SKRIPSI

SISTEM KONTROL OTOMATIS AKUARIUM UNTUK KELANGSUNGAN HIDUP IKAN MAS KOKI MENGGUNAKAN METODE LOGIKA FUZZY

Disusun dan diajukan oleh:

KHAIRUS SHABRI ACHMAD D041201010

PROGRAM STUDI SARJANA TEKNIK ELEKTRO FAKULTAS TEKNIK UNIVERSITAS HASANUDDIN GOWA

2024

LEMBAR PENGESAHAN SKRIPSI

SISTEM KONTROL OTOMATIS AKUARIUM UNTUK KELANGSUNGAN HIDUP IKAN MAS KOKI MENGGUNAKAN METODE LOGIKA FUZZY

Disusun dan diajukan oleh

Khairus Shabri Achmad D041201010

Telah dipertahankan di hadapan Panitia Ujian yang dibentuk dalam rangka
Penyelesaian Studi Program Sarjana Program Studi Teknik Elektro
Fakultas Teknik Universitas Hasanuddin
Pada tanggal 20 November 2024
Dan dinyatakan telah memenuhi syarat kelulusan

Menyetujui, Pembimbing Utama,

Dr. A. Ejah Umraeni Salam, S.T., M.T. NIP. 19720908 199702 2 001

Ketua Program Studi,

of Divilna 1 Faizal A Samman, IPU, ACPE, APEC

NIP. 19750605 200212 1 004

PERNYATAAN KEASLIAN

Yang bertanda tangan dibawah ini:

Nama : Khairus Shabri Achmad

NIM: D041201010 Program Studi: Teknik Elektro

Jenjang : S1

Menyatakan dengan ini bahwa karya tulisan saya berjudul

SISTEM KONTROL OTOMATIS AKUARIUM UNTUK KELANGSUNGAN HIDUP IKAN MAS KOKI MENGGUNAKAN METODE LOGIKA FUZZY

Adalah karya tulisan saya sendiri dan bukan merupakan pengambilan alihan tulisan orang lain dan bahwa skripsi yang saya tulis ini benar-benar merupakan hasil karya saya sendiri.

Semua informasi yang ditulis dalam skripsi yang berasal dari penulis lain telah diberi penghargaan, yakni dengan mengutip sumber dan tahun penerbitannya. Oleh karena itu semua tulisan dalam skripsi ini sepenuhnya menjadi tanggung jawab penulis. Apabila ada pihak manapun yang merasa ada kesamaan judul dan atau hasil temuan dalam skripsi ini, maka penulis siap untuk diklarifikasi dan mempertanggungjawabkan segala resiko.

Segala data dan informasi yang diperoleh selama proses pembuatan skripsi, yang akan dipublikasi oleh Penulis di masa depan harus mendapat persetujuan dari Dosen Pembimbing.

Apabila dikemudian hari terbukti atau dapat dibuktikan bahwa sebagian atau keseluruhan isi skripsi ini hasil karya orang lain, maka saya bersedia menerima sanksi atas perbuatan tersebut.

Gowa, 20 November 2024

ABSTRAK

KHAIRUS SHABRI ACHMAD. Sistem Kontrol Otomatis Akuarium Untuk Kelangsungan Hidup Ikan Mas Koki Menggunakan Metode Logika Fuzzy (Dibimbing oleh: A. Ejah Umraeni Salam).

Penelitian ini berfokus pada sistem kontrol otomatis akuarium untuk kelangsungan hidup ikan mas koki dengan metode logika samar (Fuzzy logic). Data diambil dari data primer (Hasil dari data lapangan) dan sekunder (Hasil software Arduino IDE dan MATLAB). Sistem kontrol akuarium ini terdiri dari beberapa inputan yaitu sensor TDS dan pH untuk mengukur kualitas air, sensor ultrasonik untuk mendeteksi ketinggian air, sensor suhu untuk mengukur suhu air, dan RTC untuk jadwal pemberian pakan ikan. Kemudian diproses melalui mikrokontroler Arduino Mega 2560 yang diprogram menggunakan Arduino IDE untuk mengolah data dari sensor-sensor tersebut dan disesuaikan dengan software MATLAB. Hasil keluaran pada sistem mencakup motor servo sebagai pernggerak pada feeder pakan, relay untuk mengendalikan solenoid valve, pompa pembuangan, water heater, dan chiller pendingin, serta LCD untuk menampilkan data pengukuran secara real-time. Pada pengujian sensor yang dilakukan, diperoleh rata-rata kesalahan untuk tiap sensor yaitu sensor pH sebesar 1,1243%, sensor TDS sebesar 2,427%, sensor suhu sebesar 0,8660%, dan sensor jarak sebesar 0,6728%. Pada pengujian aktuator diperoleh data yang sesuai set poin yang sudah ditetapkan. Pada akuarium sistem kontrol, pertambahan Panjang mutlak ikan sebesar 1,5 cm lebih tinggi 0,6 cm dibandingkan akuarium konvensional sebesar 0,9 cm, nilai Laju pertumbuhan spesifik ikan menggunakan sistem kontrol sebesar 10% lebih baik dibandingkan akuarium konvensional sebesar 6,2%, dan tingkat kelansungan hidup sebesar 80% lebih tinggi 30% dibandingkan akuarium konvensional 50%.

Kata Kunci: Sistem kontrol, Fuzzy logic, Ikan mas koki, Kelangsungan hidup, Arduino, MATLAB.

ABSTRACT

KHAIRUS SHABRI ACHMAD. Aquarium Automatic Control System for Survival of Goldfish Using Fuzzy Logic Method (Supervised by: A. Ejah Umraeni Salam).

This research focuses on the automatic control system of the aquarium for the survival of chef goldfish with fuzzy logic method. Data is taken from primary data (Results from field data) and secondary (Results of Arduino IDE and MATLAB software). This aquarium control system consists of several inputs, namely TDS and pH sensors to measure water quality using the fuzzy logic method, ultrasonic sensors to detect water levels, temperature sensors to measure water temperature, and RTC for fish feeding schedules. Then processed through the Arduino Mega 2560 microcontroller which is programmed using the Arduino IDE to process data from these sensors and adjusted with MATLAB software. The output of the system includes a servo motor as a driver for the feed feeder, relays to control the solenoid valve, drain pump, water heater, and cooling chiller, as well as an LCD to display real-time measurement data. In the sensor testing carried out, the average error for each sensor is obtained, namely the pH sensor of 1.1243%, the TDS sensor of 2.427%, the temperature sensor of 0.8660%, and the distance sensor of 0.6728%. In actuator testing, data is obtained according to the set points that have been set. In the control system aquarium, the absolute length increase of fish by 1.5 cm is 0.6 cm higher than the conventional aquarium of 0.9 cm, the specific growth rate of fish using the control system is 10% better than the conventional aquarium of 6.2%, and the survival rate of 80% is 30% higher than the conventional aquarium of 50%.

Keywords: Control System, Fuzzy Logic, Chef Goldfish, Survival of the fittest, Arduino, MATLAB.

DAFTAR ISI

LEMBA	AR PENGESAHAN SKRIPSI	
	ATAAN KEASLIAN	
	AK	
	ACT	
	R ISI	
	IR GAMBARR TABEL	
	R LAMPIRAN	
	PENGANTAR	
	PENDAHULUAN	
1.1	Latar Belakang	1
1.2	Rumusan Masalah	3
1.3	Tujuan Penelitian	4
1.4	Manfaat Penelitian	4
1.5	Batasan Masalah	4
BAB II	TINJAUAN PUSTAKA	5
2.1	Sistem Monitoring dan Kontrol	5
2.2	Ikan Mas Koki (Carassius Auratus)	5
2.3	Tingkat Kelangsungan Hidup	<i>6</i>
2.4	Pertumbuhan Panjang Mutlak	<i>6</i>
2.5	Laju Pertumbuhan Spesifik	7
2.6	Parameter Kualitas Air	8
2.7	Penjadwal pemberian pakan	9
2.8	Logika Fuzzy (Fuzzy Logic)	10
2.9	Ulasan Penelitian Serupa	11
BAB II	I METODE PENELITIAN	13
3.1	Perancangan Sistem	13
3.1.		14
3.1.	.2 Perancangan Perangkat Lunak (Software)	16
3.2	Waktu dan Lokasi Penelitian	23
3.3	Alat dan Bahan	24
3.3.	.1 Spesifikasi Komponen	28
3.4	Teknik Analisis	38
3.5	Alur Penelitian	39
3.6	Desain Perancangan Akuarium	41
3.7	Perancangan Sistem Kontrol Feeder Pakan	43

3.8	Per	ancangan Sistem Kontrol Suhu Air	44
3.9	Perancangan Sistem Kontrol Kualitas Air		45
3.10	Rai	ncangan Pengujian	46
3.1	0.1	Pengujian Sensor	46
3.1	0.2	Pengujian Aktuator	48
BAB IV	/ HA	ASIL DAN PEMBAHASAN	50
4.1		sil Perancangan Alat	
4.2	Has	sil Pengujian Alat	51
4.2	.1	Pengujian tingkat keasaman sensor pH	51
4.2	.2	Pengujian tingkat kekeruhan sensor TDS gravity	52
4.2	.3	Hasil pengujian sensor suhu	53
4.2	.4	Hasil pengujian sensor ultrasonik	54
4.2	.5	Pengujian aktuator suhu	55
4.2	.6	Pengujian solenoid valve terhadap ketinggian air	56
4.2	.7	Pengujian kualitas air	57
4.2	.8	Pengujian real time clock (RTC) terhadap feeder pakan	58
4.3	Pen	gukuran Data Sistem Monitoring Offline	59
4.3	.1	Data sistem kontrol pH air	59
4.3	.2	Data sistem kontrol TDS air	60
4.3	.3	Data sistem kontrol suhu air	62
4.4	Da	ta Pertumbuhan Ikan Mas Koki	64
4.4	.1	Tingkat kelangsungan hidup	64
4.4	.2	Pertumbuhan panjang mutlak	65
4.4	.3	Laju pertumbuhan spesifik	66
BAB V	KES	SIMPULAN DAN SARAN	67
5.1	Ke	simpulan	67
5.2	Sar	an	68
		USTAKA	
LAMP	lRA]	V	72

DAFTAR GAMBAR

Gambar 1 Ikan mas koki	6
Gambar 2 Pengukuran kualitas air	
Gambar 3 Pakan pellet ikan	10
Gambar 4 Konsep dasar logika fuzzy	11
Gambar 5 Perancangan sistem penelitian	13
Gambar 6 Visualisasi perancangan perangkat keras sistem kontrol akuarium	15
Gambar 7 Data pengukuran software arduino IDE	17
Gambar 8 Variabel tingkat kekeruhan (TDS)	18
Gambar 9 Variabel tingkat keasaman (pH)	19
Gambar 10 Variabel tingkat kualitas air	20
Gambar 11 Daerah hasil komposisi	22
Gambar 12 Data pengukuran software MATLAB	23
Gambar 13 Alur penelitian	39
Gambar 14 Desain perancangan akuarium	41
Gambar 15 Sistem kontrol feeder pakan	
Gambar 16 Sistem kontrol suhu air	44
Gambar 17 Sistem kontrol kualitas air	45
Gambar 18 Hasil perancangan alat	
Gambar 19 Pengujian sensor pH	
Gambar 20 Pengujian sensor TDS gravity	
Gambar 21 Pengujian sensor suhu	53
Gambar 22 Pengujian sensor ultrasonik	54
Gambar 23 Pengujian aktuator suhu chiller dan water heater	55
Gambar 24 Pengujian solenoid valve	56
Gambar 25 Pengujian kualitas air	
Gambar 26 Pengujian feeder pakan	58
Gambar 27 Sistem monitoring offline	59
Gambar 28 Sistem monitoring tingkat keasaman (pH)	60
Gambar 29 Sistem monitoring tingkat kekeruhan (TDS)	61
Gambar 30 Sistem monitoring suhu	63
Gambar 31 Grafik perbandingan tingkat kelangsungan hidup	
Gambar 32 Grafik perbandingan pertumbuhan panjang mutlak	
Gambar 33 Grafik perbandingan laju pertumbuhan spesifik	66

DAFTAR TABEL

Tabel 1 Ulasan penelitian serupa	11
Tabel 2 Nilai linguistik tingkat kekeruhan (TDS)	. 17
Tabel 3 Nilai linguistik tingkat keasaman (pH)	. 18
Tabel 4 Nilai linguistik tingkat kualitas air	
Tabel 5 Aturan <i>fuzzy</i> kualitas air	. 20
Tabel 6 Data logika <i>fuzzy</i>	. 21
Tabel 7 Perangkat keras	. 24
Tabel 8 Perangkat Lunak	. 27
Tabel 9 Spesifikasi mikrokontroler arduino mega 2560	. 28
Tabel 10 Spesifikasi board sensor TDS	
Tabel 11 Spesifikasi sensor suhu DS18B20	. 30
Tabel 12 Spesifikasi board sensor pH-4502C	. 30
Tabel 13 Spesifikasi sensor ultrasonik JSN-SR04T	
Tabel 14 Spesifikasi real time clock	
Tabel 15 Spesifikasi LCD I2C	. 33
Tabel 16 Spesifikasi adaptor	. 34
Tabel 18 Spesifikasi relay	. 35
Tabel 19 Perbandingan sensor pH dan alat ukur pH	. 51
Tabel 20 Perbandingan sensor TDS dan alat ukur TDS	. 52
Tabel 21 Perbandingan sensor suhu dan alat ukur	. 53
Tabel 22 Perbandingan sensor jarak dan alat ukur	. 54
Tabel 23 Pengujian aktuator suhu	
Tabel 24 Pengujian solenoid valve	. 56
Tabel 25 Pengujian kualitas air	. 57
Tabel 26 Pengujian RTC untuk <i>feeder</i> pakan	. 58
Tabel 27 Data hasil monitoring tingkat keasaman (pH)	. 60
Tabel 28 Data hasil monitoring TDS	
Tabel 29 Data hasil monitoring suhu	. 62
Tabel 30 Monitoring kualitas air dan jadwal pakan	. 63
Tabel 31 Hasil perbandingan kelangsungan hidup	
Tabel 32 Hasil perbandingan panjang mutlak	
Tabel 33 Hasil perbandingan laju pertumbuhan	

DAFTAR LAMPIRAN

Lampiran 1 Program Pengujian Sensor Suhu	72
Lampiran 2 Program Pengujian Sensor TDS	74
Lampiran 3 Program Pengujian Sensor pH	75
Lampiran 4 Program Kalibrasi Sensor pH	
Lampiran 5 Program Pengujian Sensor Ultrasonik	77
Lampiran 6 Program Pengujian Motor Pakan Ikan	
Lampiran 7 Program Pengujian LCD I2C	79
Lampiran 8 Program Integrasi Sistem	79
Lampiran 9 Percobaan Jumlah Pakan	
Lampiran 10 Dokumentasi Penelitian	94

KATA PENGANTAR

Puji dan Syukur penulis panjatkan kepada Allah SWT. yang Maha Pengasih dan Maha Penyayang sehingga penulis dapat menyelesaikan tugas akhir ini dengan judul "SISTEM KONTROL OTOMATIS AKUARIUM UNTUK KELANGSUNGAN HIDUP IKAN MAS KOKI MENGGUNAKAN METODE LOGIKA *FUZZY*". Penyusunan tugas akhir merupakan salah satu syarat kelulusan pada pendidikan strata satu (S1) di Departemen Teknik Elektro Fakultas Teknik Universitas Hasanuddin sehingga penulisan tugas akhir ini tidak terlepas sebagai pemenuhan penulis untuk menyelesaikan studi sarjana.

Dalam penyelesaian tugas akhir, penulis menyadari banyaknya dukungan dan bantuan dari berbagai pihak. Oleh karena itu, pada kesempatan ini penulis mengucapkan terima kasih sebesar-besarnya kepada:

- Ibu dan Ayah tercinta, Ibu Sastia Bahreni Nurdin, S.T. dan Bapak Achmad Rusdy, S.T., yang tak henti-hentinya memberikan doa, dukungan dari berbagai aspek, inspirasi untuk terus bertahan menjadi lulusan teknik dan semangat kepada penulis sehingga tugas akhir ini dapat terselesaikan dengan baik.
- Saudara penulis, Noor Faiz Achmad S.T., Nasywa Ramadhani Achmad, dan Annisa Alifah Rusdy yang telah banyak membantu penulis dan dukungan kepada penulis selama tugas akhir berlangsung hingga selesai.
- 3. Ibu Dr. A. Ejah Umraeni Salam, S.T., M.T. selaku dosen pembimbing yang senantiasa memberikan arahan, bimbingan, dan dukungan yang sangat berharga dalam proses penyelesaian tugas akhir penulis.
- 4. Bapak Dr. Anshar, S.T., M.Sc (Research)., Ph.D., Ibu Ida Rachmaniar Sahali, S.T., M.T., dan Ibu Dianti Utamidewi, S.T., M.T. selaku dosen penguji penulis yang telah menyempatkan waktunya dan memberikan berbagai saran, koreksi, dan arahan yang berarti dalam penyelesaian tugas akhir penulis.
- 5. Seluruh dosen pengajar dan staf Departemen Teknik Elektro Universitas Hasanuddin, yang telah memberikan bimbingan, pendidikan, dan bantuan kepada penulis selama menempuh studi di Universitas Hasanuddin.

- 6. Selusin20 yakni Ayu, Aqila, Aflah, Akhsa, Adit, Hayul, Bryan, Janwar, Arthur, Dim, dan Fajar yang telah memberikan berbagai semangat dan dukungan kepada penulis selama menempuh perkuliahan di Universitas Hasanuddin.
- 7. Keluarga Besar Amsterdam Institute yang telah bersedia menyediakan lokasi tugas akhir penulis, memberikan semangat dan dukungan tiada henti, menjadi guru terbaik serta memberikan solusi dari segala keluh kesah penulis selama ini
- 8. Keluarga KOMTEK09 sebagai keluarga terbaik yang membantu mendukung, menyemangati, dan selalu ada untuk penulis selama ini.
- 9. Keluarga Teknik 2020, terutama pengurus Kabinet Akselerasi yang selalu bersinergi serta senantiasa mendukung maupun menjadi saudara terbaik dikala suka maupun duka pada masa perkuliahan di Fakultas Teknik.
- 10. Keluarga Supriyanto yakni teman-teman KKN penulis, Itin, Ayu, Satria, Angga, Eki, Fani dan terkhusus Shadiqah Fitri telah senantiasa membersamai, meluangkan waktunya, memberi motivasi, dukungan, dan bantuan kepada penulis sehingga penulis dapat menyelesaikan skripsi ini dengan baik.
- 11. Teman-teman PROCEZ20R yang telah menjadi keluarga penulis selama menempuh perkuliahan di Universitas Hasanuddin. Terima kasih telah memberikan banyak kenangan selama ini dan tetap semangat untuk mencapai cita-cita masing-masing.
- 12. Teruntuk diri saya sendiri yang telah berjuang hingga akhir dan tak pernah menyerah hingga menyelesaikan tugas akhir serta lulus dari Universitas Hasanuddin.

Penulis sepenuhnya menyadari bahwa tugas akhir ini masih memiliki kekurangan dan jauh dari kata sempurna. Oleh karena itu, penulis terbuka terhadap kritik dan saran yang membangun dari para pembaca demi pengembangan penelitian ini dan peningkatan kualitas diri penulis. Semoga kekurangan yang ada bisa menjadi pembelajaran bagi kita semua. Akhir kata, penulis berharap karya ini dapat turut berkontribusi dalam perkembangan ilmu

pengetahuan dan teknologi serta bermanfaat bagi banyak orang di masa mendatang.

BAB I PENDAHULUAN

1.1 Latar Belakang

Ikan hias adalah hewan air yang populer sebagai penghias rumah dan memberikan manfaat rekreasi serta relaksasi. Selain membantu mengurangi stres melalui keindahan gerakannya di akuarium, ikan hias juga sangat serbaguna dalam budidaya. Dengan perkembangan zaman, peran ikan hias tidak lagi hanya sebagai hiburan, tetapi juga mencakup aspek ekonomi dan lingkungan. Banyak jenis ikan hias yang dibudidayakan untuk memenuhi permintaan pasar, baik lokal maupun internasional, menjadikannya peluang bisnis yang menjanjikan. Keindahan, simbolisme budaya, serta kemudahan perawatan menjadikan ikan hias salah satu hewan peliharaan yang digemari oleh berbagai kalangan. (Andriadhi et al., 2016).

Air sebagai media hidup hewan budidaya rentan terhadap kontaminasi, yang dapat mempengaruhi biota budidaya dan menjadi faktor pembatas dalam perikanan. Air berperan penting dalam kehidupan makhluk air, tidak hanya sebagai media kehidupan, tetapi juga dalam proses metabolisme, baik sebagai medium transportasi dalam tubuh maupun sebagai zat yang berperan dalam reaksi kimia metabolik. Kualitas air sangat mempengaruhi kelangsungan hidup organisme, sehingga harus dikendalikan secara ketat sebagai faktor utama pengelolaan sumber daya perairan. Air budidaya perlu dipantau karena dapat menyebarkan penyakit (Mustafa Arief, 2020).

Menurut data dari Dinas Kelautan dan Perikanan Kabupaten Tulungagung, produksi ikan mas koki di wilayah tersebut mengalami penurunan hingga triwulan ketiga pada tahun 2014. Pada triwulan pertama, jumlah produksi mencapai 7.215.197 ekor, kemudian menurun menjadi 5.409.062 ekor di triwulan kedua, dan berkurang lagi menjadi 4.466.859 ekor di triwulan ketiga. Penurunan ini disebabkan oleh berbagai faktor, seperti terbatasnya ketersediaan benih, kondisi cuaca yang tidak menentu, dan masalah lainnya. Pembudidaya ikan mas koki juga sering menghadapi tantangan berupa serangan penyakit yang mempengaruhi kualitas ikan. Pemeliharaan ikan mas koki membutuhkan ketelatenan dan perawatan ekstra

dibandingkan ikan hias lainnya untuk menghasilkan ikan berkualitas baik. Perawatan tersebut meliputi pemjernihan kolam secara rutin, pemberian pakan yang disesuaikan dengan usia ikan, serta pengaturan suhu air agar ikan tidak mudah terserang penyakit. (Dinas Kelautan dan Perikanan, 2014). Saat ini budidaya ikan mas koki sudah banyak dilakukan masyarakat, salah satu kendalanya penurunan kualitas air yang cepat akibat dari kotoran ikan dan sisa pakan. Beberapa upaya untuk mempertahankan kualitas air di antaranya dengan filterisasi dan akuaponik (Fazil et al., 2017).

Saat ini, banyak orang menikmati memelihara ikan hias air tawar, Namun, ketika mereka harus bepergian untuk waktu yang cukup lama, mereka menghadapi kesulitan karena tidak dapat mengawasi langsung pemberian pakan ikan, penjagaan suhu air dalam akuarium, dan kualitas air yang penting bagi ikan hias. Kebanyakan dari mereka khawatir terhadap tiga hal ini: pemberian pakan yang harus dilakukan secara rutin tiap hari, penggantian air secara berkala untuk menjaga kualitas air, serta menjaga suhu air yang diperlukan agar ikan tetap aktif pada kondisi suhu lingkungan, terutama saat mereka tidak berada di rumah.

Salah satu metode dalam pengelolaan ikan adalah pemberian pakan. Namun, sistem pemberian pakan ikan pada umumnya masih bergantung pada sumber daya manusia secara manual, di mana pakan disebarkan langsung ke dalam akuarium menggunakan tangan. Sistem manual ini memiliki beberapa kelemahan, seperti sering terjadinya kesalahan dalam penjadwalan pemberian pakan dan kurangnya kontrol terhadap takaran setiap kali pakan diberikan. Pemberian pakan yang berlebihan dapat menyebabkan peningkatan kadar amoniak (NH₃). Kelebihan amoniak ini bisa mengakibatkan pembengkakan pada sel-sel insang dan hati ikan (Witono et al.,2017). Kegagalan pengelolaan ikan terjadi pada pembentukan berat optimal dan infeksi jamur pada ikan mas koki yang disebabkan oleh ketidaksesuaian penanganan suhu dan keasaman air dengan standar yang dianjurkan. Para pembudidaya sering kali menilai keasaman air berdasarkan kekeruhan air, sementara jarang memperhatikan suhu air, yang dapat menyebabkan ikan mas koki lebih rentan terkena infeksi jamur (Andriani et al., 2018).

Pemberian pakan ikan serta pengaturan kestabilan suhu air dapat menyebabkan penurunan kualitas air. Masalah kualitas air yang buruk ini juga disebabkan oleh rendahnya frekuensi pergantian air. Beberapa parameter kualitas air yang biasanya dipantau meliputi suhu, tingkat kecerahan, pH, oksigen terlarut, karbondioksida, alkalinitas, kesadahan, fosfat, nitrogen, dan lainnya (Imam T., 2010). Untuk memelihara ikan mas koki dengan baik, perlu ditekankan pengelolaan kualitas air yang optimal agar memenuhi standar yang diperlukan untuk mendukung kehidupan ikan tersebut. Air memiliki peran vital sebagai lingkungan hidup bagi organisme akuatik. Masalah dalam budidaya ikan hias sering kali muncul akibat penumpukan feses dan sisa pakan yang tidak terkelola dengan baik, serta kurangnya penggunaan filter air. Hal ini dapat menurunkan kualitas air dan berdampak pada kesehatan ikan. (Fazil et al., 2017).

Penelitian-penelitian yang telah dikaji dan dibaca menjadi landasan peneliti untuk menjaga kualitas air, mengatur suhu air dan penjadwalan pemberian pakan ikan demi meningkatkan pertumbuhan dan kelangsungan hidup ikan mas koki. Adapun judul dari penelitian ini adalah " SISTEM KONTROL OTOMATIS AKUARIUM UNTUK KELANGSUNGAN HIDUP IKAN MAS KOKI MENGGUNAKAN METODE LOGIKA FUZZY".

1.2 Rumusan Masalah

Berdasarkan uraian pada latar belakang, maka rumusan masalah pada penelitian ini adalah sebagai berikut:

- 1. Bagaimana perancangan sistem kontrol otomatis berbasis sensor dan logika fuzzy dapat meningkatkan kualitas air, suhu, dan pemberian pakan ikan secara real-time?
- 2. Bagaimana efisiensi dan akurasi sensor dalam sistem kontrol akuarium untuk memengaruhi kinerja sistem?
- 3. Bagaimana pengaruh sistem kontrol otomatis terhadap pertumbuhan ikan dan tingkat kelangsungan hidup dibandingkan akuarium konvensional?

1.3 Tujuan Penelitian

Tujuan dari perancangan alat ini adalah sebagai berikut:

- 1. Menganalisis efektivitas perancangan sistem kontrol otomatis berbasis sensor dan logika fuzzy dalam meningkatkan kualitas air, suhu, dan pemberian pakan ikan secara *real time*.
- Mengevaluasi tingkat akurasi sensor dalam sistem kontrol akuarium serta dampaknya terhadap kinerja sistem.
- 3. Mengukur pengaruh sistem kontrol otomatis terhadap pertumbuhan ikan dan tingkat kelangsungan hidup dibandingkan akuarium konvensional

1.4 Manfaat Penelitian

Penelitian ini memiliki beberapa manfaat sebagai berikut:

- 1. Bagi penulis, penelitian ini dapat menjadi evaluasi praktis dari penerapan ilmu teoritis yang dipelajari sekaligus sebagai tolak ukur kemampuan peneliti.
- 2. Bagi mahasiswa, penelitian ini diharapkan dapat berkontribusi sebagai dasar pengembangan penelitian mengenai topik yang serupa.
- Bagi Masyarakat, penelitian ini diharapkan dapat menambah wawasan terkait pengaruh kualitas air dan pemberian pakan terhadap pertumbuhan dan kelangsungan hidup ikan mas koki dengan menggunakan sistem kontrol otomatis.
- 4. Bagi Institusi Pendidikan Departemen Teknik Elektro dengan fokus pada Teknik kendali, penelitian ini dapat berperan sebagai referensi akademik untuk mengarahkan penelitian lebih lanjut dalam ilmu pengetahuan mata kuliah sistem instrumentasi dan sistem kendali digital.

1.5 Batasan Masalah

Parameter pengukuran terfokus pada kualitas air akuarium menggunakan metode logika samar (Fuzzy Logic), penjadwalan pemberian pakan dengan real time clock, pengaturan suhu air menggunakan set point, kelangsungan hidup (SR), Pertumbuhan panjang mutlak (L), dan Laju pertumbuhan spesifik (SGR).

BAB II TINJAUAN PUSTAKA

2.1 Sistem Monitoring dan Kontrol

Sistem monitoring dan kontrol merupakan salah satu bentuk pengaturan terhadap suatu instalasi atau fasilitas. Sistem ini diterapkan secara luas di berbagai sektor industri untuk memantau dan mengevaluasi kinerja suatu fasilitas. Saat ini, ada banyak perangkat lunak yang telah dikembangkan untuk melaksanakan fungsi ini, yang dikenal sebagai *Human Machine Interface* (HMI). Melalui HMI, pengguna dapat melihat visualisasi dari fasilitas yang sebenarnya untuk memantau kinerjanya. Tujuan utama dari penerapan sistem ini adalah memungkinkan fungsi monitoring dan kontrol tanpa kehadiran langsung di lokasi fasilitas, sehingga mempermudah pengelolaan dan pengawasan secara efektif (Sori, 2013)

2.2 Ikan Mas Koki (Carassius Auratus)

Ikan mas koki (Carassius auratus) adalah ikan air tawar yang hidup di perairan dangkal dengan aliran air yang tenang. Budidaya ikan ini pertama kali dilakukan oleh masyarakat Tiongkok pada tahun 1729. Ikan mas koki termasuk dalam keluarga cyprinidae. Pada masa Dinasti Ming (1368-1644), popularitas ikan mas koki meningkat, dan banyak varietas dengan bentuk tubuh unik mulai bermunculan. Setelah itu, penyebaran ikan mas koki meluas ke Jepang (Rahmat A., 2009). Ikan mas koki merupakan salah satu ikan hias yang paling populer di kalangan pecinta ikan hias saat ini. Hal ini dikarenakan ikan mas koki memiliki warna dan bentuk yang menarik dibandingkan dengan ikan hias lainnya (Andriani et al., 2018). Budidaya Carassius auratus bertujuan untuk meningkatkan kualitas dan kuantitas ikan mas koki. Budidaya ini sangat bergantung pada media air yang menjadi tempat hidup bagi ikan. Media air berfungsi sebagai ruang gerak ikan serta sebagai sumber makanan alami, karena mengandung berbagai nutrisi yang mendukung kehidupan dan pertumbuhan organisme-organisme kecil yang menjadi pakan ikan (Susanto et al., 2017).

Gambar 1 Ikan mas koki

(Sumber: sumateraekspres.bacakoran.co)

2.3 Tingkat Kelangsungan Hidup

Kelangsungan hidup atau *Survival Rate* (SR) adalah rasio antara jumlah individu yang masih hidup di akhir pemeliharaan dengan jumlah individu yang hidup di awal pemeliharaan. Kelangsungan hidup ikan mencerminkan peluang hidup pada waktu tertentu (Mulqan et al., 2017). Perhitungan tingkat kelangsungan hidup ikan dilakukan dengan menggunakan rumus sebagai berikut:

$$SR = \left| \frac{Nt}{No} \right| x100\% \tag{1}$$

dimana,

SR = Kelangsungan hidup (%),

Nt = Jumlah akhir ikan hidup,

No = Jumlah awal ikan hidup.

2.4 Pertumbuhan Panjang Mutlak

Pertumbuhan panjang mutlak (L) adalah selisih antara panjang akhir dan awal pemeliharaan ikan (Lucas et al., 2015). Pertumbuhan panjang mutlak dapat dihitung dengan menggunakan rumus sebagai berikut.

$$L = L_t - L_0 \tag{2}$$

dimana,

L = Pertumbuhan panjang mutlak ikan (cm),

Lt =Panjang ikan pada akhir pemeliharaan (cm),

L0= Panjang ikan pada awal pemeliharaan (cm).

2.5 Laju Pertumbuhan Spesifik

Laju pertumbuhan spesifik atau *Specific Growth Rate* (SGR) adalah tingkat pertumbuhan organisme dalam periode waktu tertentu, dinyatakan sebagai persentase peningkatan berat per hari (Muchlisin et al., 2016). Laju pertumbuhan spesifik ikan dapat dihitung dengan menggunakan rumus sebagai berikut.

SGR (%) =
$$\left| \frac{(Wt - Wo)}{t} \right| x 100\%$$
 (3)

dimana,

SGR= laju pertumbuhan spesifik (%/hari),

Wo= Berat tubuh rata-rata awal pemeliharaan (gram),

Wt= Berat tubuh rata-rata akhir pemeliharaan (gram),

t= Waktu pemeliharaan (hari).

2.6 Parameter Kualitas Air

Pertumbuhan ikan budidaya dipengaruhi oleh berbagai faktor, baik internal maupun eksternal. Faktor internal meliputi genetika, usia, jenis kelamin, penyakit, dan pengaruh hormon. Sementara itu, faktor eksternal mencakup hal-hal seperti perubahan suhu, kadar oksigen dalam air, tingkat salinitas, kesuburan perairan, dan pencemaran. Kualitas air memainkan peran penting dalam kelangsungan hidup dan pertumbuhan ikan karena air merupakan media hidup ikan; jika perairan tercemar, hal ini akan menghambat pertumbuhan ikan yang dibudidayakan (Willem et al., 2019). Adapun budidaya ikan mas koki memiliki parameter kualitas air yaitu Tingkat keasaman, Tingkat kekeruhan, dan pengontrolan suhu air akuarium.

Gambar 2 Pengukuran kualitas air

(Sumber: www.kompas.com)

2.6.1 Parameter tingkat keasaman pH air

Pada ikan budidaya nilai pH air yang sangat asam akan mengakibatkan ikan mati. Selain itu, pH air yang sangat tinggi (sangat basa) mengakibatkan perkembangan ikan terkendala. Air kolam yang asam juga memiliki pengaruh terhadap berkurangnya nafsu makan ikan (Aulia et al., 2022). Adapun kadar pH air yang optimal untuk kegiatan pembesaran ikan mas koki adalah 6,5 - 8,5 (Salsabila et al., 2018).

2.6.2 Parameter tingkat kekeruhan TDS air

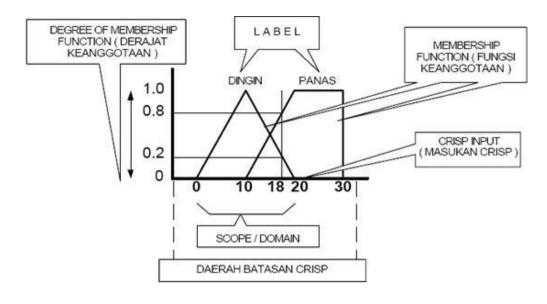
Jumlah padatan terlarut dalam air kolam mempengaruhi kekeruhan air yang diukur dengan satuan mg/L. Adapun nilai TDS untuk kegiatan budidaya ikan yaitu ≤ 1000 mg/L. Untuk budidaya Ikan Mas Koki yang optimal, nilai TDS kurang dari 350 ppm. Konsentrasi TDS mempengaruhi kualitas perairan yang artinya semakin kecil konsentrasi TDS yang berada di perairan tersebut semakin baik juga untuk pemeliharaan ikan (Salsabila et al., 2018).

2.6.3 Parameter suhu air

Suhu merupakan aspek pengendali dan penting di dalam sistem pernapasan. Hal ini terjadi akibat ikan menyamakan suhu tubuhnya hingga mencapai kesamaan suhu air (Aulia et al., 2022). Selain itu, suhu air memiliki pengaruh yang besar terhadap proses pertukaran zat atau metabolisme dari ikan. Pertumbuhan ikan mas koki akan optimal pada suhu perairan sekitar 25-30°C (Admin, 2020).

2.7 Penjadwal pemberian pakan

Ikan mas koki adalah pemakan segala (omnivora), yang dapat mengonsumsi pakan dari sumber nabati maupun hewani. Sumber pakan nabati meliputi dedaunan dari tumbuhan air, sementara sumber pakan hewani meliputi cacing sutera (Tubifex), daphnia, moina, dan jentik nyamuk. Berbagai jenis pakan buatan seperti serpihan kecil (flakes), bubuk, dan butiran (pellet) juga cocok untuk pemeliharaan ikan mas koki. Frekuensi pemberian pakan idealnya 2-3 kali sehari, karena pemberian lebih dari 3 kali tidak diperlukan—ikan mas koki memiliki lambung kecil, dan terlalu banyak pakan bisa memicu masalah kesehatan. Pemberian pakan sebaiknya dijadwalkan pada waktu yang sama setiap hari, seperti pagi, siang, dan sore, serta dalam jumlah yang dapat habis dalam waktu 2-3 menit. Biasanya, ini berkisar 1-2 butir pakan per ikan per pemberian, namun jumlahnya dapat disesuaikan berdasarkan ukuran dan jumlah ikan di akuarium (Kafuku, 1983).


Gambar 3 Pakan pellet ikan

(Sumber: cppetindo.com)

2.8 Logika Fuzzy (Fuzzy Logic)

Logika fuzzy pertama kali dikembangkan oleh Lotfi A. Zadeh pada tahun 1965. Teori ini telah diterapkan di berbagai bidang, termasuk dalam upaya merepresentasikan cara berpikir manusia ke dalam suatu sistem. Sistem fuzzy memungkinkan representasi pengetahuan manusia dalam bentuk matematis dengan cara yang lebih mirip dengan pola pikir manusia. Pengendali berbasis logika fuzzy memiliki keunggulan, yaitu kemampuannya dalam mengendalikan sistem yang kompleks, non-linier, atau sistem yang sulit direpresentasikan secara matematis. Selain itu, informasi berupa pengetahuan dan pengalaman sangat berperan dalam mengenali perilaku sistem di dunia nyata.

Logika fuzzy juga memiliki himpunan fuzzy, di mana teori himpunan fuzzy ini pada dasarnya merupakan pengembangan dari teori himpunan klasik. Logika fuzzy adalah teori himpunan logika yang dirancang untuk menangani konsep nilai yang berada di antara benar (true) dan salah (false). Dengan menggunakan logika fuzzy, nilai yang dihasilkan tidak terbatas pada ya (1) atau tidak (0), melainkan mencakup semua kemungkinan nilai di antara 0 dan 1 (Zadeh, 1965).

Gambar 4 Konsep dasar logika fuzzy

(Sumber: fahmizaleeits.wordpress.com)

2.9 Ulasan Penelitian Serupa

Berikut ini merupakan penelitian-penelitian terdahulu yang terkait dengan penelitian ini:

Tabel 1 Ulasan penelitian serupa

No.	Penulis	Judul	Hasil
			mengontrol suhu air
			aquarium dan pakan
		Sistem Kontrol Suhu	ikan otomotis
	Figure 1	Dan Pakan Otomatis	berbasis Internet of
1	Firman Pradana Rachman	Dalam Aquarium	Thing (IoT)
1.		Aquascape	menggunakan
	(2022)	Menggunakan	nodemcu ESP8266,
		Nodemcu Esp8266	sensor suhu, kipas
			dan pakan ikan
			otomatis
2.	M 1 1 D	Manifasina all Dan	monitoring Ph dan
	Mochammad Rivan Satriawan, Gigih	Monitoring pH Dan	kekeruhan air tawar
		Suhu Air Pada	berbasi IoT

No.	Penulis	Judul	Hasil	
	Priyandoko, Sabar	Budidaya Ikan Mas	mengunakan arduino	
	Setiawidayat	Koki Berbasis Iot	uno R3, NodeMCU	
	(2023)		ESP 8266 12 E	
			Mengontrol	
		Danasa Danasa	pertumbuhan optimal	
	Ainurrahman Lukman (2023)	Sistem Kontol Otomatis Dan Monitoring Kualitas Air Pada Kolam Budidaya Ikan Nila Berbasis Internet	ikan nila dan menjaga	
			kualitas air kolam	
3.			menggunakan ESP32	
3.			dan sensor	dan sensor DHT11
			serta sensor	
			ultrasonic untuk	
			mendeteksi	
			ketinggian air.	