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ABSTRACT 

MUHRAM SULA IDRIS. Application of The Fuzzy Mamdani Method to Predict The Amount 
of Marble Production at PT Wutama Tri Makmur, South Sulawesi Province (supervised by 
Aryanti Virtanti Anas and Rini Novrianti Sutardjo Tui) 
 
Marble can be used in homes for furniture, building components such as floors, tables, 
bathrooms, windows. Apart from that, marble can also be used as raw material for making 
trophies, statues, inscriptions, name plates, vandels, etc. Based on marble mining data by PT. 
Wutama Tri Makmur from 2015 - 2021 experienced excess production, causing the stockpile to 
be full and unable to accommodate any more marble. Using this research, marble production can 
be predicted for more efficient mining so as not to exceed stockpile capacity. This research applies 
the Fuzzy Mamdani method which is calculated using the Python programming language. 
application of the Mamdani fuzzy method to predict the amount of marble production through 
several stages, namely fuzzification, implication, rule composition and defuzzification. After 
several results have been predicted, the accuracy of the application of the fuzzy Mamdani method 
is then calculated to determine the percentage of error in the calculation of the fuzzy Mamdani 
method using MAPE. Based on the MAPE results, the calculation error using the fuzzy mamdani 
method is 11.1% and the calculation accuracy of the fuzzy mamdani method is 88.9%. 
 
Keywords: Supply, Demand, Production, Fuzzy Mamdani, Python, MAPE. 
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ABSTRAK 

MUHRAM SULA IDRIS. Penerapan Metode Fuzzy Mamdani untuk Memprediksi Jumlah 
Produksi Marmer di PT Wutama Tri Makmur Provinsi Sulawesi Selatan (dibimbing oleh Aryanti 
Virtanti Anas dan Rini Novrianti Sutardjo Tui) 
 
Marmer dapat digunakan pada rumah untuk furniture, komponen bangunan seperti lantai, meja, 
kamar mandi, jendela. Selain itu marmer juga dapat digunakan sebagai bahan baku pembuatan 
piala, patung, prasasti, papan nama, vandel, dll. Berdasarkan data penambangan marmer yang 
dilakukan PT. Wutama Tri Makmur pada tahun 2015 - 2021 mengalami kelebihan produksi 
sehingga menyebabkan stockpile penuh dan tidak mampu menampung marmer lagi. Dengan 
penelitian tersebut, produksi marmer dapat diprediksi lebih efisien dalam penambangannya 
sehingga tidak melebihi kapasitas stockpile. Penelitian ini menerapkan metode Fuzzy Mamdani 
yang perhitungannya menggunakan bahasa pemrograman Python. penerapan metode fuzzy 
Mamdani untuk memprediksi jumlah produksi marmer melalui beberapa tahapan yaitu 
fuzzyfikasi, implikasi, komposisi aturan dan defuzzyfikasi. Setelah beberapa hasil diprediksi, 
selanjutnya dihitung keakuratan penerapan metode fuzzy Mamdani untuk mengetahui persentase 
kesalahan dalam perhitungan metode fuzzy Mamdani menggunakan MAPE. Berdasarkan hasil 
MAPE, kesalahan perhitungan menggunakan metode fuzzy mamdani sebesar 11,1% dan 
keakuratan perhitungan metode fuzzy mamdani sebesar 88,9%. 
 
Kata Kunci: Penawaran, Permintaan, Produksi, Fuzzy Mamdani, Python, MAPE. 
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CHAPTER I 

INTRODUCTION 

1.1  Background 

Marble is one of the metamorphic rocks with high economic value that can be widely 

used, starting as a floor, patch stone, or decorative stone, until it is used in carvings and chisels 

(Haty, 2011). Marble products are a supporting product or component that are closely related to 

the development sector in Indonesia in general and particularly in projects in housing, buildings, 

and other buildings (Wibowo, 2016). Recommendations for the use of marble based on thickness 

are used as floors with a size of ≤10-40 cm. Based on geochemistry it is used as a material for the 

paper industry, textile coloring, pesticide production, sugar filtering, and cement production, and 

based on its engineering it is used as a floor with a live load of >250 kg/cm², brickwork for deep 

construction, and light-medium building foundations (Kurniawati and Titisari, 2019). 

Companies engaged in the marble industry are faced with a problem, which is the 

existence of such a competitive level of competition. This requires companies to plan or determine 

the amount of production, in order to meet market demand in a timely manner and with the 

appropriate amount. PT Wutama Tri Makmur experienced a decreasing in demand for marble in 

2020 with an average decline of 94% from 2019 due to the corona 19 pandemic. It caused the 

marble stockpile at PT Wutama Tri Makmur in early 2021 to be almost full, based on these 

problems, this research is conducted to be able to manage the amount of marble stone production 

according to the amount of marble available in the stockpile and the amount of consumer demand 

for marble. There are the company's profit is expected to be maximized. 

Maximum profit is obtained from maximum sales. Maximum sales indicate that the 

company can meet existing demands. If the number of products produced by the company is less 

than the number of requests, the company will lose the opportunity to get maximum profit. 

Conversely, if the number of products produced is much more than the number of requests, the 

company will experience a loss (Abrori and Prihamayu, 2015). Therefore, planning the number 
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of products in a company is very important in order to meet market demand appropriately and in 

the appropriate amount. 

In determining the amount of marble production can use the fuzzy Mamdani method. 

Fuzzy logic is a science that can analyze uncertainty (Abrori and Prihamayu, 2015). Fuzzy logic 

is a problem-solving control system methodology, which is suitable to be implemented in simple 

systems, embedded systems, PC networks, multichannel or workstation-based data acquisition, 

and control systems. This methodology can be applied to hardware, software, or a combination 

of both. In classical logic it is stated that everything is binary, which means that it has only two 

possibilities, "Yes or No", "True or False", "Good or Bad", and so on. Therefore, all of these can 

have a membership value of 0 or 1. However, in fuzzy logic the probability of membership value 

is between 0 and 1. This means that a situation may have two values "Yes and No", "True and 

False", "Good and Bad" simultaneously, but the value depends on the fuzzy set operation 

(Sukandy et al., 2014).  

The fuzzy logic of the Mamdani method is applied to manage the amount of marble 

production of PT Wutama Tri Makmur. The fuzzy logic of the Mamdani method can predict the 

amount of marble production per month in 2021 by PT Wutama Tri Makmur. Fuzzy Mamdani 

method is used because at the analysis stage it can be done based on supply and demand data 

which is the main problem for PT Wutama Tri Makmur. The purpose of this study was to use of 

the application of fuzzy logic Mamdani method in making decisions about the amount of marble 

production based on inventory data and the number of requests. 

1.2  Research Problem 

PT Wutama Tri Makmur experienced a decline in profits due to a lack of consumers 

during the corona 19 pandemic. The production of PT Wutama Tri Makmur is not proportional 

to the number of consumers which results in the company's inventory being almost full. The 

marble production process requires careful planning so that the amount of production is not 

excessive or not too little to maintain stability between sales, supply, and total demand. Planning 

the number of products in a company is very important to meet market demand appropriately and 
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appropriately, thus this research statements is how to predict the production of marble by using 

the fuzzy logic of the Mamdani method. 

1.3  Research Purpose 

Based on research problem, the objectives of this research are as follows: 

1. to predict the production of marble by using the fuzzy logic of the Mamdani method in 

making the decision to determine the amount of production based on the supply and 

demand data of marble. 

2. to calculate the accuracy of the Mamdani method by using MAPE based on actual 

production results and predicted production results. 

1.4  Research Advantage 

The advantage of this research is provide input for production management at PT Wutama 

Tri Makmur to maintain between sales, supply, and total demand. Predict the amount of marble 

production based on supply data and the amount of demand. 

1.5  Research Stages 

The research activity was carried out at the mining site of PT Wutama Tri Makmur. The 

data collection process was carried out on January 11, 2021 – April 3, 2021. This study focuses 

on predicting the amount of marble production using the fuzzy mamdani method. The research is 

also supported by several literatures, both books and journals related to the title of the proposed 

research, as well as additional information in the form of experience from expert practitioners in 

the field. The research stages consist of: 

1. Data collection 

The research data collection was obtained directly with the company's permission as 

reference data for analyzing problems from related research. The data collected in this 

study were in the form of marble production data for the last five years, as well as 

observations at the PT Wutama Tri Makmur stockpile. 
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2. Data processing and analysis 

The data collected is processed to calculate the prediction of the amount of marble 

production using the fuzzy mamdani method in the python 3.9.7 application. The result 

of the fuzzy mamdani method is the prediction of the amount of marble production that 

can be mined by PT Wutama Tri Makmur. 

1.6  Research Location 

Marble production mining permit area of PT Wutama Tri Makmur area of 46 ha. located 

in Bontoa Village, Minasate'ne District, Pangkep Regency, South Sulawesi Province. 

Geographically it is limited by 119o35’38,30” east longitude – 119o36’15,10” east longitude and 

04o48’20,10” south longitude – 04o48’53,80” south longitude. The research location can be seen 

in Appendix A. 

The coordinate data or the boundary point of the mining business permit area can be seen 

in Table 1.1 as follows. 

Table 1.1 Coordinate Data of PT Wutama Tri Makmur Marble Production Operation IUP Area 

Benchmark 

Number 

East Longitude South Longitude 

Description Degree 

(⁰) 

Minute 

(') 

Second 

(") 

Degree 

(⁰) 

Minute 

(') 

Second 

(") 

A 119 35 38,30 4 48 20,10  

B 119 35 51,30 4 48 20,10  

C 119 35 51,30 4 48 44,70  

D 119 36 15,10 4 48 44,70 Large = 

E 119 36 15,10 4 48 53,80 ± 46 Ha 

F 119 36 00,10 4 48 53,80  

G 119 36 00,10 4 48 47,30  

H 119 35 30,30 4 48 47,30  
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CHAPTER II 

PRODUCTION QUANTITY PREDICTION USING FUZZY 

MAMDANI IN PYTHON 

2.1  Supply 

The demand for goods and services that are not accompanied by the supply of goods and 

services cannot carry out transactions in the market. The new demand can be fulfilled if the 

producer or seller provides the goods or services needed by these consumers. So supply can be 

interpreted as various quantities of a certain item where a seller is willing to offer his goods or 

services at various price levels (Akhmad, 2014). 

Many things determine the quantity supplied of an item, but when we analyze how the 

market works, one of the determinants is the price of the good. Since the quantity supplied 

increases as the price increases, it can be said that the quantity supplied is positively related to the 

price level. This relationship between price and quantity supplied applies to most types of goods 

in the economy, so it is called the law of supply (The low of supply). If all things are assumed to 

be the same, when the price of an item increases, the amount offered will also increase, on the 

other hand, when the price of the goods decreases, the amount offered will also decrease 

(Akhmad, 2014). 

2.2  Demand 

Demand can be defined as the quantity of a particular good that a consumer wants and is 

able to buy at various price levels. The demand relationship only shows a theoretical relationship 

between price and quantity purchased per unit of time. The law of demand (The low of demand) 

is essentially a hypothesis which states: The relationship between the goods demanded and the 

price of the goods where the relationship is inversely proportional, i.e. when the price increases 

or increases, the quantity of goods demanded will decrease and vice versa if the price decreases, 
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then the number of goods demanded increases. The amount of demand (quantity demand) of an 

item is the amount of goods the buyer is willing and able to pay (Akhmad, 2014). 

2.3  Forecasting 

Prediction is one of the types of data mining if the classification is based on its use. 

Prediction is essentially the same as classification or estimation but is more directed at values in 

the future. In prediction, the processed data is historical data which is used as reference data plus 

simulation data which can be changed according to the possibilities that may occur (Bukhori, 

2017). 

Prediction is knowing the approximate value of an item in the future. The difference 

between prediction, forecasting is prediction can be done both qualitatively and quantitatively. 

Qualitative predictions are predictions based on a party's opinion (judgment forcast) and 

quantitative predictions are predictions based on past data (historical data) and can be made in the 

form of numbers which are commonly referred to as time series data. Quantitative predictions are 

nothing but predictions while qualitative predictions are forecasting, forecasting is seen as a 

process of predicting future variables based on the data of the relevant variables in the past. Past 

data are systematically combined through certain methods and processed for future conditions 

(Jumingan, 2009). 

2.4  Fuzzy Theory 

Most decisions in the real world are inaccurate due to the inaccuracy of understanding 

the goals, constraints, and possible actions. In light of a fuzzy environment, when a decision is 

made the results are highly influenced by personal judgments that can be ambiguous and 

inaccurate. Inaccurate sources can include non-quantifiable information, incomplete information, 

inaccessible information, and partial ignorance. In order to find out a way to solve the problem of 

this inaccuracy, fuzzy set theory as a mathematical tool was proposed by Zadeh in 1965 to deal 

with information uncertainty in decision making process. Since then, this theory has been well 

developed and has found many successful applications (Nozari et al., 2019).  
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A fuzzy set is a class of objects with a continuum of grades of membership. Such a set is 

characterized by a membership (characteristic) function which assigns to each object a grade of 

membership ranging between zero and one (Zadeh, 1965). In fuzzy logic, any number between 0 

and 1 represents a part of truth, while in definite sets working with binary logic only two values 

of 0 and 1 are available. Thus, fuzzy logic can express inaccurate and imprecise judgments and 

act mathematically with them. Utilizing the conventional quantification make it difficult to 

express reasonably the very complicated situations, so using the linguistic variable concept is 

necessary in such situations. A linguistic variable is a variable whose value has the form of a 

phrase or sentence in natural language. Linguistic variables are also very functional in dealing 

with situations described in quantitative terms because these variables’ values are linguistic 

expressions instead of numbers. In practice, linguistic values can be represented using fuzzy 

numbers, the most common of which are triangular fuzzy numbers (TFN). A triangular fuzzy 

number �̃�𝐴 is defined by [(L, M, U)] where L and U are respectively top and bottom boundary of 

�̃�𝐴 as shown in Figure 2.1 (Nozari et al., 2019). 

 
Figure 2.1 Membership function of triangular fuzzy numbers (Nozari et al., 2019). 

Fuzzy Inferece System has 3 basic structure that is Rule Base which is used to do selection 

to fuzzy rule. The database, this component is used to define the membership value of the fuzzy 

set and the reasoning mechanism used to generate the output of the operations performed on the 

fuzzy set. Basically the input given on the fuzzy inference system is in the form of a firm set and 
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will produce the output of a fuzzy set depending on the situation where the fuzzy inference system 

is used (Harliana and Rahim, 2017). 

Generally, there are three types of fuzzy inference system, they are Mamdani, Sugeno, 

and Tsukamoto. All of these three methods can be divided into two processes. The first process 

is fuzzifying the crisp values of input variables into membership values according to appropriate 

fuzzy sets, and these three methods are exactly the same in this process. While the differences 

occur in the second process when the results of all rules are integrated into a single precise value 

for output. Mamdani is often known as the Max-min method. This method was introduced by 

Ebrahim Mamdani in 1975. To get the output required 4 stages are the establishment of the fuzzy 

set: definition of the fuzzy set and the determination of the degree of membership of the input 

crisp on a fuzzy set, application function implication: evaluation of rules fuzzy to generate output 

from each rule, composition rule: aggregation or combination of outputs of all rules, 

defuzzification: calculation of output crisp. The reasoning with the Sugeno method is almost the 

same as the Mamdani method, only the output system is not a fuzzy set, but rather a constant or 

a linear equation. Then a weighting mechanism is implemented to work out the final crisp output 

(Harliana and Rahim, 2017). 

2.5  Fuzzy Mamdani 

Techniques from the field of artificial intelligence may be usefully employed to control a 

complex, nonlinear dynamic plant. Although such plants may be difficult to control manually, it 

may be possible to control them by means of a suitable heuristic program. The effectiveness of 

such programs has been demonstrated in chess playing and theorem proving etc. These programs 

may be very complex and hence difficult to construct, and may also take a long time to evaluate 

decisions. Thus, they have not often been applied to control a dynamic plant, although, in theory, 

it should be possible to do so. On the other hand 'learning' controllers have been widely studied, 

and some of these have indeed been based on fuzzy set theory. These controllers are similar to 

pattern recognisers in that their structure is postulated first, and this is then evaluated with respect 

to its function and convergence properties. The purpose of a heuristic program is to implement a 
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'rule-of-thumb' function of a controller, and, consequently, it may lack structure and generality 

(Mamdani et al, 1974). 

Zadeh's approach, based on fuzzy sets and fuzzy algorithms, provides a general method 

of expressing linguistic rules so that they may be processed quickly by a computer. At the same 

time, it is usually possible for an experienced operator to express the strategy or protocol for 

controlling a plant, using linguistic variables, as a set of rules to be used in the different situations. 

Thus, a control algorithm may be constructed so that its operation does not depend on the rules 

being expressed exhaustively, and so that its performance is adequately logged, which may 

provide clues for subsequent addition to or change of the rules (Mamdani et al, 1974). 

Fuzzy Logic utilizes the area between 0 and 1 which is not known in Binary Logic, or in 

other words 0 and 1 is Binary Logic, while 0 to 1 is fuzzy Logic. Areas between 0 and 1 in the 

Faint Logic are gray areas, or faint areas, or indistinct areas with a range of 0 percent to 100 

percent (Irsan et al., 2019). Fuzzy logic is the study of uncertainty. In fuzzy system theory, a fuzzy 

system concept is known which is used in the prediction process. One of the methods he uses is 

the Mamdani method (Rahakbauw et al., 2019). The mamdani method is often known as the max-

min method. This method was introduced by Ebrahim Mamdani in 1975 (Kartika et al., 2018). 

The Mamdani method is a method that is also often known as the MAX-MIN or MAX-

PRODUCT method. The prediction process for the mamdani method has four stages, namely 

(Rahakbauw et al., 2019): 

1. Fuzzy set 

Fuzzy set operations are required for the inference or reasoning process. In this case what is 

operated is the degree of its membership. There are several things that are the basis for 

understanding fuzzy logic, including (Sukandy et al., 2014): 

a. Fuzzy variables, namely variables to be discussed in a fuzzy system. 

 

 



10 
 

b. Fuzzy set, which is a group that represents a certain condition in a fuzzy variable. The 

fuzzy set has 2 attributes, namely (Abrori and Prihamayu, 2015): 

a) Linguistics, namely naming a group that represents a certain situation or condition 

using natural language, such as: Young, Mage, Old. 

b) Numerical, which is a value (number) that indicates the size of a variable such as: 

40, 25, 50, and so on. 

c. The universe of speech, namely all values that are allowed to be operated in a fuzzy 

variable. 

d. Fuzzy set domain, namely all values allowed in the universe of speech and may be 

operated in a fuzzy set. 

The equation for the fuzzy set is (Rahakbauw et al., 2019): 

𝜇𝜇𝐴𝐴(𝑥𝑥) = �1,                             𝑖𝑖𝑖𝑖 𝑥𝑥 ∈ 𝐴𝐴
0,          𝑖𝑖𝑖𝑖 𝑥𝑥 ∉  𝐴𝐴 𝑜𝑜𝑜𝑜 𝑥𝑥 ∈ 𝐴𝐴 ................................. (2.1) 

where 𝜇𝜇𝐴𝐴 is a function from 𝑥𝑥 (1,0) (Rahakbauw et al., 2019). 

2. Implication 

The general form of the rules used in the implication function is (Abrori and Prihamayu, 2015): 

𝐼𝐼𝐼𝐼  𝑥𝑥  𝑖𝑖𝑖𝑖  𝐴𝐴  𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇  𝑦𝑦  𝑖𝑖𝑖𝑖  𝐵𝐵 ............................................... (2.2) 

Where 𝑥𝑥 and 𝑦𝑦 are scalars, and A and B are fuzzy sets. The proportion that follows IF is 

referred to as an antecedent, while the proportion that follows THEN is referred to as 

consequent (Abrori and Prihamayu, 2015). 

3. Composition rules 

The composition of the rules is an overall conclusion by taking the minimum membership 

level from each consequent application of the implication function by combining all the 

conclusions of each rule (Rahakbauw et al., 2019). The equation for the fuzzy set is (Sukandy 

et al., 2014): 

𝜇𝜇𝐴𝐴∩𝐵𝐵 = 𝑚𝑚𝑖𝑖𝑚𝑚[𝜇𝜇𝐴𝐴(𝑥𝑥),𝜇𝜇𝐴𝐴(𝑥𝑥)] ............................................. (2.3) 
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Where A and B are fuzzy sets of 𝑥𝑥, where shown as the degree of membership of the 𝐴𝐴 ∩ 𝐵𝐵 is 

the result obtained by sharing the award between elements in the sets in question. 

4. Defuzzification 

Defuzzification or also called the affirmation stage, which is to convert fuzzy sets into real 

numbers. The input of this affirmation process is a fuzzy set obtained from the composition of 

fuzzy rules, while the resulting output is a number in the domain of the fuzzy set. The 

defuzzification used in determining production quantities is using the centroid method. The 

following is the defuzzification calculation using the centroid method (Rahakbauw et al., 

2019): 

𝑦𝑦∗ = ∑𝜇𝜇𝑟𝑟(𝑦𝑦)𝑑𝑑𝑦𝑦
∑𝜇𝜇𝑟𝑟(𝑦𝑦)

 ..................................................... (2.4) 

2.6  Python 

Python was developed by Guido van Rossum in 1990 at CWI, Amsterdam as a 

continuation of the ABC programming language. Python is a multipurpose interpretive 

programming language with a design philosophy that focuses on code readability. Python is 

claimed to be a language that combines capabilities, capabilities, with a very clear code syntax, 

and is equipped with a large and comprehensive standard library functionality. One of the features 

available in python is as a dynamic programming language that is equipped with automatic 

memory management. As in other dynamic programming languages, python is generally used as 

a scripting language although in practice the use of this language includes more contexts of use 

that are generally not done using scripting languages. Python can be used for various software 

development purposes and can run on various operating system platforms. Currently, python code 

can be run on various operating system platforms, including (Supardi, 2020): 

1. Linux/Unix 

2. Windows 

3. Mac OS X 

4. Java Virtual machine 
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5. OS/2 

6. Amiga 

7. Palm 

8. Symbian (for Nokia products) 

2.6.1 The Basic Elements of Python 

A Python program, sometimes called a script, is a sequence of definitions and commands. 

These definitions are evaluated and the commands are executed by the Python interpreter in 

something called the shell. Typically, a new shell is created whenever execution of a program 

begins. A command, often called a statement, instructs the interpreter to do something. For 

example, the statement (Guttag, 2017): 

print('Yankees rule!')  

instructs the interpreter to call the function print, which will output the string:  

Yankees rule!  

to the window associated with the shell. Another example, the sequence of commands 

(Guttag, 2017): 

print('Yankees rule!') 

print('But not in Boston!') 

print('Yankees rule,', 'but not in Boston!') 

causes the interpreter to produce the output 

Yankees rule! 

But not in Boston! 

Yankees rule, but not in Boston! 

2.7 Fuzzy in Python 

When you have crisply defined data that is precise and easy to understand, applying hard 

computing to it is perfect. Hard computing is based on binary logic, classical sets, crisp (precise) 

systems and software, basic numerical analysis, etc. But when you try to apply this same approach 

to real-world problems that include imprecise data maybe the dataset is partially true, it has a lot 
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of approximations, and so on—hard computing fails. The best way to tackle this situation is to 

use the soft computing approach (Himanshu and Yunis, 2020). 

A very basic example is 2+2. In this scenario, you can use hard computing to arrive at 4. 

But when you change the equation to 2+x, where x ranges from 0 to 5, soft computing always 

gives better results. Before you move on to understanding exactly what soft computing is, study 

the flowchart in Figure 2.2. It depicts the difference between hard and soft computing when it 

comes to problem solving (Himanshu and Yunis, 2020). 

 
Figure 2.2 Hard computing versus soft computing (Himanshu and Yunis, 2020). 

Soft computing tries to imitate the human mind in order to make decisions. These models 

have cognitive abilities, which include (Himanshu and Yunis, 2020): 

1. Ability to think, 

2. Ability to reason, 

3. Ability to organize, 

4. Ability to memorize, 

5. Ability to recognize, 

6. Ability to process 

When your data is imprecise (it has partial truths and is full of approximations), soft 

computing is the best approach. The following are features of soft computing-based problem-

solving approaches (Himanshu and Yunis, 2020): 
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1. Biologically inspired, 

2. Fault tolerant, 

3. Full of optimizations, 

4. Helps make wiser and more intelligent machines, 

5. Helps in achieving robustness, tractability, and lower costs, 

6. Heavy computation 

7. Goal driven 

2.7.1  Classical Sets 

Classical sets, also called crisp sets, are a collection of objects. Objects can be anything 

belonging in the real world, and sometimes outside the domain as well. For example (Himanshu 

and Yunis, 2020): 

Cars = {Audi, BMW, Mercedes, Porsche} 

This set shows a list of premium cars. You denote a set by using the curly braces, {}. 

Once you have effectively defined different sets, you can visualize them as well. A Venn diagram 

is a visual way to represent sets and their relationships with each other. Figure 2.3 shows a normal 

Venn diagram (Himanshu and Yunis, 2020). 

 
Figure 2.3 Simple Venn diagram (Himanshu and Yunis, 2020). 
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The circles in Figure 2.3 represent two sets, A and B. All the elements that are part of Set 

A will be present in Circle A, while all the elements that are part of Set B will be present in Circle 

B. The circles are called Venn diagrams of Set A and Set B (Himanshu and Yunis, 2020).  

2.7.2 Fuzzy Sets 

Classical sets involve exactly defined values. This means that the Universe of Discourse 

is split into two groups—members and non-members. Therefore, you cannot say that any member 

has a partial membership. For example, if you are pressing brakes or releasing them, these 

processes can be represented by 1 or 0. With Fuzzy Sets, on the other hand, you can have values 

in between as well. Therefore, you can say that the Fuzzy Sets have a degree of membership 

between 0 and 1. For example, you can have values like {0, 0.3, 0.5, 0.7, 1}. The 1 means a full 

brake, 0.7 means a little less brake, 0.5 means half the pressure, 0.3 means very little pressure, 

and 0 means no pressure. In the real world, you rarely see classical sets in action. You deal with 

the values represented by Fuzzy Sets (Himanshu and Yunis, 2020).  

2.7.3  Membership Function 

 In the previous section, you learned that instead of having crisp values of 0 and 1, each 

element can be mapped to a value between 0 and 1. Each value is called the degree of membership 

and is represented by a curve, which depicts a function called a membership function. The value 

is called the membership value. In Figure 2.4, you can see the difference between crisp and Fuzzy 

Sets (Himanshu and Yunis, 2020). 
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Figure 2.4 Difference between crisp set and fuzzy set (Himanshu and Yunis, 2020). 

In a crisp set, you only have two values, represented by 0 and 1, but in a Fuzzy Set, there 

is a range of values, based on the pressure at which the breaks are applied. The curve representing 

the range is the membership function curve. With a different pressure, a different membership 

value will be present, and that can be represented in the membership function curve (Himanshu 

and Yunis, 2020). 

A Fuzzy Set is an extension and gross oversimplification of a classical set. If 𝑥𝑥 is the 

Universe of Discourse and its elements are denoted by 𝑥𝑥, then a Fuzzy Set A in 𝑥𝑥 is defined as a 

set of ordered pairs (Himanshu and Yunis, 2020). 

𝐴𝐴 = {𝑥𝑥,𝜇𝜇𝐴𝐴(𝑥𝑥)|𝑥𝑥𝑥𝑥𝑥𝑥} .................................................. (2.5) 
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𝜇𝜇𝐴𝐴(𝑥𝑥) is called the membership function of 𝑥𝑥 in A. The membership function maps each 

element of 𝑥𝑥 to a membership value between 0 and 1. There are different types of membership 

functions, which are covered in detail in the next chapter. For now, let’s list some of them and 

look at the curves that they represent. This example uses the Scikit Fuzzy package, which has 

multiple methods and classes, so that you can apply the basic Fuzzy Operations effectively. You 

can use the following line to install the Scikit Fuzzy package in the Python environment 

(Himanshu and Yunis, 2020): 

pip install scikit – fuzzy 

Figures 1-10 through 1-14 show the different types of membership functions and the 

curves that they represent (Himanshu and Yunis, 2020). 

 
Figure 2.5 Triangular membership function (Himanshu and Yunis, 2020). 

The graph in Figure 2.5 represents a triangular membership function, and you can use the 

trimf method from the skfuzzy package to find and plot the points. Here is the sample code. The 

next chapter discusses this function in detail. The following code takes an example where a person 

goes into a restaurant and tips a waiter. For tipping purposes, the quality of service is rated from 
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0 to 10. This example looks only at the service quality for now but later it will discuss the actual 

tipping problem (Himanshu and Yunis, 2020): 

import numpy as np 

import skfuzzy as sk 

Defining the Numpy array for Tip Quality: 

x_qual = np.arange(0, 11, 1) 

Defining the Numpy array for Triangular membership functions: 

qual_lo = sk.trimf(x_qual, [0, 0, 5]) 

The graph in Figure 2.6 represents a trapezoidal membership function, and you can use the trapmf 

method from the skfuzzy package to find and plot the points (Himanshu and Yunis, 2020). 

 
Figure 2.6 Trapezoidal membership function (Himanshu and Yunis, 2020). 

Here is the sample code: 

import numpy as np 

import skfuzzy as sk 

Defining the Numpy array for Tip Quality: 

x_qual = np.arange(0, 11, 1) 

Defining the Numpy array for Trapezoidal membership functions: 

qual_lo = sk.trapmf(x_qual, [0, 0, 5,5]) 
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Membership functions represent the degree of truth of a member in a defined Fuzzy Set. 

They are curves that define how each point in the input space is mapped to a degree of membership 

lying between 0 and 1. You may understand this better with the help of an example. Suppose you 

want to rate the service of a particular restaurant. You might rate the service in the following ways 

(Himanshu and Yunis, 2020): 

Awesome 

Average 

Worst 

In classical sets, this can be represented as follows: 

𝑥𝑥 = {′𝐴𝐴𝐴𝐴𝐴𝐴𝑖𝑖𝑜𝑜𝑚𝑚𝐴𝐴,′ 𝐴𝐴𝐴𝐴𝐴𝐴𝑜𝑜𝐴𝐴𝐴𝐴𝐴𝐴, ′𝑊𝑊𝑜𝑜𝑜𝑜𝑖𝑖𝑊𝑊} ...................................... (2.6) 

This can be coded and represented as X = {}, where 2 represents Awesome, 1 represents 

Average, and 0 represents Worst. But you might not want to rate the restaurant in only these three 

ways. You need different ways for customers to express their sentiments. Therefore, you could 

add these ratings as well (Himanshu and Yunis, 2020): 

1. Awesome 

2. Nice 

3. Good 

4. Average 

5. OK 

6. Poor 

7. Worst 

If you again use a classical set, it will contain a lot of code. Instead, you can define a 

function wherein each rating has a specific value. This function will allow you to go beyond the 

ratings. This function has an upper limit and a lower limit. Consider, for example, the sigmoid 

function (You learn about all the membership functions in detail, later in this chapter.) The 

sigmoid function has an upper limit of 1 and a lower limit of 0. That means that all the rating 

categories will have a value that will fall at a point on that curve (see Figure 2.7). 
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Figure 2.7 Curve showing all the rating points as specific values (Himanshu and Yunis, 2020). 

Looking at this curve, you can redefine the crisp set as a Fuzzy Set having values between 

0 and 1. Now, if a person gives a rating, the value (membership value) of that rating can be 

retrieved from the curve. This is what is meant when we say that membership functions represent 

the degree of truth of a member. You can see in this example that every rating has a value that 

tells about its degree of truth (Himanshu and Yunis, 2020).  

The first chapter covered the different types of membership functions in brief. This 

section discusses them in detail. A membership function is used to define Fuzziness present in a 

problem statement. This means that you don’t have to represent all the values in a sample space 

using discrete numbers. Sometimes a member can be a decimal representing its degree of 

membership (Himanshu and Yunis, 2020). 

For example, consider the penalty kick concept in soccer. In discrete terms, the kick can 

be either 1 (a full kick) or 0 (no kick). In real life, that is not the case. The kick speed depends not 

only on the mindset of the shooter, but also on the anticipation of where the goalkeeper will move. 

In this situation, the shooter decides the speed of the kick as well asthe direction in which he aims. 

Speed also cannot be defined just by two discrete values, 0 and 1. The speed will range from 0 to 

1; 0 being no speed and 1 being full speed. Suppose the shooter wants to aim for the top-right 

corner of the goal post. In this situation, the major decision is finding the most accurate speed that 

can give the ball a perfect swing. Too fast and the ball will leave the post, while too slow might 

help the goalkeeper anticipate the direction or prevent the ball from swinging properly. Hence, 
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instead of going for 1, the shooter may go for 0.7 from a Fuzzy Set, which according to him is the 

ideal speed to kick the ball. This concept in a Fuzzy Set is represented by the membership 

functions (Himanshu and Yunis, 2020). 

2.7.4  Triangular Membership Function 

Just as a triangle has three coordinates, a triangular membership function has three 

parameters (Himanshu and Yunis, 2020): 

1. a is the lower boundary 

2. b is the center 

3. c is the upper boundary 

The following equation depicts the triangular membership function (Himanshu and Yunis, 2020): 

𝑖𝑖(𝑥𝑥; 𝐴𝐴,𝑏𝑏, 𝑐𝑐) =

⎩
⎪
⎨

⎪
⎧

0, 𝑥𝑥 ≤ 𝐴𝐴
𝑥𝑥−𝑎𝑎
𝑏𝑏−𝑎𝑎

, 𝐴𝐴 ≤ 𝑥𝑥 ≤ 𝑏𝑏
𝑐𝑐−𝑥𝑥
𝑐𝑐−𝑏𝑏

, 𝑏𝑏 ≤ 𝑥𝑥 ≤ 𝑐𝑐
0, 𝑐𝑐 ≤ 𝑥𝑥 ⎭

⎪
⎬

⎪
⎫

 ...................................... (2.7) 

This example uses the triangular membership function with a soccer example. Suppose the 

shooter can take four kinds of penalty shots (Himanshu and Yunis, 2020): 

1. Full speed straight shot 

2. Medium powered curvy shot 

3. Slow straight shot 

4. Medium fast left shot 

On average, the top speed at which a shooter takes a penalty kick is 80 mph. Therefore, 

there is no way we can say that this speed is slow. Hence we assign a 0% membership to 80 mph. 

Similarly, a speed of 60 mph can be considered 70% fast and 30% medium. Likewise, we can 

assign different memberships to different speeds (Himanshu and Yunis, 2020).  

If we use a triangular membership function, it contains three limits: lower, full, and upper. 

The lower and upper bounds have a membership of 0% while the full value is 100%. The 

remaining values tread linearly. We can assign the following triangular membership functions to 

these categories (Himanshu and Yunis, 2020):  
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1. Full speed as [60, 80, 80] 

2. Medium powered as [40, 50, 70] 

3. Slow as [20, 20, 45] 

4. Medium fast as [50, 60, 80] 

For example, if you defined the triangular membership function for “medium powered” 

as [40, 50, 70], the membership would be 0% at 40 mph, which linearly increases to 100% at 50 

mph, and linearly decreases to 0% at 70 mph. The following Python code shows the execution of 

these triangular membership functions. Figure 2.8 shows the result (Himanshu and Yunis, 2020). 

Importing Necessary Packages: 

import numpy as np 

import skfuzzy as fuzz 

import matplotlib.pyplot as plt 

%matplotlib inline 

Defining the Fuzzy Range from a speed of 30 to 90: 

x = np.arange(30, 80, 0.1) 

Defining the triangular membership functions: 

slow = fuzz.trimf(x, [30, 30, 50]) 

medium = fuzz.trimf(x, [30, 50, 70]) 

medium_fast = fuzz.trimf(x, [50, 60, 80]) 

full_speed = fuzz.trimf(x, [60, 80, 80]) 

Plotting the Membership Functions Defined: 

plt.figure() 

plt.plot(x, full_speed, 'b', linewidth=1.5, label='Full Speed') 

plt.plot(x, medium_fast, 'k', linewidth=1.5, label='Medium Fast') 

plt.plot(x, medium, 'm', linewidth=1.5, label='Medium Powered') 

plt.plot(x, slow, 'r', linewidth=1.5, label='Slow') 

plt.title('Penalty Kick Fuzzy') 
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plt.ylabel('Membership') 

plt.xlabel("Speed (Miles Per Hour)") 

plt.legend(loc='center right', bbox_to_anchor=(1.25, 0.5), 

ncol=1, fancybox=True, shadow=True) 

 
Figure 2.8 Triangular membership of the soccer example (Himanshu and Yunis, 2020). 

2.7.5  Trapezoidal Membership Function 

A trapezoid has four coordinates, so the membership function also has four coordinates 

values: a, b, c, and d, for a crisp value x. This equation can be expanded with multiple cut-points 

(Himanshu and Yunis, 2020): 

𝑖𝑖(𝑥𝑥;𝐴𝐴, 𝑏𝑏, 𝑐𝑐, 𝑑𝑑) =

⎩
⎪
⎨

⎪
⎧

0, 𝑥𝑥 ≤ 𝐴𝐴
𝑥𝑥−𝑎𝑎
𝑏𝑏−𝑎𝑎

, 𝐴𝐴 ≤ 𝑥𝑥 ≤ 𝑏𝑏
1, 𝑏𝑏 ≤ 𝑥𝑥 ≤ 𝑐𝑐

𝑑𝑑−𝑥𝑥
𝑑𝑑−𝑐𝑐

, 𝑐𝑐 ≤ 𝑥𝑥 ≤ 𝑑𝑑
0, 𝑑𝑑 ≤ 𝑥𝑥 ⎭

⎪
⎬

⎪
⎫

 .................................... (2.8) 

In trapezoidal membership functions, we need to provide four points. With the soccer 

example, we have to provide a range based on a specific class. In this membership function, the 

membership reaches 100% from 0% in the center, and then again drops to 0%. Instead of three 

points, as with the triangular membership function, we have four points. This applies the soccer 
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example to the trapezoidal membership function, whose classes are defined as follows (Himanshu 

and Yunis, 2020): 

1. Full speed as [60, 80, 80, 90] 

2. Medium powered as [30, 50, 50, 70] 

3. Slow as [20, 30, 30, 50] 

4. Medium fast as [50, 60, 60, 80]) 

Here is the Python implementation, the result is shown in Figure 2.9 (Himanshu and 

Yunis, 2020): 

Importing Necessary Packages 

import numpy as np 

import skfuzzy as fuzz 

import matplotlib.pyplot as plt 

%matplotlib inline 

Defining the Fuzzy Range from a speed of 30 to 90 

x = np.arange(30, #Defining the trapezoidal membership functions 

slow = fuzz.trapmf(x, [20, 30, 30, 50]) 

medium = fuzz.trapmf(x, [30, 50, 50, 70]) 

medium_fast = fuzz.trapmf(x, [50, 60, 60, 80]) 

full_speed = fuzz.trapmf(x, [60, 80, 80, 90]) 

#Plotting the Membership Functions Defined 

plt.figure() 

plt.plot(x, full_speed, 'b', linewidth=1.5, label='Full Speed') 

plt.plot(x, medium_fast, 'k', linewidth=1.5, label='Medium Fast') 

plt.plot(x, medium, 'm', linewidth=1.5, label='Medium Powered') 

plt.plot(x, slow, 'r', linewidth=1.5, label='Slow') 

plt.title('Penalty Kick Fuzzy') 

plt.ylabel('Membership') 
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plt.xlabel("Speed (Miles Per Hour)") 

plt.legend(loc='center right', bbox_to_anchor=(1.25, 0.5), 

ncol=1, fancybox=True, shadow=True) 90, 0.1) 

 
Figure 2.9 Trapezoidal membership of the soccer example (Himanshu and Yunis, 2020). 

2.7.6  Fuzzy Rules 

The most important thing to understand is the Fuzzy If-Then Rules. A single sample 

Fuzzy Rule looks like this:  

𝐼𝐼𝑖𝑖 𝑥𝑥 𝑖𝑖𝑖𝑖 𝐴𝐴 𝑊𝑊ℎ𝐴𝐴𝑚𝑚 𝑦𝑦 𝑖𝑖𝑖𝑖 𝐵𝐵  .................................................. (2.9) 

In this statement, A and B are called linguistic values. These are the values that assume 

that it has been derived from statistical research, a mathematical model, etc. For example, it can 

take categorical values (good, average, or best), probabilistic values (0.1, 0.3, or 0.9), or any other 

part of an experiment. These values can be part of a Fuzzy Set, which can be a member of the 

Universe of Discourse X and Y. If you break the previous statement into two halves (Himanshu 

and Yunis, 2020): 

1. x is A 

2. y is B 
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The first part is called an antecedent or premise, while the second part is called the consequent or 

conclusion (Himanshu and Yunis, 2020). 

2.7.7  Aggregation in Fuzzy System Modeling 

Before look at aggregation, you must know the steps required for any Fuzzy Inference 

Process (Himanshu and Yunis, 2020): 

1. Whatever the input is, you must match every rule with it. 

2. Determine the output of every rule as a Fuzzy Set. 

3. Aggregate all the rule outputs to get the overall Fuzzy System output Fuzzy Set. 

4. Perform an action based on the output Fuzzy Set. 

The consideration in this section is the third point: aggregation of the output rules. You 

can represent this operation as follows (Himanshu and Yunis, 2020): 

F(y) = Agg (R1(y), R2(y) … R𝑛𝑛 (y)) .................................. (2.10) 

In the previous equation, Agg represented the aggregation operator. All the parameters 

present inside the operator are the membership grades of the output rules for every value of y 

present in Fuzzy Set Y (Himanshu and Yunis, 2020). 

2.7.8  Fuzzy Inference Systems 

The previous two chapters explained the core concepts related to Fuzzy Logic. They 

discussed Fuzzy Sets and how they are different from the classical/crisp sets. You also learned 

about various operations that can be done on them and their properties. Then you learned about 

membership functions, which define the membership values of each element present in a Fuzzy 

Set. You learned about the different types of membership functions. Later, you learned about the 

Fuzzy Rules and reasoning approaches that utilize the concepts of membership functions to give 

various Fuzzy Solutions (Himanshu and Yunis, 2020).  

This chapter looks at real applications of all the concepts that you have learned so far. 

The chapter covers different types of Fuzzy Inference Systems, through which various real-life 

problems are solved in the industry. To understand these systems, you first need to understand 

the processes of Fuzzification and Defuzzification. You have already seen the Fuzzification 
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process in the previous chapter, when you found the membership function values of each element 

of a set to make it a member of a Fuzzy Set. This chapter starts with the concept of Defuzzification 

and then moves on to different Fuzzy Inference Systems (Himanshu and Yunis, 2020). 

When you have to design a system that is quite uncertain, one of the best approaches is 

using Fuzzy Inference Systems. Fuzzy Logic is used when you have a fixed set of rules and need 

to create systems based on that. But, when you add uncertainties inside the process, it requires 

some kind of inference of the process from the existing data. Using a Fuzzy Inference System is 

the way to infer those processes (Himanshu and Yunis, 2020). 

A Fuzzy Inference System (FIS) provides a way of mapping an input space to an output 

space with Fuzzy Logic. FIS tries to mimic the process with which humans solve any problem 

statement using reasoning. FIS does that by using Fuzzy Logic, especially Fuzzy If-Then rules. 

Figure 2.10 represents the Fuzzy Inference System structure (Himanshu and Yunis, 2020). 

 
Figure 2.10 Fuzzy Inference System process (Himanshu and Yunis, 2020) 

All the blocks in the diagram in Figure 2.10 are explained here (Himanshu and Yunis, 

2020): 

1. A database of all the Fuzzy If-Then Rules describing a system 

2. Database of membership functions 

3. Inference operations on Fuzzy Rules 

4. Defuzzification of Fuzzy Results into crisp outputs 
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When we combine all the rules and the membership functions database, it is called a 

knowledge base (Himanshu and Yunis, 2020). 

2.7.9  Defuzzification 

Defuzzification is the process of converting a Fuzzy Set into a crisp set. You know that 

in most applications you have to use Fuzzy Sets, as people’s opinions are never crisp. But when 

you incorporate these Fuzzy values and have to make a decision, you must convert the Fuzzy 

output into crisp values. Therefore, Defuzzification helps convert output given in a Fuzzy Set to 

crisp values. If control system functioning depends on input, the process of Defuzzification 

determines what exactly needs to be done once that input is provided (Himanshu and Yunis, 

2020). 

2.8  Mean Absolute Percentage Error (MAPE) 

Mean Absolute Percentage Error (MAPE) is one of the most popular measures of forecast 

accuracy. This is recommended in most textbooks (Bowerman et al., 2004). Let At and Ft 

represent the actual and estimated values at the data point t. Then, MAPE is defined as (Kim and 

Kim, 2016): 

𝑀𝑀𝐴𝐴𝑀𝑀𝑇𝑇 = 1
𝑁𝑁
∑ �𝐴𝐴𝑡𝑡−𝐹𝐹𝑡𝑡

𝐴𝐴𝑡𝑡
�𝑁𝑁

𝑡𝑡=1  ................................................ (2.11) 

Where N is the number of data points. This approach is useful when the size or magnitude 

of the forecast variable is important in evaluating the accuracy of the forecast. MAPE indicates 

how big the forecast error is compared to the real value in the series. MAPE is scale-independent 

and easy to interpret, which has made it popular among industry practitioners (Kim and Kim, 

2016). 

  


