2 subtracted No No Yes X-rays 1.540600 Å

Analysis Results

Elemental composition (Weight %)

Index	Amount (%)	Name	Formula sum	Element	Amount (weight %) 43.4%(*)
Α	5.3	Talc	H2 Mg3 O12 Si4	Fe	34.2%
В	38.5	Silicon oxide Quartz	O2 Si	Si	19.6%
С	56.2	Goethite	Co0.03 Fe0.97 H O2	Со	1.1%
	11.4	Unidentified peak area		Mg	1.0%
				Н	
Amour	nts calculat	ed by RIR (Reference Inten	sity Ratio) method	*LE (sum)	44.1%

Match! Copyright © 2003-2023 CRYSTAL IMPACT, Bonn, Germany

2theta [º] d [Å] l/l0 (peak height) Counts (peak area) **FWHM** Matched No. 1 6.86 12.8750 37.14 3.04 0.3981 9.60 9.2055 40.74 1.32 2 0.1577 А 3 17.84 4.9679 80.43 8.27 0.5006 С С 4 21.18 4.1914 451.50 94.05 1.0139 5 23.92 3.7171 40.72 4.31 0.5158 6 24.58 3.6188 37.63 1.76 0.2280 7 В 26.68 3.3385 1000.00 61.61 0.2999 8 30.28 42.19 2.9493 2.69 0.3105 9 33.40 2.6806 220.77 49.76 1.0970 С 10 34.94 2.5659 127.40 15.31 0.5849 A,C 11 35.84 2.5035 264.98 43.55 0.8000 A,C 12 36.70 2.4468 461.92 65.34 0.6886 B,C 13 38.46 34.82 2.3388 3.72 0.5200 39.58 14 2.2751 115.94 17.52 0.7353 A.B 15 40.34 2.2340 12.06 1.90 0.7686 A,B,C 41.28 17.25 A,C 16 2.1853 123.47 0.6800 17 42.56 2.1225 59.53 3.54 0.2897 В 18 45.80 1.9796 39.79 2.68 0.3280 A,B 19 50.22 158.18 12.29 0.3782 A,B 1.8152 20 53.46 1.7126 180.65 50.08 1.3494 A,C 21 54.98 1.6688 77.07 16.88 1.0663 A,B A,B,C) 1.6040 64.34 5.67 0.4291 PDF 1.5605 111.80 24.81 1.0800 С 5 1.5401 89.99 5.02 0.2713 В) A,C 1.5039 86.04 18.16 1.0270) 1.4520 111.40 18.11 0.7912 A,B,C 3) 1.3722 93.89 11.70 0.6068 A,B,C

Peak List

Match! Phase Analysis Report

Sample: S-EVR-03 (5-70)

Sample Data

File name File path Data collected Data range Original data range Number of points Step size Rietveld refinement converged Background subtr. Data smoothed Radiation Wavelength S-EVR-03.ORG D:/Sampel Nisa/S-EVR-03 Okt 2, 2023 16:04:46 5.000° - 70.000° 5.000° - 70.000° 3251 0.020 NoAlpha2 subtracted No No Yes X-rays 1.540600 Å

Analysis Results

Elemental composition (Weight %)

Match! Copyright © 2003-2023 CRYSTAL IMPACT, Bonn, Germany

No.	2theta [º]	d [Å]	l/l0 (peak height)	Counts (peak area)	FWHM	Matched
1	12.12	7.2966	521.61	58.33	0.4448	А
2	20.12	4.4098	171.27	34.31	0.7968	С
3	22.78	3.9005	108.75	7.48	0.2734	A,B
4	24.38	3.6480	357.12	48.88	0.5445	A
5	26.76	3.3287	305.70	32.41	0.4217	С
6	28.26	3.1554	662.10	54.89	0.3298	С
7	30.38	2.9398	182.86	11.62	0.2529	С
8	31.10	2.8734	1000.00	62.17	0.2473	A,C
9	33.08	2.7058	129.85	13.78	0.4223	С
10	35.56	2.5226	382.01	49.94	0.5200	B,C
11	36.06	2.4887	433.53	156.94	1.4400	A,C
12	36.52	2.4584	557.25	95.26	0.6800	B,C
13	39.64	2.2718	151.36	15.22	0.4000	B,C
14	44.00	2.0563	93.30	4.40	0.1874	С
15	45.88	1.9763	242.75	6.29	0.1031	С
16	50.22	1.8152	71.89	8.29	0.4587	A,B,C
17	51.06	1.7873	74.87	4.81	0.2556	A,B,C
10	52.18	1.7515	149.62	9.43	0.2506	A,B
TTT PDF	60.92	1.5195	192.12	32.84	0.6800	B,C
	i1.86	1.4987	248.33	8.16	0.1307	A,B,C
23	i3.22	1.4697	293.23	10.94	0.1484	B,C

Optimized using trial version www.balesio.com

Peak List

Match! Phase Analysis Report

5 Sample: EVR-1 (5-70)

	6 Sample Data File name File path Data collected Data range Original data range Number of points Step size Rietveld refinement converged Background subtr. Data smoothed Radiation	EVR-1.RAW D:/DATA XRD/EVR-1 Okt 10, 2023 08:16:54 5.000° - 70.000° 5.000° - 70.000° 3251 0.020 NoAlpha2 subtracted No Yes X-rays	Νο		
	Wavelength	1.540600 Å	7 Analysis Results		
	Phase comp	osition (Weight %)		E	lemental composition (Weight %)
	Hornblende (18.0%) Lizardite (26.8%)	Silicon oxide - S-alpha Quartz low Olivine (53.3%)		<u>Si(19</u>	AGXIMENTAL Sec. 0 (45 Mg (23.3%)/
B C D	8 IndexAmountName A 1.8 Silicon oxide - 3 53.3 Olivine 3 26.8 Lizardite 18.0 18.0 Hornblende 18.8 18.8 Unidentified peak area	Formula sum(%) \$-alpha Quartz lowO2 Si Fe0.15 Mg1.85 O4 Si Al0.201 Fe0.339 H4 Mg2.544 Al2.42 Ca1.806 Fe1.884 H1.7	<mark>O9 Si1.904</mark> 8 Mg2.186 Na0.664 O24 Si6.44 Ti0.07	Si Fe Al Ca	19.8% 7.0% 1.8% 1.5%
тог	ints calculated by RIR (Reference I	ntensity Ratio) method		H Na Ti *I F (sum)	0.4%(*) 0.3% 0.1% 46 1%

0 (45.7%)

Match! Copyright © 2003-2023 CRYSTAL IMPACT, Bonn, Germany

Peak List

No.	2theta [º]	d [Å]	l/l0 (peak height)	Counts (peak area)	FWHM	Matched
1	10.52	8.4025	193.92	26.99	0.4130	D
2	12.08	7.3207	775.96	117.21	0.4481	С
3	17.52	5.0579	152.12	13.78	0.2688	B,D
4	19.58	4.5302	159.06	45.04	0.8400	D
5	21.18	4.1914	101.04	17.71	0.5200	A,D
6	22.78	3.9005	212.25	9.45	0.1321	B,C,D
7	22.96	3.8704	506.55	48.44	0.2837	
8	23.90	3.7202	97.75	13.05	0.3960	B,D
9	24.42	3.6422	695.09	85.25	0.3639	С
10	25.32	3.5147	141.32	45.44	0.9539	
11	25.52	3.4876	56.23	3.26	0.1718	В
12	25.86	3.4425	48.96	1.98	0.1200	
13	26.00	3.4243	22.20	0.83	0.1111	
14	26.22	3.3961	7.92	0.27	0.1022	D
15	26.40	3.3733	89.05	7.62	0.2539	D
16	26.70	3.3361	40.23	3.42	0.2522	А
1	107.00	3.2665	113.17	9.92	0.2599	D
177	77 PDF	3.2362	0.86	0.10	0.3463	
		3.1730	115.69	9.36	0.2400	
C		3.1532	179.83	27.15	0.4479	
		3.1186	443.28	30.39	0.2034	D
	E U	3.0703	1.12	0.10	0.2642	
100		3.0477	33.79	2.59	0.2270	
Opti tri	mized using ial version .balesio.com	3.0255	28.80	2.75	0.2837	D

25	29.64	3.0115	0.89	0.10	0.3352	B,D	
26	29.82	2.9938	130.24	11.00	0.2507	В	
27	30.46	2.9323	121.82	9.49	0.2311	D	
28	31.16	2.8680	252.01	17.89	0.2107	С	
29	31.62	2.8273	0.46	0.10	0.6508		
30	32.34	2.7660	587.05	34.17	0.1727	В	
31	32.78	2.7299	59.76	3.42	0.1697	D	
32	33.18	2.6979	129.28	10.06	0.2309	D	
33	34.66	2.5860	103.36	17.50	0.5023	B,D	
34	35.70	2.5130	988.66	82.89	0.2487	B,C	
35	36.50	2.4597	1000.00	80.76	0.2396	A,B,D	
36	37.78	2.3793	98.72	11.64	0.3499	B,D	
37	38.34	2.3458	136.82	20.08	0.4354	B,D	
38	39.66	2.2707	319.70	30.02	0.2786	A,B,D	
39	40.04	2.2500	289.38	20.44	0.2095	B,D	
40	41.80	2.1593	305.64	25.19	0.2445	B,C,D	
41	44.56	2.0317	83.60	7.82	0.2775	B,D	
42	44.94	2.0154	64.40	5.52	0.2545	D	
43	46.32	1.9586	52.91	2.96	0.1659	B,C,D	
44	48.04	1.8924	93.03	8.62	0.2748	D	
45	50.28	1.8132	100.59	11.64	0.3432	A,B,C,D	
46	50.90	1.7925	73.48	12.55	0.5067	A,B,C,D	
47	52.22	1.7503	579.22	39.82	0.2040	B,C,D	
48	54.88	1.6716	143.65	11.87	0.2452	A,B,C,D	
49	55.72	1.6484	85.50	5.31	0.1842	D	
50	56.16	1.6365	243.28	19.50	0.2378	B,D	
51	56.78	1.6201	111.10	8.89	0.2373	B,D	
52	58.12	1.5859	75.16	5.98	0.2359	B,D	
53	58.62	1.5735	101.75	10.94	0.3189	B,C,D	
54	58.84	1.5682	69.66	2.74	0.1167	B,D	
55	60.28	1.5341	129.71	22.74	0.5200	A,B,C,D	
56	61.26	1.5119	141.86	25.56	0.5346	B,D	
57	61.90	1.4978	304.43	42.70	0.4161	B,C,D	
58	62.70	1.4806	240.73	20.14	0.2482	B,D	
59	63.32	1.4676	51.52	5.28	0.3038	B,D	
60	64.80	1.4376	151.56	11.01	0.2154	B,D	
61	67.02	1.3953	141.93	21.41	0.4474	B,D	
62	67.28	1.3905	11.52	0.66	0.1709	B,C,D	
63	69.46	1.3521	157.13	8.63	0.1630	B,D	
64	69.68	1.3484	157.28	5.48	0.1033	B,D	

Match! Phase Analysis Report

1 SAMPLE: L-BTG-03 (5-70)

2 Sample Data

File name File path Data collected Data range Original data range Number of points Step size Rietveld refinement converged Background subtr. Data smoothed Radiation Wavelength L-BTG-03.ORG D:/Sampel Nisa/L-BTG-03 Okt 2, 2023 16:04:46 5.000° - 70.000° 5.000° - 70.000° 3251 0.020 NoAlpha2 subtracted No No Yes X-rays 1.540600 Å

3 Analysis Results

Phase composition (Weight %)

Elemental composition (Weight %)

1	1dex	Amount (%	%)Name	Formula si	ım	Element A	mount (weig
	Α	76.9	Silicon oxide Quartz	O2 Si		0	51.1%(*)
	В	11.5	Lizardite	H4 Mg3 O9	Si2	Si	38.3%
	С	11.6	Goethite	Fe H O2		Fe	7.3%
		15.4	Unidentified peak area			Mg	3.0%
Amounts	calcu	lated by	RIR (Reference Intensity	Ratio)	*LE (sum)	51.4	
		1	Contraction of the local division of the loc				

4

Match! Copyright © 2003-2023 CRYSTAL IMPACT, Bonn, Germany

5 Peak List

No.	2theta [º]	d [Å]	l/l0 (peak height)	Counts (peak area)	FWHM	Matched
1	12.24	7.2253	35.25	11.18	0.4393	В
2	18.68	4.7464	29.56	7.42	0.3477	
3	20.92	4.2429	203.49	65.34	0.4446	A,C
4	24.86	3.5787	18.85	9.29	0.6823	В
5	26.66	3.3410	1000.00	218.13	0.3020	А
6	28.58	3.1208	36.17	8.51	0.3259	
7	31.16	2.8680	54.40	7.05	0.1795	В
8	33.18	2.6979	50.40	20.66	0.5675	С
9	33.54	2.6697	18.04	6.50	0.4987	В
10	35.72	2.5116	74.49	38.74	0.7200	B,C
11	36.60	2.4532	135.91	57.87	0.5895	A,C
12	39.54	2.2773	94.55	16.58	0.2428	А
13	40.30	2.2361	45.99	13.30	0.4004	A,C
14	42.54	2.1234	69.97	12.62	0.2497	A,B
15	45.82	1.9788	34.42	8.10	0.3260	А
16	50.22	1.8152	163.46	32.41	0.2745	A,B,C
17	54.96	1.6693	46.06	19.85	0.5968	A,B,C
18	60.02	1.5401	112.92	27.12	0.3325	A,B
19	63.32	1.4676	54.68	10.68	0.2705	С
20	64.10	1.4516	35.79	14.20	0.5493	A,B,C
21	67.76	1.3818	5.41	0.53	0.1345	A,B,C
22	68.18	1.3743	85.83	46.03	0.7424	A,C

Match! Phase Analysis Report

SAMPLE: S-BTG-03 (5-70)

Sample Data

File name File path Data collected Data range Original data range Number of points Step size Rietveld refinement converged Background subtr. Data smoothed Radiation Wavelength S-BTG-03.ORG D:/Sampel Nisa/S-BTG-03 Okt 2, 2023 16:04:46 5.000° - 70.000° 5.000° - 70.000° 3251 0.020 No Alpha2 subtracted No No Yes X-rays 1.540600 Å

Analysis Results

Phase composition (Weight %)

Elemental composition (Weight %)

Element	Amount %)veigl
0	52.3%(*)
Si	34.9%
Mg	12.2%
*LE (sum)	52.9%

Amounts calculated by RIR (Reference Intensity Ratio) method

I

Match! Copyright © 2003-2023 CRYSTAL IMPACT, Bonn, Germany

Peak List

No.	2theta [º]	d [Å]	l/l0 (peak height)	Counts (peak area)	FWHM	Matched
1	9.32	9.4815	39.39	19.60	0.7688	А
2	10.66	8.2924	42.80	11.31	0.4085	
3	12.18	7.2608	163.26	63.52	0.6012	С
4	18.70	4.7413	29.58	4.55	0.2377	
5	19.54	4.5394	87.27	57.40	1.0164	А
6	20.90	4.2469	188.76	61.65	0.5047	A,B
7	24.44	3.6392	142.24	61.58	0.6690	A,C
8	26.72	3.3336	1000.00	196.23	0.3032	В
9	27.18	3.2783	0.14	0.10	1.0973	А
10	27.90	3.1953	27.38	6.38	0.3600	
11	28.60	3.1186	139.61	31.24	0.3458	А
12	30.40	2.9380	26.05	3.90	0.2316	
13	33.12	2.7026	46.58	14.75	0.4894	
14	34.74	2.5802	51.98	21.91	0.6514	А
15	35.80	2.5062	54.82	46.82	1.3200	A,C
16	36.56	2.4558	146.98	147.86	1.5546	A,B
17	38.76	2.3214	40.68	13.00	0.4937	A,C
18	39.52	2.2784	96.96	24.34	0.3879	A,B
19	41.80	2.1593	39.88	12.79	0.4954	A,C
20	42.50	2.1253	68.16	17.09	0.3875	A,B
21	45.86	1.9771	52.60	8.77	0.2576	A,B
22	50.20	1.8159	161.49	29.77	0.2848	A,B,C
23	54.88	1.6716	49.79	19.65	0.6100	A,B,C
. 24	58.48	1.5770	18.65	17.17	1.4222	A,C
772 005).02	1.5401	147.93	53.88	0.5628	A,B,C
PDF	3.42	1.4655	23.22	3.96	0.2638	А
	1.04	1.4528	27.85	5.75	0.3191	A,B,C
	1.82	1.4372	26.05	6.01	0.3563	А
AN	3.28	1.3726	104.09	35.44	0.5262	A,B

Match! Phase Analysis Report

Sample: BTG-1 (5-70)

6 Sample Data File name File path Data collected Data range Original data range Number of points Step size Rietveld refinement converged Background subtr. Data smoothed Radiation Wavelength

BTG-1.ORG D:/DATA XRD/BTG-1 Okt 10, 2023 08:16:53 5.000° - 70.000° 5.000° - 70.000° 3251 0.020 NoAlpha2 subtracted No No Yes X-rays 1.540600 Å

7 Analysis Results

Peak List

No.	2theta [º]	d [Å]	l/l0 (peak height)	Counts (peak area)	FWHM	Matched
1	12.10	7.3086	1000.00	173.84	0.4694	С
2	17.36	5.1042	75.40	5.50	0.1968	В
3	19.40	4.5718	184.17	79.82	1.1704	С
4	19.92	4.4536	206.68	122.46	1.6000	
5	22.96	3.8704	180.57	51.24	0.7663	B,C
6	24.38	3.6480	954.41	148.23	0.4194	С
7	26.64	3.3435	114.05	23.87	0.5652	А
8	32.28	2.7710	82.29	8.67	0.2844	В
9	35.86	2.5022	524.16	228.96	1.1796	B,C
10	36.50	2.4597	186.42	26.89	0.3895	A,B
11	38.28	2.3494	105.78	17.24	0.4400	В
12	39.70	2.2685	108.21	48.08	1.2000	A,B
13	40.04	2.2500	100.80	40.01	1.0720	В
14	41.86	2.1563	182.32	41.50	0.6146	B,C
15	45.00	2.0129	37.59	6.97	0.5006	В
16	50.16	1.8172	9.98	1.63	0.4400	A,B,C
17	51.00	1.7893	61.08	30.71	1.3577	B,C
18	54.26	1.6892	43.06	20.01	1.2547	С
19	54.82	1.6733	45.82	19.54	1.1516	A,B,C
20	56.08	1.6386	32.17	4.59	0.3853	В
21	59.02	1.5638	2.51	1.73	1.8589	В
22	60.16	1.5369	257.73	86.04	0.9015	A,B,C
23	61.58	1.5048	158.33	64.48	1.0998	B,C
24	62.72	1.4802	186.64	23.39	0.3384	В

