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Abstract
Recycling plastic waste by mix with natural polymers for bio-plastic packaging produces plastics with high mechanical 
properties and easily degradable. In this study, the relation between the structural and the optical properties of composite 
SPF/starch/chitosan/polypropylene to the mechanical properties and degradation performance were analyzed. Structural 
and optical properties of composite bioplastic SPF/Starch/Chitosan/Polypropylene have analyzed using X-Ray diffraction 
(XRD), and Fourier transforms infrared (FTIR) spectroscopy, respectively. The composition was varied: the ratio between 
starch and chitosan are 35/65, 50/50, and 65/35 with additional SPF for each ratio is 1%, 3%, and 5%. The SPF effectively 
enhances the tensile strength due to the SPF’s better dispersion and interaction in the starch/chitosan/polypropylene matrix. 
For SPF’s effect on the degradation performance, the ratio starch/chitosan 50/50 increase for 1% SPF is 87.23%, for 3% SPF 
is 92.59%, and for 5 SPF is 94.12%. The refractive index (n), extinction coefficient (k), dielectric functions (ε), and energy 
loss function (Im (−1/ ε)) determined from the quantitative analysis of FTIR spectra by using Kramers–Kronig (K–K) 
relations. The crystalline phase increases with increasing the amount of SPF in composite bioplastic SPF/Starch/Chitosan 
/Polypropylene for ratio starch/chitosan is 35/65, which consistent with the distance between the wavenumber (D) of trans-
versal and longitudinal optical phonon vibration mode become wider. We found that a good correlation between optical 
properties, structural properties, mechanical properties, and degradation performance for ratio starch/chitosan 35/65 and 
50/50 with SPF 1% and 3% in the composite. Besides, the FTIR spectra could be useful for determining the optical phonon 
vibration, dielectric function, and energy loss function of composite bioplastic SPF/Starch/Chitosan /Polypropylene. The 
degradation performance by additional polypropylene from plastic waste shows a potential solution for decreasing plastic 
waste in the world.
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Introduction

Packaging from plastic synthetic widely used in daily life 
for: food industry, biomedical fields, electronic, and agricul-
ture packaging, but it harms the environment [1]. The pro-
cess of recycling or disposing of plastic waste by minimizing 
the side effects of residual waste on humans and environ-
ments is one of the main challenges today. Polypropylene 

(PP) is the most dominant packaging material due to the 
excellent processing performance and versatility with a melt-
ing point of 160 °C [1, 2] Polypropylene high hydropho-
bic, water repellence, and high molecular weight with the 
main contents are carbon and hydrogen, which are similar 
structures with polyolefin and polyethylene [3]. Although 
it has high mechanical strength, these materials cannot be 
degraded in a short time naturally. Therefore, recycling plas-
tic waste to be useful and easily degradable is necessary to 
mix with natural polymers for bio-plastic packaging. [2].

Natural polymers are low mechanical properties, cannot 
stand at high temperatures, and brittle but easily decom-
posed by microorganisms. Therefore, the mixing of synthetic 
plastics with natural fibers is expecting to produce plastics 
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that have high mechanical properties [1, 3]. Bioplastics from 
starch and chitosan are renewable natural polymers that pass 
through the thermo-mechanical process in suitable plasti-
cizer mixtures such as glycerol. Starch is a glucose polymer, 
which is composed of two types of polysaccharides, namely 
amylose and amylopectin. This is an important ingredient 
for producing biofilms or bioplastics for the food and phar-
maceutical industries. However, starch films are too fragile 
and need plasticization. The plasticizer affects the optical 
properties, structural properties, mechanical properties, and 
water vapor permeability [4]. Wood or cellulose potential to 
be used to increase the mechanical properties of composite. 
However, for industrial-scale leading to over-exploitation 
of forests, it negatively affects the climate and the environ-
ment. On the other hand, the destruction of these materials 
by burning or spoilage is a pollutant. A viable alternative 
is regenerative use materials obtained from plants or other 
plants with low pollution potential. Starch is one of the most 
promising material for this purpose because it can be easily 
obtained from corn, potatoes, or vegetables fully recyclable 
without toxic residues [5, 6].

The previous studies reported that using starch and chi-
tosan reinforced polypropylene for high mechanical proper-
ties of bio-plastic [7, 8]. Reinforcing fillers such as cellu-
lose from natural fibers is an alternative solution to improve 
mechanical properties. Sugar palm fibers (SPF) are obtained 
from the trunk of the tree, which is winding from the top 
down. All across the countries, natural fiber has become 
famous as an important ingredient in many industries appli-
cations. This opportunity has paid a lot of attention to sci-
entists to learn more about SPF as a reinforcement in poly-
mer composites [9, 10]. The color of SPFis brown to black, 
the diameters ranging between 99 μm and 311 μm, and the 
density about 1.05 g/cm3 which the tensile properties are 
increased depends on the size of the fiber due to the cel-
lulose content [11]. As the researches development, palm 
fiber is proven to have many significant advantages to be 
considered; environmentally friendly, low price, and abun-
dant in nature. While in terms of properties, palm fiber has 
low density, good mechanical properties, and good thermal 
properties [12].

Recently fiber from natural resources has been used for 
bio-plastic applications from oil palm empty fruit bunch, 
water hyacinth, cotton and sugarcane bagasse, and many 
other sources [13–17]. Several experiment techniques, plas-
ticizers, and properties were reporting for producing the bio-
plastic composites starch-based [18–21].

The various concentration of SPF and ratio of starch/chi-
tosan in the form of composite SPF/starch/chitosan/polypro-
pylene affected the structural, mechanical, magnetic, optical, 
and degradation properties [7, 8, 22]. The relation between 
the structural properties and the optical phonon vibration 
for composite SPF/starch/chitosan/polypropylene to the 

mechanical properties and degradation performance has not 
been experimentally investigated adequately. These proper-
ties are fundamental knowledge to understand the mecha-
nism and the relation between these properties to the pro-
cesses of biodegradation performance. Hence, in this study, 
we focus on the quantitative analysis of the X-Ray diffraction 
(XRD) spectra for determining the structural properties (the 
percentage of amorphous and crystalline phase) and the Fou-
rier transform infrared (FTIR) for determining the refractive 
index (n), extinction coefficient (k), and dielectric function 
(ε), and energy loss function (Im (−1/ε)). From these analy-
ses, we continue to find the optical phonon vibration in the 
form of longitudinal (LO) and transversal (TO). We also find 
the relation between these types of optical vibration and the 
structural properties to the mechanical properties and bio-
degradation performance for the various amount of SPF in 
composite SPF/starch/chitosan/polypropylene to understand 
the effect of each other’s properties on the performance of 
these materials.

Experiment

Material

Sugar palm fibers (SPF) were taken from Makassar, South 
Sulawesi, Indonesia. Polypropylene composite synthesized 
from cup plastic waste, aquades, sago starch, chitosan (dea-
cetylation rate of 94.88%; molecular weight, 200 Kda–500 
Kda; 200–300 mesh particle size; viscosity 55.31 mPa), 
Glycerin (Merck), Acetic Acid  (CH3COOH) (6%) (Merck), 
NaOH (5%).

Bioplastics Synthesis

SPF immerse in NaOH 5% solution for 1 h to remove dirt 
and surface hemicellulose at the fiber’s surface. The SPF 
cleaned using distilled water and then dried at temperature 
125 °C for 10 min [23], filtered using a ten mesh, and SPF 
ready for further use.

Polypropylene (plastics waste) was dissolved into glyc-
erin and heated by hot magnetic stirrer at temperature of 350 
°C for 2 h. Then, sago starch was a mixture with aquades 
by magnetic stirrer at temperature 100 °C. Acetic acid 
 (CH3COOH) poured into chitosan and stirred until formed 
gel. The various ratio between starch and chitosan are 35/65, 
50/50, and 65/35, with additional SPF for each composition; 
1%, 3%, and 5%. Then, a polypropylene solution poured into 
the glass beaker containing SPF/starch/chitosan solutions. 
Subsequently, all solution materials were mixed and stirred 
at temperature 100 °C for 20 min with 600 rpm until homog-
enized and formed bio-plastic solution. After that, the bio-
plastic solution poured into a sample container and dried at 
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85 °C for 16 h. The bioplastics synthesis process can be seen 
in Fig. 1, and the corresponding mass for each component of 
the biofilms are presented in Table 1.

Characterization of Bioplastic

The amount of crystalline and amorphous phase of bio-plas-
tic composite SPF/starch/chitosan/ polypropylene analyzed 
by using powder X-Ray diffraction (XRD) Shimadzu 7000 
with CuKα radiation sources (λ = 1.5405 Å) in the range 
diffraction angle 2Ө from 15 to 60°, operates at 30 kV and 
10 mA. FTIR spectrometer (Shimadzu Corp.) IRPrestige-21 
use for determining functional groups in bio-plastic compos-
ites SPF/starch/chitosan/ polypropylene at the wavelength 
3800–800  cm−1. The mechanical properties are determin-
ing by using a texture analyzer (Texture Analyser AND 
MCT-2150). The size of bioplastic films is 2 × 5 cm for 
texture analyzer with crosshead speed setting is1 mm/min 
and crosshead return speed is10 mm/min. Biodegradabil-
ity tests are performing by measure the rate of weight loss 
 (Wloss) of bioplastic films after the sample burying in the soil 
for a specific time calculated by  Wloss =  (Wi−Wf)/Wi where 
 Wi is initial weight and  Wf is weight after biodegradability 

[24]. Bioplastic films with a size of 2 × 1cm are weighted 
 (Wi) and then hiding in the ground for 5 cm below the soil’s 
surface. After 3 days, 7 days, 14 days, and 28 days, samples 
are dug out of the soil, washed with distilled water, then the 
sample was reheated in the oven at 85 ºC for 10 min and 
weighed  (Wf) [24].

Data Analysis

The crystalline phase Xc obtained from XRD spectra by the 
empirical method [25] where Iam and I002 are the area of 

Fig. 1  Illustration of synthesizing processes for bio-plastics composite SPF/starch/chitosan/polypropylene with different ratio of starch/chitosan 
and various amount of SPF in this study

Table 1  Corresponding mass from the Fig. 1 for each component of 
composite bioplastic SPF/starch/chitosan /polypropylene: starch, chi-
tosan, polypropylene (PP), and additional sugar palm fiber (SPF): 1% 
(0.052 gr), 3% (0.156 gr), and 5% (0.260 gr) for each R(S/C) (Ratio: 
(Starch/Chitosan))

R(S/C) (%) Starch (gr) Chitosan (gr) PP (gr) Total (gr)

35/65 2.08 1.12 2 5.2
50/50 1.60 1.60 2 5.2
65/35 1.12 2.08 2 5.2
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amorphous and crystalline phase (002), respectively, deter-
mined by the following equation:

The optical properties, dielectric function, and energy loss 
function determined from the quantitative analysis of FTIR 
spectra. The transmittance spectra from the FTIR spectra is 
need to be converted to the reflectance spectra by the follow-
ing equation [26]:

The reflection spectra is used for determining the real part 
of refractive index n(�) and imaginary part of refractive index 
k(�) as follows [27, 28]:

where �(�) is the phase change between the reflection and 
the incident photon signals in the FTIR spectroscopy:

By applying K-K relation, the equation (6) become:

j is a series of wavenumber, if j is an odd number so then i 
parts is 2,4,6,8,...,j−1,j+1 and while wavenumber j is an even, 
i parts is 1,3,5,7,...,j−1,j+1,... Δ� = �i+1 − �i.

The n(�) and k(�) are the input parameter in determining 
the real part �1(�) and the imaginary part �2(�) of the dielec-
tric function from the relations:

Degradation performance is determining in the form of the 
weight loss Is (%) of bio-plastic as follows [29]:

(1)Xc =
I002 − Iam

Iam
× 100%

(2)A(�) = 2 − log[T(�)%]
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where  W0 is the weight before placement on the ground and 
W is the weight after a certain time on the ground.

Results and Discussion

XRD Analysis

The XRD pattern of bio-plastics are shown in Fig. 2a for 
various ratio starch/chitosan and SPF (a) 1%, (b) 3%, and 
(c) 5%. The crystalline phase increase with increasing the 
amount of SPF for the same ratio starch/chitosan (R(S/C)) 
in the composite, ex. for R(S/C) is 35/65 shows an increase 
from 7.89% for 1% SPF to 15.58% for 5% SPF as shown 
in Table 2. For the ratio R(S/C) is 50/50 with 5% SPF, the 
crystalline phase decreases sharply may due to starch and 
chitosan covering the SPF properly, consequently hindering 
the crystalline phase [30–35] that increase the amorphous 
phase. The intensity of diffraction peak influence to the 
crystalline phase indicated well-ordered structure due to the 
silica-containing fibers in the composite was removed [19, 
36, 37]. Starch and chitosan have the hydrophilic, water mol-
ecules can be absorbed by the sample, and transferred to the 
interlayer domain for a period of moisture equilibrium [38].

FTIR Analysis

Figure 2b shows FTIR spectra of composite bio-plastic SPF/
starch/chitosan/polypropylene for various SPF and the ratio 
starch/chitosan. There are four main absorption peaks: the 
bonding vibration of the O–H stretching, C–H stretching, 
C=C stretching and C–O stretching [7, 39]. O–H bonding 
at 3381  cm−1 which indicated polysaccharides and alcohol. 
C–O stretching at 1037  cm−1 of ribbon is along with the 
addition of the starch and SPF containing lignin and cellu-
lose. All peaks are found in the same range indicated that the 
SPF is not significantly affected the bonding configuration in 
composite [40]. The absorbance band located at 3100–3700 
 cm−1 identified as O–H vibration.

The cellulose can be identified through the absorptions 
peak at 2933  cm−1 (C–H alkane vibrations), and 1037  cm−1 
(stretching C–O ester) [7, 8]. For the absorbance at 1643 
 cm−1 is stretching aromatic ring of C=C from the SPF in the 
lignin or starch [41]. However, these peaks were decrease 
when the ratio starch/chitosan is increasing in the composite 
probably due to the starch covering and bonding the SPF 
properly, consequently hinder the lignin and hemicellulose. 
Besides that, the absorbance peak 1000–1300  cm−1 indi-
cated the presence combination of C–O and C–H stretching 
groups [31, 42].

The optical properties, dielectric function, and energy 
loss function as a function of wavenumber determined from 
the quantitative analysis of FTIR spectra by applying K-K 
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relation [43–46]. The K-K relation also usually used in 
quantitative analysis of electron spectroscopy spectra as a 
function of energy loss [47–55]. The quantitative analysis’s 

optical properties are in the form refractive index n(�) and 
extinction coefficient k(�) , complex dielectric function, and 
the energy loss function.

Fig. 2  X-Ray diffraction (XRD) spectra (a) and Fourier transform infrared (FTIR) spectroscopy spectra (b) of composite bio-plastic SPF/starch/
chitosan/ polypropylene for different ratio starch/chitosan and various amount of SPF (1%, 3%, and 5%)

Table 2  Optical phonon 
vibration mode for transversal 
(TO), longitudinal (LO), and 
the difference between LO 
and TO (Δ) determined from 
quantitative analysis of FTIR 
spectra in Fig. 3

Amorphous phase (A(P)) and crystalline phase (C(P)) determined from the XRD spectra in Fig. 2b. Tensile 
strength (TS), degradation for 21 days (D 21), and degradation for 28 days (D 28) of composite bio-plastic 
SPF/starch/chitosan/polypropylene for different ratio starch/chitosan (R(S/C)) and various amount of sugar 
palm fiber (SPF) 1%, 3%, and 5%

SPF 1% 3% 5%

R(S/C) 35/65 50/50 65/35 35/65 50/50 65/35 35/65 50/50 65/35
TO  (cm−1) 1024 1026 1024 1026 1018 1028 1036 1031 1026
LO  (cm−1) 1178 1188 1091 1263 1278 1280 1274 1082 1170
Δ  (cm−1) 154 162 67 237 260 252 238 51 144
A (P) % 92.01 83.60 91.71 92.07 73.70 84.20 84.41 91.34 85.51
C (P) % 7.98 16.39 8.28 7.98 26.29 15.79 15.58 8.65 16.48
TS (MPa) 25.02 27.42 40.01 55.23 57.06 59.02 63.24 63.35 78.00
D 21 (%) 82.58 70.21 67.89 88.24 59.26 64.29 71.88 82.85 54.05
D 28 (%) 90.43 87.23 86.24 98.04 92.59 80.95 90.63 94.12 77.03
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The optical properties is presented in the top row of 
Fig. 3a for 1% SPF, Fig. 3b for 3% SPF, and Fig. 3c for 5% 
SPF. The cross point between n and k is related to the optical 
intersection with the lattice indicated by TO at a lower wave-
length for transverse optical and LO at a higher wavelength 
for longitudinal optical phonon vibration mode for more 
detail see Table 2. The difference between LO and TO ( Δ 
= (LO−TO)) is increases with increasing the ratio between 
starch and chitosan (R(S/C)) as can be seen for 1% SPF and 
3% SPF but not for 5% SPF may due to the cross-linking is 
not bonding properly between SPF and starch/chitosan.

Dielectric Function

Figure 3 shows the results of quantitative analysis of FTIR 
spectra for 1% SPF (a), 3% SPF (b), and 5% SPF (c). The 
first rows of Fig. 3a–c shows the refractive index (n) and 
extinction coefficient (k), second rows is the real ( �1(�) ) 
and imaginary parts ( �2(�) ) of the dielectric function, and 
the third rows is the energy loss function (Im (−1/ε (�) ). 
The main peak of �2(�) also used to identified of the TO 
phonon vibration mode. The high confidence analysis result 
for TO phonon vibration mode wavenumber position if the 
wavenumber position between the cross point of n and k 
(first rows) consistence with the main peak of �2(�) (second 
rows). For the ratio starch/chitosan is 35/65, the main peak 
position of �2(�) shifted to the higher wavenumber position 
with increasing the SPF from 1 to 5% in the composite may 
due to the cross-linking bonding rearranged to form a new 
structure [43, 56]. Another ratio that shows fluctuation may 
due to the effect of cohesion forces between the SPF and the 
plasticizer from polypropylene. It’s phenomena caused by 
the non-uniformity cross-linking and less stable structure 
in the composite.

For LO vibration modes, firstly identified from the inter-
section between n(�) and k(�) (first rows) of Fig. 3a–c 
and the second, by the main peak of energy loss function 
(Im (−1/ε (�) ) = ( �1(�) ) / ((�21(�)+�

2
2
(�) ) (third rows) of 

Fig. 3a–c [43]. The best results indicated by the same wave-
number positions for these two methods. Energy loss func-
tion usually determined from the quantitative analysis of 
electron spectroscopy spectra [57–59] and the main peak 
position consider as the plasma frequency. Similar to the 
quantitative analysis from the FTIR spectra for composite 
cement/BaSO4/Fe3O4, for geopolymer fly ash-metal [60] 
and composites Fe/CNs/PVA [61] shows that the main peak 
position of (Im (−1/ε (�) ) is the plasma frequency [43].

Tensile Strength

To clarify the effect of SPF to the tensile strength, we deter-
mined the tensile strength of composite bio-plastic SPF/
starch/chitosan/polypropylene for various SPF and the dif-
ferent ratio of the starch/chitosan. Figure 4 shows the ten-
sile strength increases significantly with the increase in the 
SPF amount in the composite. Indicated that the SPF could 
effectively enhance the tensile strength of the composite bio-
plastic SPF/starch/chitosan/polypropylene. The probability 
that the SPF has better dispersion and interaction in the 
starch/chitosan/polypropylene matrix. The strength of SPF 
come from the cellulose, as reported for Ibrahim, Sapuan, 
Zainudin, Zuhri [62] due to the some of the lignin and hemi-
sellulose of SPF remove after immersed in the NaOH [40].

The tensile strength is increase with increasing the ratios 
of the starch/chitosan (R(S/C)), for 1% SPF increases from 
25.02 to 40.01 MPa, for 2% SPF increases from 55.23 to 
59.02 MPa, and for 5% SPF increases from 63.24 to 78.00 
MPa, respectively from lower R(S/C) to higher R(S/C). It 
shows that the tensile strength increase with increasing the 
amount of SPF in the composites bioplastic. The lowest 
range tensile strength is for 1% SPF and the highest is for 5% 
SPF as shown in Fig. 4 and corresponding data is presented 
in Table 2. The tensile strength increases with increasing 
the starch/chitosan ratios due to the interface formation of 
hydrogen bonding from the  NH3+ cation from chitosan with 
 OH− backbones-anions from the starch [63].

Biodegradation Test

Biodegradation of composite bio-plastic SPF/starch/chi-
tosan/polypropylene in this study for various amount of 
SPF (1%, 3%, and 5%) as shown in Fig. 5. The degradation 
for all composition at 28 days grounded is > 80% which is 
in the soil may the microorganisms and moisture play an 
important role for degradation process [7, 8]. Water also 
can accelerate biodegradation by absorption processes of 
the bio-plastic causes swelling [64]. For the starch content 
in bio-plastic up to 50% of their weight, then they can easily 
absorb water, consequently will be very rapid biodegrada-
tion [65, 66]. For the effect of SPF can be seen for 28 days 
in Table 2 shows for ratio starch/chitosan 50/50 increase for 
1% SPF is 87.23%, for 3% SPF is 92.59%, and for 5% SPF is 
94.12%. For ratio starch/chitosan is 65/35 shows decreases 
degradation with increasing the amount of SPF may due 
to the crystalline phase (ordered structure) increase, which 
affected to the ability in absorbing water [63].

Figure 6 shows the illustration of the degradation pro-
cess naturally. The step processes of biodegradation are 
divided by; first, catalyzed biologically, in this phase, 
enzymes and decomposition chemicals act as catalysts 
for plastic biofilm. During this time, aerobic microbes are 

Fig. 3  Quantitative analysis of FTIR spectra in determining optical 
properties (first rows), dielectric function (second rows), and energy 
loss function (third rows) of composite bio-plastic SPF/starch/chi-
tosan/polypropylene for various ratio starch/chitosan with 1% SPF 
(a), 3% SPF (b), and 5% SPF (c)

◂
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formed, and water vapor builds up in the garbage. The 
moisture absorption increases the ability for swelling and 
weakening the polymeric bonds. The size and component 
of compounds that make up the substrate are factors that 
affect degradation. The second, bacteria, algae, and actino-
mycete, in collaboration with water, affected the structure 
of fibers and macromolecular adhesives break down. The 

third, destruction of cementing points and erosion on fiber 
and resin connections, provides more degradation sites for 
further attacks of microorganisms. The increase in tem-
perature causes the kinetic energy of the substrate mol-
ecules and enzymes to increase, which also contributed for 
accelerating the degradation process [67]. However, high 
temperatures cause damage the enzymes called denatura-
tion, while low temperatures can inhibit enzymes working 
well. The final process of this degradation process is the 
formation of urea, which can fertilize plants.

Figure 7 shows the relation between the amount of 
crystalline phase, the distance wavenumber between two 
optical phonon modes Δ(LO−TO), tensile strength, bio-
degradation ability for various amount of SPF (1%, 3%, 
and 5%). By this method, there are two relations: first, the 
relation between Δ(LO−TO) and crystalline phase and the 
second, the biodegradation with crystalline phase and ten-
sile strength for various amounts of SPF. Figure 7 shows 
clearly crystalline phase increase the tensile strength also 
increase may due to the formation ordered structure as 
the effect of interfacial complexion between the SPF with 
starch/chitosan/polypropylene as a matrix [68].

Future work, understand the effects of weather, decom-
position of materials under thermal technology, and degra-
dation kinetics. In many cases, the level of soil nutrition, 
carbon, and nitrogen content are the main factors causing 
the shift in soil structure and microbial community net-
work. Organic amendments can affect microbial diversity 

Fig. 4  Tensile Strength for bioplastics composite SPF/starch/chitosan/ 
polypropylene with different ratios of starch/chitosan and various 
amount of SPF in this study

Fig. 5  Biodegradation for bio-
plastics composite SPF/starch/
chitosan/polypropylene with dif-
ferent ratios of starch/chitosan 
and various amount of SPF in 
this study
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as well as the relative abundance of copiotrophic and oli-
gotrophic bacteria.

Conclusion

Composite bioplastic SPF/Starch/Chitosan/Polypropylene 
has been synthesized for the various ratio between starch 
and chitosan are 35/65, 50/50, and 65/35 with additional 
SPF for each ratio is 1%, 3%, and 5%. The X-Ray diffraction 

(XRD) spectra used for determining the amorphous and 
crystalline phase and Fourier transform infra-red (FTIR) 
spectroscopy used for determining optical properties. In 
the form of refractive index (n), extinction coefficient (k), 
dielectric functions (ε), and energy loss function (Im (−1/ 
ε)) by using Kramers-Kronig (K-K) relations. The crystal-
line phase is increased with increasing the amount of SPF 
in composite bioplastic SPF/Starch/Chitosan /Polypropylene 
for ratio starch/chitosan is 35/65, which consistent with the 
distance between the wavenumber (Δ) of transversal and 

Fig. 6  Illustration of the deg-
radation process of bio-plastic 
naturally

Fig. 7  The relation between 
structural properties and opti-
cal properties with the tensile 
strength and biodegradation 
performance
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longitudinal optical phonon vibration mode. For ratio starch/
chitosan is 35/65 shows tensile strength for 1% SPF is 25.02 
MPa increase to 63.24 MPa for 3% SPF, similar for 50/50, 
and 65/35%. The highest tensile strength is 78 MPa for ratio 
starch/chitosan is 65/35 with 5% SPF indicated that the SPF 
has better dispersion and interaction in the starch/chitosan/
polypropylene matrix. For the effect of SPF on the degra-
dation performance, shows for ratio starch/chitosan 50/50 
increase for 1% SPF is 87.23%, for 3% SPF is 92.59%, and 
for 5% SPF is 94.12%. For composite bioplastic SPF/Starch/
Chitosan /Polypropylene in this study, we found that a good 
correlation between optical properties, structural proper-
ties, mechanical properties, and degradation performance 
for ratio starch/chitosan 35/65 and 50/50 with SPF 1% and 
3% in the composite. This study clearly shows, the FTIR 
spectra could be useful for determining the optical phonon 
vibration, dielectric function, and energy loss function of 
composite bioplastic SPF/Starch/Chitosan /Polypropylene. 
The degradation performance indicated that the bioplastic 
with additional polypropylene from plastic waste shows a 
potential solution for decreasing plastic waste in the world.
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