3. Optimasi pH

4. Optimasi Waktu Kontak

5. Optimasi Konsentrasi Ion Logam Cu(II)

6. Selektivitas Adsorpsi Ion Logam Cu(II) terhadap Ion Logam Cd(II), Pb(II), dan Ni(II) dalam Sistim Biner

7. Selektivitas Adsorpsi Ion Logam Cu(II) terhadap Ion Logam Cd(II), Pb(II), dan Ni(II) dalam Sistim Kuarterner

Lampiran 2. Perhitungan

1. Pembuatan FeSO₄.7H₂O dan FeCl₃.6H₂O

Pembuatan FeSO₄.7H₂O dan FeCl₃.6H₂O dengan perbandingan mol Fe²⁺ dan Fe³⁺ (1:2)

a. Pembuatan larutan FeSO₄.7H₂O 0,05 M 200 mL

b. Pembuatan larutan FeCl₃.6H₂O 0,1 M 200 mL

g = L x M x Mr = 0,2 L x 0,1 mol/L x 270,33 gr/mol = 5,4066 gram

2. Pembuatan Larutan Induk Cu(II) 1000 mg/L

$$1000 \text{ mg/L} = \frac{\text{Ar Cu}}{M_{r} \text{ CuSO}_{4} \cdot 5H_{20}} \text{ x } \frac{\text{mg}}{\text{L}}$$

$$1000 \text{ mg/L} = \frac{63,5}{249,5} \text{ x } \frac{\text{X}}{0,1 \text{ L}}$$

$$1000 \text{ mg/L} = \frac{63,5 \cdot \text{X}}{24,95 \text{ L}}$$

$$X = \frac{1000 \text{ mg} \cdot 24,95}{63,5}$$

$$= 393 \text{ mg}$$

$$= 0,393 \text{ g}$$

3. Pembuatan Larutan Kerja Cu(II) 25 mg/L (3,937.10⁻⁴ M)

V₁. C₁ = V₂. C₂ V₁. 1000 mg/L = 100 mL . 25 mg/L $V_1 = \frac{100 \text{ mL} \cdot 25 \text{ mg/L}}{1000 \text{ mg/L}}$ = 2,5 mL

Larutan kerja Cu 25 mg/L diubah ke dalam bentuk Molaritas:

$$M = \frac{n}{v} = \frac{\frac{m}{Ar Cu}}{V}$$
$$= \frac{25 \cdot 10^{-3} g}{63.5 \text{ g/mol}} : 1 \text{ L}$$

= 0,0003937 mol/L

 $= 3,937.10^{-4} \text{ M}$

- 4. Pembuatan Deret Larutan Standar Cu(II) 0,5; 1; 2; 3; dan 5 mg/L
 - $V_1. C_1 = V_2. C_2$
 - a. 0,5 mg/L

$$V_1 . 50 \text{ mg/L} = 50 \text{ mL} . 0.5 \text{ mg/L}$$

 $V_1 = \frac{50 \text{ mL} . 0.5 \text{ mg/L}}{50 \text{ mg/L}}$
 $V_1 = 0.5 \text{ mL}$

b. 1 mg/L

$$V_1.50 \text{ mg/L} = 50 \text{ mL} \cdot 1 \text{ mg/L}$$

$$V_1 = \frac{50 \text{ mL} \cdot 1 \text{ mg/L}}{50 \text{ mg/L}}$$

$$V_1 = 1 mL$$

c. 2 mg/L

 $V_1.50 \text{ mg/L} = 50 \text{ mL} \cdot 2 \text{ mg/L}$

$$\mathbf{V}_1 = \frac{50 \text{ mL} \cdot 2 \text{ mg/L}}{50 \text{ mg/L}}$$

$$V_1 = 2 mL$$

d. 3 mg/L

 V_1 . 50 mg/L = 50 mL . 3 mg/L

$$V_1 = \frac{50 \text{ mL} \cdot 3 \text{ mg/L}}{50 \text{ mg/L}}$$

$$V_1 = 3 mL$$

e. 5 mg/L

 V_1 . 50 mg/L = 50 mL . 5 mg/L

$$V_1 = \frac{50 \text{ mL}.5 \text{ mg/L}}{50 \text{ mg/L}}$$

$$V_1 = 5 mL$$

Lampiran 3. Hasil FTIR Nanopartikel Magnetit (Fe₃O₄)

() SHIMADZU

Comment; Magnetit Date/Time; 4/20/2022 9:09:20 AM No. of Scans; Resolution; Apodization;

Lampiran 4. Hasil XRD Nanopartikel Magnetit (Fe₃O₄)

Perhitungan Ukuran Kristal dengan Metode Debye-Scherrer

Ukuran kristal nanopartikel magnetit (Fe₃O₄) dihitung menggunakan persamaan *Debye-Scherrer*.

$$D = \frac{k\lambda}{\beta\cos\theta}$$

dimana D adalah ukuran kristal, k adalah faktor bentuk dari kristal (0,9-1), λ adalah panjang gelombang dari sinar-X (0,154056 nm), β adalah nilai dari *Full Width at Half Maximum* (FWHM) (rad), dan θ adalah sudut difraksi (derajat).

$$D = \frac{(0,94)(0,154056 \text{ nm})}{\text{Rad} (0,72) \cos (\text{Rad}\frac{35,44}{2})}$$
$$= \frac{0,14481264 \text{ nm}}{(0,01257) (0,999941736)}$$
$$= \frac{0,14481264 \text{ nm}}{0,01256926762}$$
$$= 11,5211 \text{ nm}$$

Analysis Results

Measurement conditions

X-Ray	30 kV , 15 mA	Scan speed / Duration time	4.0000 deg./min.
Goniometer		Step width	0.0200 deg.
Attachment	-	Scan axis	2Theta/Theta
Filter	Kb filter	Scan range	10.0000 - 90.0000 deg.
CBO selection slit	-	Incident slit	1.25 deg.
Diffrected beam mono.		Length limiting slit	-
Detector	MiniFlex2 counter	Receiving slit #1	1.25 deg.
Scan mode	CONTINUOUS	Receiving slit #2	0.3mm

Qualitative analysis results

Phase name	Formula	Figure of merit	Phase reg. detail	DB card
		0	C C	number
Magnetite, iron diiron(III) oxide	Fe3 O4	1.449	ICDD (PDF-2/Release 2011 RDB)	01-076-0958
Phase name	Formula	Space group	Phase reg. detail	DB card number
Magnetite, iron diiron(III) oxide	Fe3 O4	26 : Pmc21	ICDD (PDF-2/Release 2011 RDB)	01-076-0958

Peak l	list						
No.	2-theta(deg)	d(ang.)	Height(cps)	FWHM(deg)	Int. I(cps deg)	Int. W(deg)	Asym. factor
1	35.44(6)	2.531(4	227(28)	0.72(10)	227(94)	1.0(5)	0.30(15)

Parameters used for WPPF

Profile parameters

Common nononaton	Dealtanaund	Data	Magnatit MDa
	Davkgrounu	Function name	R-spline
		naram()	A70 20205761122566
		param1	1105 910227209711
		param1	2005 5091(91102(99
		param2	2095.5081681103688
		param3	2319.8098463276156
		param4	2770.1691963080489
		param5	2915.988812579862
		param6	2920.0523244358719
		param7	3066.5047964387927
		node0	10
		node1	27.760000000000002
		node2	43.32
		node3	58.880000000000003
		node4	74.43999999999999998
		node5	90
Common parameter	Peak shift		
		Function name	Shift axial displacement
		param0	0
		param1	0
		param2	0
Magnetite, iron diiron(III) oxide	Scale factor	S	1
	FWHM	U	0.0000
		V	0.0000
		W	0.5141
	Asym. Factor	A0	-1.1955
	-	A1	0.0000
	Decay rate factor	etaL0/mL0	1.4859
	v	etaL1/mL1	0.0000
		etaL2/mL2	0.0000
		etaH0/mH0	0.3542
		etaH1/mH1	0.0000
		etaH2/mH2	0.0000
	Preferred	Н	0
		К	0
		L	0
		March coefficient	1.000000

Structure parameters

Data set name	Phase Name	e Elemen	nt X	Y	Ζ	Occupancy	Temperature factor	
Data set name	Rwp	Rp	Re		S	Chi^2	Maximum	
							shift/e.s.d.	
Magnetit MPs	0	0	0		0	0	0	

Lattice constants

Angular correction

Analysis results

Data set nan	ne a(A	() b((A) (c(A)	alpha(deg)	beta(deg)	gamma(de
		/			1 (10)	(3
							g)
Magnetit M	Ps 5.9	34000 5.	925500	16.752001	90.000000	90.000000	90.000000
Phase name	a(A)	b(A)	c(A)	alpha	beta	gamma	V(A^3)
				(deg)	(deg)	(deg)	
Magnatita	5 02400	5 025500	16 752001				590 022455
magnente,	3.93400	0 3.925500	10./52001	90.000	90.000000	90.00000	389.032433

Crystallinity

|--|

Crystallinity(%)

CrystallinityGraph.emf

Crystallite size	e and lattice stra	in			
Williamson-	Hall method				
Data set name		Crystallite size(A)		Strain(%)	
Phase name	Crystallite size(A)		Size distribution	Strain(%)	Distribution type
Magnetite, iron	-		-	-	-

CSSGraph.emf

Quantitative analysis results (RIR)	
Phase name	Content(%)
Magnetite, iron diiron(III) oxide	100.000000
Magnetit MPs	
tite, iron diiron(III) oxide Unknown	

Quantitative analysis results (standard addition method)

Calibration data

Quantitative analysis results (External Standard method)

Calibration data

Quantitative analysis results (internal standard method)

Calibration Data

Lampiran 5. Penentuan Kondisi Optimum Adsorpsi Ion Logam Cu(II) oleh Adsorben Nanopartikel Magnetit (Fe₃O₄)

1. Penentuan pH Optimum

Kondisi Analis : Jenis Adsorben	: Nanopartikel Magnetit
Massa Adsorben	: 50 mg
Volume Larutan	: 25 mL
Konsentrasi Awal Cu(II)	: 25 mg/L
Waktu Kontak	: 60 menit

Hasil Analisis:

pН	q _e (mg/g)	% adsorpsi
4	1,05	8,38
5	4,26	33,17
6	7,37	56,51
7	12,11	92,57
8	13,72	96,33
9	12,82	95,31
10	11,50	89,16
11	7,68	84,03
12	5,87	79,73

% adsorpsi =
$$\frac{Co-Ce}{Co} \ge 100$$

2. Penentuan Waktu Optimum

Kondisi Analis : Jenis Adsorben	: Nanopartikel Magnetit
Massa Adsorben	: 50 mg
Volume Larutan	: 25 mL
Konsentrasi Awal Cu(II)	: 25 mg/L
pH	: 8

Hasil Analisis:

Waktu	$q_t (mg/g)$	% adsorpsi
5	13,25	95,95
10	13,29	96,27
20	13,36	96,97
40	13,53	97,55
60	13,75	98,15
90	13,82	98,60
100	13,87	98,70
120	13,86	98,69

% adsorpsi =
$$\frac{Co-Ce}{Co} \ge 100$$

3. Penentuan Kapasitas Adsorpsi

Kondisi Analis : J	enis Adsorben	: Nanopartikel Magnetit
Ν	Aassa Adsorben	: 50 mg
V	Volume Larutan	: 25 mL
р	H	: 8
V	Vaktu Kontak	: 100 menit

Hasil Analisis:

Konsentrasi (ppm)	q _e (mg/g)	% adsorpsi
10	4,72	98,16
25	13,90	98,50
50	18,54	98,51
75	23,41	98,75
100	25,01	98,97
150	32,33	99,04
250	31,66	98,96

% adsorpsi = $\frac{Co-Ce}{Co} \ge 100$

Lampiran 6. Isoterm Adsorpsi

1. Isoterin Ausorpsi Eksperime

Konsentrasi (mg/L)	$C_e (mg/L)$	q _e (mg/g)	% adsorpsi
10	0,18	4,72	98,16
25	0,37	13,90	98,50
50	0,74	18,54	98,51
75	0,93	23,41	98,75
100	1,02	25,01	98,97
150	1,43	32,33	99,04
250	2,58	31,66	98,96

% adsorpsi = $\frac{Co-Ce}{Co} \ge 100$

2. Isoterm Adsorpsi Langmuir bentuk Linear

Konsentrasi (mg/L)	C _e (mg/L)	C _e /q _e
10	0,18	0,03
25	0,37	0,02
50	0,74	0,03
75	0,93	0,04
100	1,02	0,04
150	1,43	0,04
250	2,58	0,08

$$\frac{C_e}{q_e} = \frac{1}{q_m \cdot K_L} + \frac{1}{q_m} \cdot C_e$$

Parameter	Nilai
Persamaan	y = 0,0198x + 0,0241
1/q _{max} K	0,0241
1/q _{max}	0,0198
q _{max}	50,5050
K	0,8215
R ²	0,845

Konsentrasi (mg/L)	log Ce	log q _e
10	-0,73	0,67
25	-0,42	1,14
50	-0,12	1,26
75	-0,02	1,36
100	0,01	1,39
150	0,15	1,51
250	0,41	1,50

3. Isoterm Adsorpsi Freundlich bentuk Linear

 $log \; q_e = log \; K_F + \frac{1}{n} \; log \; C_e$

Parameter	Nilai
Persamaan	y = 0,7247x + 1,3432
log K _F	1,3432
К	22,0394
1/n	0,7247
\mathbb{R}^2	0,8855

4. Isoterm Adsorpsi Sips bentuk Linear

Konsentrasi (mg/L)	ln C _e	ln (q/q _m -q)
10	-1,69	-1,92
25	-0,98	-0,50
50	-0,29	0,004
75	-0,06	0,54
100	0,02	0,73
150	0,35	1,93
250	0,94	1,78

 $ln \, \frac{q_e}{q_m - q_e} = ln \; K_s + \frac{1}{n} \, . \; ln \; C_e$

Parameter	Nilai
Persamaan	y = 1,4858 + 0,7306
ln Ks	0,4886
Ks	1,6300
n	1,4817
q _{max}	37,0039
\mathbb{R}^2	0,9313

5. Isoterm Adsorpsi Langmuir bentuk Non-Linear (Program Solver)

Konsentrasi (mg/L)	$C_e (mg/L)$	q _e (mg/g)	qe L (mg/g)	Res ²
10	0,18	4,72	7,59	8,22
25	0,37	13,90	13,21	0,47
50	0,74	18,54	20,51	3,89
75	0,93	23,41	23,23	0,03
100	1,02	25,01	24,27	0,54
150	1,43	32,33	28,12	17,71
250	2,58	31,66	34,21	6,48

$q_e \!=\! \frac{q_m \cdot K_L \cdot C_e}{1 + K_L \cdot C_e}$

Parameter	Nilai
K	1,05
q _{max}	46,80
RSS	37,37

Konsentrasi (mg/L)	C _e (mg/L)	q _e (mg/g)	q _e F (mg/g)	Res ²
10	0,18	4,72	9,91	26,94
25	0,37	13,90	14,00	0,01
50	0,74	18,54	19,56	1,03
75	0,93	23,41	21,92	2,21
100	1,02	25,01	22,89	4,49
150	1,43	32,33	26,94	29,01
250	2,58	31,66	35,93	18,22

6. Isoterm Adsorpsi Freundlich bentuk Non-Linear (Program Solver)

 $q_e = K_F$. $C_e^{1/n}$

Parameter	Nilai
K	22,63
n	0,48
RSS	81,93

7. Isoterm Adsorpsi Sips bentuk Non-Linear (Program Solver)

Konsentrasi (mg/L)	C_e (mg/L)	q _e (mg/g)	q _e S (mg/g)	Res ²
10	0,18	4,72	5,31	0,35
25	0,37	13,90	11,99	3,64
50	0,74	18,54	21,08	6,44
75	0,93	23,41	24,12	0,50
100	1,02	25,01	25,20	0,03
150	1,43	32,33	28,78	12,55
250	2,58	31,66	33,07	1,96

$$q_e = \frac{qm \cdot Ks \cdot C_e^{1/n}}{1 + K_s \cdot C_e^n}$$

Parameter	Nilai
K	1,63
n	1,48
q _{max}	37,00
RSS	25,50

Lampiran 7. Kinetika Adsorpsi

Waktu	q _t (mg/g)	q _e (mg/g)	(qe-qt)	log (qe-qt)
5	13,25	13,87	0,62	-0,20
10	13,29	13,87	0,58	-0,23
20	13,36	13,87	0,50	-0,29
40	13,53	13,87	0,34	-0,46
60	13,75	13,87	0,12	-0,90
90	13,82	13,87	0,04	-1,31
100	13,87	13,87	0	0
120	13,86	13,87	0,01	-1,82

1. Kinetika Orde Satu Semu

2. Kinetika Orde Dua Semu

Waktu	qt (mg/g)	t/qt	
5	13,25	0,37	
10	13,29	0,75	
20	13,36	1,49	
40	13,53	2,95	
60	13,75	4,36	
90	13,82	6,50	
100	13,87	7,20	
120	13,86	8,65	

Lampiran 8. Penentuan Koefisien Selektivitas Adsorpsi

1. Koefisien Selektivitas Adsorpsi Ion Logam Cu(II) pada masing-masing Larutan Biner Cu(II)/Cd(II), Cu(II)/Pb(II), Cu(II)/Ni(II) dari 50 mg Adsorben Nanopartikel Magnetit (Fe₃O₄) dengan Konsentrasi 3,937.10⁻⁴ M

		Selek	an Biner	
No.	Biner	Koefisien Distribusi (Kd)		Koefisien selektivitas
Cu		Cu ²⁺	Cd^{2+}	(α)
1	Cu/Cd	4,47	1,87	2,38

		Selektivitas Adsorpsi Larutan Biner			
No.	Biner	Koefisien Distribusi (Kd)		Koefisien selektivitas	
		Cu ²⁺	Pb^{2+}	(α)	
2	Cu/Pb	4,56	3,29	1,38	

		Selektivitas Adsorpsi Larutan Biner			
No.	Biner	Koefisien Distribusi (Kd)		Koefisien selektivitas	
		Cu^{2+}	Ni ²⁺	(α)	
3	Cu/Ni	4,11	1,57	2,61	

2. Koefisien Selektivitas Adsorpsi Ion Logam Cu(II) pada masing-masing Larutan Kuarterner Cu(II)/Cd(II)/Pb(II)/Ni(II) dari 50 mg Adsorben Nanopartikel Magnetit (Fe₃O₄) dengan Konsentrasi 3,937.10⁻⁴ M

		Selektivitas Adsorpsi Larutan Kuartener						
No.	Kuartener	Koefisien Distribusi (Kd)			Koefisien selektivitas (α)			
		Cu^{2+}	Cd^{2+}	Pb^{2+}	Ni ²⁺	Cd^{2+}	Pb^{2+}	Ni ²⁺
1.	Cu/Cd/Pb/Ni	2,44	1,31	1,84	1,05	1,86	1,32	2,32

Lampiran 9. Dokumentasi Kegiatan Penelitian

(a) (b) (c) **Gambar 1.** (a) Penimbangan FeSO₄.7H₂O (b) Larutan FeCl₃.6H₂O dan FeSO₄.7H₂O (c) Proses penambahan NH₄OH 25% dalam campuran FeCl₃.6H₂O dan FeSO₄.7H₂O

Gambar 2. (a) Terbentuk endapan magnetit yang dapat ditarik menggunakan magnet eksternal (b) proses penyaringan dan pencucian endapan magnetit hingga pH 7 (c) uji coba magnetit terhadap magnet eksternal

Gambar 3. (a) Larutan Induk Cu(II) 1000 mg/L (b) Larutan Intermediet Cu(II) 50 mg/L

Gambar 4. Optimasi pH

Gambar 5. Optimasi Konsentrasi

Gambar 6. Larutan Biner dan Kuarterner

Gambar 7. Uji AAS