DAFTAR PUSTAKA

Almutahir. (2016). Analisa Respon Gerak Struktur Floating Wind Turbine. In *Repository ITS*.

ANSYS. (2022). Aqwa Theory Manual. In Ansys (Issue July).

Bachynski, E. E. (2018). Fixed and Floating Offshore Wind Turbine Support Structures. In *Offshore Wind Energy Technology* (First Edit, pp. 103–142). John Wiley & Sons Ltd. https://doi.org/10.1002/9781119097808.ch4

Bentley. (2018a). Motions Program & User Manual Maxsurf Motion.

Bentley. (2018b). User Manual Maxsurf Modeler.

- Bhattacharyya, R. (1978). Dynamics of marine vehicles (E. M. McCormic (ed.)). A Wiley-Interscience Publication.
- BPS. (2023). Tabel Dinamis Subjek Energi Badan Pusat Statistik Provinsi Nusa Tenggara Timur. https://ntt.bps.go.id/subject/7/energi.html#subjekViewTab5
- Choisnet, T., & Vasseur, S. (2019). Performance And Mooring Qualification In Floatgen : The First Performance And Mooring Qualification In Floatgen. *Grand Renewable*.
- Djatmiko, E. B. (2012). Perilaku dan Operabilitas Bangunan Laut di Atas Gelombang Acak. *ITS Press, September*, 1–27.
- DNV. (2008). Position Mooring. In DNV-OS-E301. Det Norske Veritas.
- DNV. (2018). Coupled analysis of floating wind turbines. In DNVGL-RP-0286. Det Norske Veritas.
- DNV. (2021). Floating Wind Turbine Structures. In *DNV-ST-0119*. Det Norske Veritas.
- Firdaus, N. F., Eko Budi Djatmiko, Rudi Walujo Prastianto, & Muhammad Fajariansyah Ismail. (2021). Analisis Respon Gerak Floating Crane Barge Untuk Decommissioning Struktur Lepas Pantai. Wave: Jurnal Ilmiah Teknologi Maritim, 15(1), 31–44.

Jonkman, J. M., Butterfield, S., Musial, W., & Scott, G. (2009). Definition of a 5-

Optimized using trial version www.balesio.com reference wind turbine for offshore system development (Issue February). d, M. (2014). Offshore Energy Structures : For Wind Power Wave Wnergy Hybrid Marine Platforms. In *Journal of Chemical Information and* *Modeling* (Vol. 53, Issue 9). Springer International Publishing Switzerland. https://doi.org/10.1007/978-3-319-1217

- P3TKEBTKE. (2021). Potensi Energi Angin Indonesia 2020. Badan Layanan Umum Pusat Penelitian, Dan Pengembangan Teknologi Ketenagalistrikan, Energi Baru Terbarukan, Dan Konservasi Energi. https://p3tkebt.esdm.go.id/pilot-plan-project/energi_angin/potensi-energi-angin-indonesia-2020
- Philippe, M., Babarit, A., & Ferrant, P. (2013). Modes of response of an offshore wind turbine with directional wind and waves. *Renewable Energy*, 49, 151– 155. https://doi.org/10.1016/j.renene.2012.01.042
- Purba, N. P., Kelvin, J., Sandro, R., Gibran, S., Permata, R. A. I., Maulida, F., & Martasuganda, M. K. (2015). Suitable Locations of Ocean Renewable Energy (ORE) in Indonesia Region-GIS Approached. *Energy Procedia*, 65(June), 230–238. https://doi.org/10.1016/j.egypro.2015.01.035
- Putra, I. A. I. D. R. (2017). Desain Mooring Line Pada Struktur Pantai Floating Breakwater Menggunakan Catenary Mooring Line. 114. http://repository.its.ac.id/44779/
- Robertson, A. N., & Jonkman, J. M. (2011). Loads analysis of several offshore floating wind turbine concepts. *Proceedings of the International Offshore and Polar Engineering Conference*, October, 443–450.
- Rosary, E. de. (2023). Warga Tolak Proyek Geothermal Poco Leok, Ini Alasannya. Mongabay Indonesia. https://www.mongabay.co.id/2023/03/23/warga-tolakproyek-geothermal-poco-leok-ini-alasannya/
- Subrata K. Chakrabarti. (2005). *Handbook of Offshore Engineering: Vol. I.* Elsevier Ltd.
- Tavner, P. J. (2012). Offshore wind turbines: reliability, availability and maintenance. In *IET Renewable Energy* (13th ed., p. 269). Institution of Engineering and Technology.

Triatmodjo, B. (1999). Buku Teknik Pantai (5th ed.). Beta Offset.

Optimized using trial version www.balesio.com Adytia Vernanda. (2018). Analisis Respons Dinamis Floating Offshore d Turbine Tipe Semi-Sub Dengan Variasi Desain Wind Turbine 1,5 MW, MW DAN 5 MW Untuk Perairan Natuna.

Lampiran 1 Data Lingkungan Laut Sawu, NTT

RATA - RATA BULANAN GELOMBANG LAUT DAN ANGIN

WILAYAH (-8.9051111, 120.7457222) TAHUN 2018 - 2022

Panduan Tir	iggi Gelombang					
Calman have	Conception of the local distribution of the		Desires	Thus	And and in case	Concession of the local division of the loca
Gerombang	0.0 0.5 m	0.5 - 1.25 m	1.25 - 2.5 m	25-4m	4 · 6 m	6 9 m

No	Teneval	Ang	gin	
NO.	ranggar	Arah	Kec. (knot)	Gelombang
1.	Januari 2018	Barat Laut	2-6	0.5-0.75
2.	Februari 2018	Barat	2-6	0-0.5
3.	Maret 2018	Barat Laut	2-6	0-0.5
4.	April 2018	Tenggara	2-6	0-0.5
5.	Mei 2018	Timur	2-8	0.5-0.75
б.	Juni 2018	Tenggara	2-6	0-0.5
7.	Juli 2018	Tenggara	2-6	0-0.5
B.	Agustus 2018	Tenggara	2-6	0-0.5
Э.	September 2018	Tenggara	2-8	0-0.5
10,	Oktober 2018	Timur Laut	2-4	0-0.5
11.	November 2018	Timur Laut	2-4	0-0.5
12.	Desember 2018	Barat	2-6	0-0.5
13.	Januari 2019	nuari 2019 Barat Laut 2 – 6		0-0.5
14.	Februari 2019	bruari 2019 Barat Laut 2-4		0-0.5
15.	Maret 2019	Barat Laut	2-4	0-0.5
16.	April 2019	il 2019 Tenggara 2-6		0-0.5
17.	Mei 2019	2019 Tenggara 2-6		0-0.5
18.	Juni 2019	Tenggara	2-8	0.5-0.75
19.	Juli 2019	Tenggara	2-6	0-0.5
20.	Agustus 2019	Tenggara	2-6	0.5-0.75
21.	September 2019	Tenggara	2-6	0-0.5
22.	Oktober 2019	Tenggara	2-8	0-0.5
23.	November 2019	Timur Laut	2-4	0-0.5
24.	Desember 2019	Timur Laut	2-4	0-0.5
25.	Januari 2020	Barat	2-10	0.5-0.75
26.	Februari 2020	Barat Laut	2-6	0-0.5
27.	Maret 2020	Barat Daya	2-6	0-0.5
28.	April 2020	Tenggara	2-6	0-0.5
29.	Mei 2020	Tenggara	2-6	0-0.5
30.	Juni 2020	Tenggara	2-10	0.5-0.75
	Juli 2020	Tenggara	2-6	0.5 - 0.75
	Agustus 2020	Tenggara	2-6	0-0.5
	September 2020	Tenggara	2-6	0-0.5
	Oktober 2020	Tenggara	2-4	0-0.5
	November 2020	Barat Daya	2-4	0-0.5

BADAN METEOROLOGI, KLIMATOLOGI, DAN GEOFISIKA

STASIUN METEOROLOGI MARITIM TENAU

JL. M Praja, Kupang – Nusa Tenggara Timur

BMKG Telp: (0380) 8561910, Email : stamar.tenau@bmkg.go.ld, Website : maritim.ntt.bmkg.go.id

RATA - RATA BULANAN GELOMBANG LAUT DAN ANGIN

WILAYAH (-8.9051111, 120.7457222) TAHUN 2018 - 2022

Panduan Tin	iggi Gelombang					
Calembany	1000		Solang	1-95	And in case of the local division of the loc	(Barris
Gelomoang	0.0 - 0.5 m	0.5 - 1.25 m	1.25 · 2.5 m	2.5 - 4 m	4-6 m	5 - 9 m

No	Tannal	Ang	gin	Calmaka	
NO.	ranggar	Arah	Kec. (knot)	Gelombang	
1.	Desember 2020	Barat Laut	2-6	0-0.5	
2.	Januari 2021	Barat Laut	2-6	0-0.5	
3.	Februari 2021	Barat	2-6	0.5-0.75	
4.	Maret 2021	Barat Laut	2-4	0-0.5	
5.	April 2021	Timur Laut	2-4	0-0.5	
6.	Mei 2021	Timur	2-6	0.5-0.75	
7.	Juni 2021	Timur	2-6	0.5-0.75	
8.	Juli 2021	Tenggara	2-8	0.5-0.75	
9.	Agustus 2021 Tenggara 2-6		0.5-0.75		
10.	September 2021 Timur		2-6	0.5-0.75	
11.	Oktober 2021	Tenggara	2-6	0-0.5	
12.	November 2021	Timur	2-4	0-0.5	
13.	Desember 2021	Barat Laut	2-6	0-0.5	
14.	Januari 2022	Barat Laut	2-6	0.5-0.75	
15.	Februari 2022	Barat Laut	2-6	0.5-0.75	
16.	Maret 2022	Timur Laut	2-4	0-0.5	
17.	April 2022	Timur Laut	2-4	0-0.5	
18.	Mei 2022	Timur	2-6	0.5-0.75	
19.	Juni 2022	Tenggara	2-6	0.5-1.0	
20.	Juli 2022	Tenggara	2-8	0.5 - 1.0	
21.	Agustus 2022	Timur	2-6	0.5-0.75	
22.	September 2022	Timur	2-6	0-0.5	
23.	Oktober 2022	Timur	2-4	0-0.5	
24.	November 2022	Timur	2-4	0-0.5	
25.	Desember 2022	Barat Laut	2-4	0-0.5	

Floater Oktagon

Lampiran 3 Perhitungan Periode Gelombang Frequency Domain Analysis

MENENTUKAN PERIODE GELOMBANG

= 1 m
= 5.8 s
= 100 m
$= 9.81 \text{ m/s}^2$
= 0.245 rad/s

α	Cos a	<i>X_i</i> (km)	$X_i \times Cos \alpha$
42	0.74314	85.72	63.70237444
36	0.80902	91.51	74.03314516
30	0.86603	93.75	81.1898816
24	0.91355	87.71	80.12707209
18	0.95106	88.33	84.00682208
12	0.97815	92.42	90.40040126
6	0.99452	105.25	104.6734295
0	1.00000	111.49	111.49
6	0.99452	120	119.3426274
12	0.97815	120	117.3777121
18	0.95106	120	114.126782
24	0.91355	120	109.6254549
30	0.86603	120	103.9230485
36	0.80902	120	97.08203932
42	0.74314	120	89.17737906
	$\Sigma = 13.51092$		$\Sigma = 1440.27817$

Menghitung Panjang Fetch Efektif Laut Sawu Utara

$$F_{eff} = \frac{\Sigma X_i \cos \alpha}{\Sigma \cos \alpha} = \frac{1440.2}{13.5} = 106.6 \, km$$
$$U_W = U_L \times R_L = 5.1444 \times 1.38 = 7.099 \, m/s$$
$$U_A = 0.71 \times U_W^{1.23} = 7.911 \, m/s$$

Dari perhitungan *hindcasting*, dapat diprediksi periode gelombang yang dibangkitkan oleh angin dengan metode grafis untuk model gelombang *airy*, yaitu

Ts = 5.8 s

Pengukuran Panjang Fetch Laut Sawu Utara, Provinsi NTT

Plot Nomogram Nilai Periode Gelombang Laut

Optimized using trial version www.balesio.com

Plot Diagram Hubungan Kecepatan Angin di Laut dan di Darat

Menentukan Frekuensi Gelombang

$$\omega = \frac{2\pi}{T} = \frac{2 (3.14159)}{5.8} = 1.083 \, rad/s$$

Menentukan Panjang Gelombang

$$L_w = \frac{2\pi g}{\omega_w^2} = \frac{2(3.14159)9.81}{1.083^2} = 52.522 m$$

Menentukan Angka Gelombang (Wave Number)

$$k_w = \frac{2\pi}{L_w} = \frac{2(3.14159)}{52.522} = 0.120$$

No.	Wave Frequency (Hz)	Wave Frequency (Rad/s)	Periode (s)	<i>L</i> _w (m)	k _w
1	0.016	0.103	60.9	5,795.334	0.001
2	0.055	0.348	18.0	508.441	0.012
3	0.094	0.593	10.6	175.153	0.036
4	0.133	0.838	7.5	87.718	0.072
5	0.172	1.083	5.8	52.522	0.120
6	0.211	1.328	4.7	34.932	0.180
7	0.250	1.573	4.0	24.898	0.252
8	0.289	1.818	3.5	18.640	0.337
9	0.328	2.063	3.0	14.476	0.434
10	0.367	2.309	2.7	11.566	0.543

Lampiran 4 Result Analisa Mass Properties Ansys Mechanical

********** PRECISE MASS SUMMARY ROTOR NACELLE HUB **********

TOTAL MASS = 0.34777E+06

The mass principal axes coincide with the global Cartesian axes

CENTER OF MASS (X,Y,Z)= 0.41121 0.41033E-05 96.457

TOTAL INERTIA ABOUT CENTER OF MASS

0.53127E+08 -172.84 0.16494E+07 -172.84 0.35941E+08 -1.2660 0.16494E+07 -1.2660 0.36099E+08

*** MASS SUMMARY BY ELEMENT TYPE ***

TYPE MASS

- 1 53598.8 Epoxy Carbon UD (1.207) = back nacelle
- 2 184645. Epoxy Carbon UD (0.67) = shell nacelle
- 3 56582.7 Epoxy Carbon UD (0.445) = hub
- 4 17648.6 Epoxy Carbon UD (0.0254) = blade2
- 5 17646.5 Epoxy Carbon UD (0.0254) = blade1
- 6 17648.8 Epoxy Carbon UD (0.0254) = blade3

*********** PRECISE MASS SUMMARY TOWER **********

TOTAL MASS = 0.34695E+06

The mass principal axes coincide with the global Cartesian axes

CENTER OF MASS (X,Y,Z)= 0.17094E-02 -0.19992E-04 43.636

TOTAL INERTIA ABOUT CENTER OF MASS

0.24415E+09 2.9833 -28421. 2.9833 0.24415E+09 -544.26

-28421. -544.26 0.21582E+07

The inertia principal axes coincide with the global Cartesian axes

*** MASS SUMMARY BY ELEMENT TYPE ***

TYPE MASS

- 25 Epoxy Carbon UD (0.00001 m) = top tower
- .7 Epoxy Carbon UD (0.63 m) = bottom tower
- 2. Epoxy Carbon UD (0.158 m) = shell tower

DF

********** PRECISE MASS SUMMARY 1 SET TURBIN **********

TOTAL MASS = 0.69472E+06

The mass principal axes coincide with the global Cartesian axes

CENTER OF MASS (X,Y,Z)= 0.20670 -0.99844E-05 70.077 (70.077 Kubus) (68.977 Silinder) (69.557 Oktagon)

TOTAL INERTIA ABOUT CENTER OF MASS

0.78186E+09 1.5614 -0.37852E+07 1.5614 0.76471E+09 -727.67 -0.37852E+07 -727.67 0.38286E+08

********** PRECISE MASS SUMMARY FULL PLATFORM KUBUS **********

TOTAL MASS = 0.61370E+07

The mass principal axes coincide with the global Cartesian axes

CENTER OF MASS (X,Y,Z)= 0.23399E-01 -0.81213E-15 8.8196

TOTAL INERTIA ABOUT CENTER OF MASS

0.47950E+10 -0.39988E-07 -0.87965E+07

-0.39988E-07 0.47778E+10 -0.42255E-07 -0.87965E+07 -0.42255E-07 0.19734E+10

*********** PRECISE MASS SUMMARY FULL PLATFORM SILINDER **********

TOTAL MASS = 0.61036E+07

The mass principal axes coincide with the global Cartesian axes CENTER OF MASS (X,Y,Z)= 0.23527E-01 0.40452E-08 7.7625 TOTAL INERTIA ABOUT CENTER OF MASS 0.45457E+10 -0.24593 -0.87903E+07

-0.24593 0.45285E+10 0.19922 -0.87903E+07 0.19922 0.14802E+10

****** PRECISE MASS SUMMARY FULL PLATFORM OKTAGON **********

TOTAL MASS = 0.61271E+07 The mass principal axes coincide with the global Cartesian axes

CENTER OF MASS (X,Y,Z)= 0.25900E-01 -0.70002E-02 8.2680

TOTAL INERTIA ABOUT CENTER OF MASS

0.46389E+10 0.33082E+06 -0.86632E+07

PDF 2E+07 -0.33478E+06 0.16525E+10 2E+07 -0.33478E+06 0.16525E+10

Lampiran 5 Hydrostatic Result Ansys Aqwa Hydrodynamic Diffraction

	Hydr	ostatic Results					
Structure		Kubus					
Hydrostatic Stiffness							
Center of Gravity (CoG) Position:	X:	2.3399e-2 m	Y:	0, m	Z:	8.8196001 m	
Heave (Z):		Z 16082905 N/m		-8.3226e-2 N/°		6568.1558 N/º	
Roll (RX): Pitch (RY):		-4 7685151 N.m/m 376327.59 N.m/m		25278422 N.m ^{/b} -0.1230095 N.m ^{/b}		-0.1230095 N.m/º 25278502 N.m/º	
Hydrostatic Displacement Properties		land and the second					
Actual Volumetric Displacement: Equivalent Volumetric Displacement:		6399.9995 m ² 5987.3169 m ⁴					
Center of Buoyancy (CoB) Position:	X:	-2.5518e-7 m	Y: EV-	-1.5207e-7 m	Z:	-1.9999933 m	
Out of Balance Moments/Weight:	MDX:	-1.4279e-8 m	MY	2.5011e-2 m	MZ:	2.2328e-8 m	
Cut Water Plane Properties		1500 00001					
Center of Floatation	X:	-2.3097e-7 m	Y:	-2.965e-7 m			
Principal 2nd Moments of Area: Angle between Principal X Axis and Global X Axis:	-X:	213333.06 m ⁴ -89.906281°	Y:	213333.48 m ⁴			
Small Angle Stability Parameters	with 1	respect to Principal .	Axes				
CoG to CoB (BG):		10.819593 m					
Metacentric Heights (GMX/GMY): CoB to Metacentre (BMX/BMV):		22.5137 m		22.513765 m			
Restoring Moments (MX/MY):		25278350 N.m/º		25278424 N m/°			
	Hydr	ostatic Results					
Structure		sänder					
Hadrostatic Stifferer							
Center of Gravity (CoG) Position	x	2,3399e-2 m	57.	0. m	Z.	7.7624993 та	
Harry (7)-		Z 12614390 Nom		RX 3 4487027 N/P		RY	
Roll (RX): Pitch (RY):		197.60127 N.m.m. 295174.69 N.m.m.		10405940 N m/° -104.24403 N m/°		-104.24403 N.m.° 10408853 N.m.°	
Hydrostatic Displacement Properties							
Actual Volumetric Displacement: Equivalent Volumetric Displacement:		6400,1753 m ³ 5954,7314 m ⁴					
Center of Buoyancy (CoB) Position	х:	1.1958e-6 m	¥:	1.5346e-5 m	Z:	-2.5500083 m	
Out of Balance Forces/Weight. Out of Balance Moments/Weight:	FX: MDC	-1.0181e-8 1.6374e-5 m	MXI FX:	-1.387e-10 2.5148e-2 m	FZ: MZ	7.4805e-2 2.382e-9 m	
Cut Water Plane Properties		and the second second					
Cut Water Plane Area: Center of Floatation:	X:	-8.4005e-7 m	37:	1.5665e-5 m			
Principal 2nd Moments of Area	х.	125316.13 m ⁴	Y:	125332.09 m ⁴			
Angle between Principal A Axis and Global A Axis:		+2.1359351*					
Small Angle Stability Parameters CoG to CoB (BG):	with i	nespect to Principal . 10 312508 m	Axes				
Metacentric Heights (GMX/GMY)		9 267601 m		9.2700958 m			
CoB to Metacentre (BMX/BMY): Restoring Moments (MX/MY):		19.580109 m 10405934 N.m.º		19.582603 m 10408736 N m/°			
	Hydr	ostatic Results					
Structure		tower					
Hydrostatic Stiffness							
Center of Gravity (CoG) Position:	x	2.3399e-2 m	Y:	-1.638e-15 m	Z:	8.2679996 m	
11		Z		RX		RY	
Heave (Z): Roll (RX):		14072529 N/m 1 985099 N m/m		3.404/e-2 N/º		0 1963371 N m/9	
Pitch (RY):		329287 19 N.m/m		-0.1963371 N m/°		15640101 N.m/°	
H. J							
Actual Volumetric Displacement		6397 999 m ³					
Equivalent Volumetric Displacement		5977.6587 m ⁴					
Center of Buoyancy (CoB) Position:	X	-8.0094e-8 m	¥:	1.8207e-7 m	Z:	-2.2850008 m	
Out of Balance Forces/Weight: Out of Balance Moments/Weight:	FX: MX	-9.0365e-9 1.2092e-7 m	FY: MY:	-2.6557e-8 2.5045e-2 m	FZ: MZ:	7.0318e-2 1.2482e-8 m	
Cut Water Plane Properties							
Cut Water Plane Area:		1399.9987 m ²					
Center of Floatation: Dringing 2nd Mermanic of Associ	X	-2.9057e-7 m	Y: V	1.4106e-7 m			
Principal X Axis and Global X Axis:	X	-89.771072°	13	100000.84 m*			
Small Angle Stability Parameters	with 1	respect to Principal .	Axes				
CoG to CoB (BG):		10.553 m		diam'n a start			
Metacentric Heights (GMX/GMY):		13.933806 m		13.93385 m			
Restoring Moments (MX/MY):		15639967 N m/a		15640018 N m/a			
the line is a second se		the second second					

Lampiran 6 Setup Analisa Respon Gerak Maxsurf Motion

• Floater Kubus

G	iene	erate Trimesh						>	<
	Ge	nerate Trimesh for							
	0) Single mech for all celect	ed Surfaces						
	ĕ) Individual meets for each	ealacted Surf	face					
		/ individual mesh for each	selected Sun	ace					
[∠ B	ond trimeshes at visible in	tersection cur	rves					
[B	ond trimeshes at NURB b	onded edges						
[∠ P	reserve feature lines							
[Select All	Deselect All		Select Visible				
L.									
		Curface Name	Create	Delete	Min. edge	Max. edge	Hotspots/	Estimated	
		Surface Name	Trimesh	existing	m	m	Hotlines	Num. Tris.	
	1	BoxAft			1.800	3.000	none	320	
	2	BoxFwd			1.800	3.000	none	320	
	3	BoxTop			1.000	3.000	none	923	
	4	BoxBottom			1.000	3.000	none	923	
				·				·	
							OK	Cancel	
						_			1
_									
😳 K File	ubus_tes Edit	4_Fix.msd - MAXSURF Motions Advanced CONNECT E View Analysis Display Data Window H	dition x64 - [Perspective] elp Bentley Cloud Service:	5				- 0	- 8 ×
	6		Home Perspective				∕e. <mark>5</mark> 11 1 ∷11	. VPE &.	
Kul	bus, 0 kn	V 00 v 10 00 00 00 00 00 00 00 00 00 00 00 00	µ ♥ 8 ₩ ₽, ₩ /) ~	, 1831 854 + ; 11m 966 4	All Freque	encies 🗸 All Panels 🗸 🗸	∀.		
- 19									-180
				VKA					
			ANX	XX/N	XA				
-90			A T X X	TAK	XXV				
		A HA	KANA	KAX X	XXX	XX			
-		XXXX	AKK K	KKK	JXKAN	SXKD			-
		STATE AND			EK TXK	R KIX			-
0- -			E E E E			TARA			<u>2</u> 0
			<u>AAA</u>			XXXX			-
			<u> </u>	LE L					
- 90 -							XXXX		- 90
						THE SE			
-				LE CAR	ARE!				
					2000				
									100
TTT PD)F	90 In in 🖵			0 Yaw		90		180
		r:0.000 deg, p:0.000 deg	o o 🗊 🚺	XI A 💀 🛙	C\Users\Ha	alim\Documents\SKRIPSI HALIM	I\MODEL\Floater Maxsurf\pen	gujian \Kubus_tes4_Fix.msd (空 伝) (小) 10:28 AM - 国	
	2	· · · · · · · ·							HE
	1								
	1								
Optimized us	sing	1							
trial versio	n								
www.balesio.	cor	n							

• Floater Silinder

Generate Trimesh

×

Kurva SAC floater silinder

• Floater Oktagon

Single mesh for all selected Surfaces
 Individual mesh for each selected Surface

Bond trimeshes at visible intersection curves Bond trimeshes at NURB bonded edges

Generate Trimesh

Generate Trimesh for

 \times

Preserve feature lines Select Visible Select All Deselect All Min. edge Max. edge Create Delete Hotspots/ Estimated Surface Name length length Trimesh Num. Tris. existing Hotlines m m BoxAft 0.832 1.669 none 1 2 2 2 0.832 BoxFwd 1.669 none 2 3 2.000 2.500 BoxTop none 2 4 2.000 2.500 BoxBottom none 2 5 BoxStbd 1.062 1.669 none 2 6 StbFront 0.825 1.669 none 7 StbBack 0.825 1.669 none 2 OK Cancel

Kurva SAC floater oktagon

www.balesio.com

Lampiran 7 Posisi Trim & Stabilitas Floater

• FLOATER KUBUS

Loadcase - For Stability Damage Case - Intact Free to Trim Specific gravity = 1.025; (Density = 1.025 tonne/m^3) Fluid analysis method: Use corrected VCG

Item Name	Quantity	Unit Mass	Total Mass	Unit Volume	Total Volume	Long. Arm	Trans. Arm	Vert. Arm	Total FSM	FSM Type
		tonne	tonne	m^3	m^3	m	m	m	tonne.m	
Lightship	1	6560.000	6560.000			0.000	0.000	5.000	0.000	User Specified
Turbin 5MW	1	697.460	697.460			0.000	-0.207	74.077	0.000	User Specified
Total Loadcase			7257.460	0.000	0.000	0.000	-0.020	11.638	0.000	
FS correction								0.000		
VCG fluid								11.638		

Heel to Starboard	0.0	10.0	20.0	30.0	40.0	50.0	60.0	70.0	80.0	90.0
GZ m	0.020	3.696	6.113	5.334	3.672	1.685	-0.439	-2.590	-4.681	-6.638
Area under GZ curve from zero heel m deg	0.0000	18.8863	70.1366	129.2986	174.5451	201.5530	207.8305	192.6794	156.2271	99.5513
Displacement t	7257	7257	7257	7257	7257	7257	7257	7257	7257	7257
Draft at FP m	4.425	4.425	4.163	3.673	3.071	2.260	1.018	-1.316	-8.038	n/a
Draft at AP m	4.425	4.425	4.163	3.673	3.071	2.260	1.018	-1.316	-8.038	n/a
WL Length m	40.000	40.000	40.000	40.000	40.000	40.000	40.000	40.000	40.000	40.000
Beam max extents on WL m	40.000	40.617	29.238	20.000	15.557	13.054	11.547	10.642	10.154	10.000
Wetted Area m ²	2131.033	2131.033	1993.101	1993.101	1993.101	1993.101	1993.101	1993.101	1993.101	1993.101
<u></u>	1599.999	1624.682	1169.521	800.000	622.289	522.163	461.880	425.671	406.170	400.000
(p)	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
PDF	1.000	0.557	0.563	0.671	0.748	0.808	0.860	0.907	0.953	1.000
(+ve fwd) m	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
(+ve fwd) m	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
on deg	0.0000	10.0000	20.0000	30.0000	40.0000	50.0000	60.0000	70.0000	80.0000	90.0000
/ stern) deg	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	n/a

• FLOATER SILINDER

Loadcase - For Stability Damage Case - Intact Free to Trim Specific gravity = 1.025; (Density = 1.025 tonne/m^3) Fluid analysis method: Use corrected VCG

Item Name	Quantity	Unit Mass tonne	Total Mass tonne	Unit Volume m^3	Total Volume m^3	Long. Arm m	Trans. Arm m	Vert. Arm m	Total FSM tonne.m	FSM Type
Lightship	1	6553.000	6553.000			0.000	0.000	5.000	0.000	User Specified
Turbin 5MW	1	697.460	697.460			0.000	-0.207	74.077	0.000	User Specified
Total Loadcase			7250.460	0.000	0.000	0.000	-0.020	11.645	0.000	
FS correction								0.000		
VCG fluid								11.645		

Heel to Starboard	0.0	10.0	20.0	30.0	40.0	50.0	60.0	70.0	80.0	90.0
GZ m	0.020	1.619	2.778	2.140	0.828	-0.707	-2.303	-3.867	-5.333	-6.645
Area under GZ curve from zero heel m.deg.	0.0000	8.1967	31.2688	57.0648	72.1292	72.8501	57.7985	26.8973	-19.2269	-79.2032
Displacement t	7250	7250	7250	7250	7250	7250	7250	7250	7250	7250
Draft at FP m	5.629	5.629	5.789	6.181	6.687	7.378	8.442	10.449	16.237	n/a
Draft at AP m	5.629	5.629	5.789	6.181	6.687	7.378	8.442	10.449	16.237	n/a
WL Length m	40.000	40.000	40.000	40.000	40.000	40.000	40.000	39.999	39.939	39.803
Beam max extents on WL m	40.000	40.617	29.238	20.000	15.557	13.054	11.547	10.642	10.154	10.000
Wetted Area m ²	1707.230	1707.230	1799.593	1813.615	1816.548	1817.322	1817.456	1817.570	1817.457	1817.799
2	1256.579	1275.964	1059.993	769.518	609.580	515.545	457.854	422.942	403.942	397.980
p)	0.785	0.785	0.798	0.802	0.803	0.804	0.804	0.804	0.806	0.808
DF	0.785	0.483	0.493	0.576	0.632	0.675	0.711	0.743	0.775	0.808
(+ve fwd) m	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
(+ve fwd) m	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
on deg	0.0000	10.0000	20.0000	30.0000	40.0000	50.0000	60.0000	70.0000	80.0000	90.0000
y stern) deg	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	n/a

• FLOATER OKTAGON

Loadcase - For Stability Damage Case - Intact Free to Trim

Specific gravity = 1.025; (Density = 1.025 tonne/m^3) Fluid analysis method: Use corrected VCG

(+**ve fwd**) m (+ve fixd) m on deg / stern) deg

0.0000

Item Name	Quantity	Unit Mass	Total Mass	Unit Volume	Total Volume	Long. Arm	Trans. Arm	Vert. Arm	Total FSM	FSM Type
		tonne	tonne	m^3	m^3	m	m	m	tonne.m	
Lightship	1	6555.000	6555.000			0.000	0.000	5.000	0.000	User Specified
Jurbin 5MW	1	697.460	697.460			0.000	-0.207	74.077	0.000	User Specified
Total Loadcase			7252.460	0.000	0.000	0.000	-0.020	11.643	0.000	
FS correction								0.000		
VCG fluid								11.643		

20.0000

50.0000 0.0000

90.0000

n/a

Optimized using trial version www.balesio.com

FLOATER KUBUS		FLOATER SILINDER	FLOATER OKTAGO	N	
Draft Amidships m	4.425	Draft Amidships m	5.629	Draft Amidships m	5.054
Displacement t	7257	Displacement t	7250	Displacement t	7252
Heel deg	0.0	Heel deg	0.0	Heel deg	0.0
Draft at FP m	4.406	Draft at FP m	5.585	Draft at FP m	5.023
Draft at AP m	4.444	Draft at AP m	5.673	Draft at AP m	5.085
Draft at LCF m	4.425	Draft at LCF m	5.629	Draft at LCF m	5.054
Trim (+ve by stern) m	0.038	Trim (+ve by stern) m	0.088	Trim (+ve by stern) m	0.061
WL Length m	40.000	WL Length m	40.000	WL Length m	40.000
Beam max extents on WL m	40.000	Beam max extents on WL m	40.000	Beam max extents on WL m	40.000
Wetted Area m ²	2130.265	Wetted Area m ²	1707.228	Wetted Area m ²	1955.631
Waterpl. Area m ²	1599.991	Waterpl. Area m ²	1256.582	Waterpl. Area m^2	1399.999
Prismatic coeff. (Cp)	0.996	Prismatic coeff. (Cp)	0.785	Prismatic coeff. (Cp)	0.872
Block coeff. (Cb)	0.996	Block coeff. (Cb)	0.779	Block coeff. (Cb)	0.870
Max Sect. area coeff. (Cm)	1.000	Max Sect. area coeff. (Cm)	1.000	Max Sect. area coeff. (Cm)	1.000
Waterpl. area coeff. (Cwp)	1.000	Waterpl. area coeff. (Cwp)	0.785	Waterpl. area coeff. (Cwp)	0.875
LCB from zero pt. (+ve fwd) m	-0.029	LCB from zero pt. (+ve fwd) m	-0.039	LCB from zero pt. (+ve fwd) m	-0.034
LCF from zero pt. (+ve fwd) m	0.000	LCF from zero pt. (+ve fwd) m	0.000	LCF from zero pt. (+ve fwd) m	0.000
KB m	2.213	KBm	2.815	KB m	2.527
KG fluid m	11.638	KG fluid m	11.645	KG fluid m	11.643
BMt m	30.130	BMt m	17.765	BMt m	22.142
BML m	30.129	BML m	17.762	BML m	22.142
Chit corrected m	20.704	GMt corrected m	8.935	GMt corrected m	13.026
PDF	20.704	GML m	8.932	GML m	13.026
	32.342	KMt m	20.580	KMt m	24.669
	32.342	KML m	20.577	KML m	24.669
Pc) tonne/cm	16.400	Immersion (TPc) tonne/cm	12.880	Immersion (TPc) tonne/cm	14.350
£01	37.564	MTc tonne.m	16.190	MTc tonne.m	23.617

Optimized using trial version www.balesio.com

No. : 19531/UN4.7.7/TD.06/2023 Lamp : -Hal : Penugasan Bimbingan Tugas Akhir

Kepada Yth : Wakil Dekan Bidang Akademik dan Kemahasiswaan Fakultas Teknik Unhas di-Gowa

Dengan hormat, Kiranya dosen pembimbing tugas akhir (skripsi) dari mahasiswa :

Nama : Nurhalim Dwi Putra Stambuk : D091191084 Program Studi : Teknik Sistem Perkapalan

Dengan judul Tugas Akhir: Analisa Respon Gerak Turbin Angin Terapung Lepas Pantai Tipe Barge terhadap Variasi Bentuk Floater

Dosen Pembimbing :

1. Dr.Eng. Faisal Mahmuddin, S.T., M.Inf.Tech., M.Eng.

2. Ir. Syerly Klara, M.T.

Dapat dibuatkan Surat Penugasan Bimbingan Tugas Akhir Demikian penyampaian kami, atas perhatian dan kerjasamanya diucapkan terima kasih.

Gowa, 01 September 2023

nen Teknik Sistem Perkapalan

Dr.Eng. Faisal Mahmuddin,S.T, M.Inf.Tech., M.Eng Nip. 19810211 200501 1 003

SURAT PENUGASAN

No. 19532/UN4.7.1/TD.06/2023

Dari : Dekan Fakultas Teknik Universitas Hasanuddin
Kepada : 1. Dr.Eng. Faisal Mahmuddin, S.T., M.Inf.Tech., M.Eng.
2. Ir. Syerly Klara, M.T.

Isi

1. Bahwa berdasarkan peraturan Akademik Universitas Hasanuddin Tahun 2018 Pasal 16 (SK. Rektor Unhas nomor : 2784/UN4.1/KEP/2018), dengan ini menugaskan Saudara sebagai PEMBIMBING MAHASISWA, maka dengan ini kami menugaskan Saudara untuk membimbing penulisan Skripsi/Tugas Akhir mahasiswa Teknik Sistem Perkapalan Fakultas Teknik Universitas Hasanuddin di bawah ini :

Nama : Nurhalim Dwi Putra No. Stambuk : D091191084

Pemb. I

Pemb. II

Judul Skripsi/Tugas Akhir :

Analisa Respon Gerak Turbin Angin Terapung Lepas Pantai Tipe Barge terhadap Variasi Bentuk Floater

- Surat penugasan pembimbing ini mulai berlaku sejak tanggal ditetapkannya dan berakhir sampai selesainya penulisan Skripsi/Tugas Akhir Mahasiswa tersebut.
- Agar surat penugasan ini dilaksanakan sebaik baiknya dengan penuh rasa tanggung jawab.

Ditetapkan di Gowa, Pada tanggal, 01 September 2023 a.n Dekan, Wakil Dekan Bidang Akademik dan Kemahasiswaan,

Dr. Amil Ahmad Ilham, S.T., M.IT. Nip. 19731010 199802 1 001

Tembusan :

- 1. Dekan FT-UH.
- 2. Ketua Departemen Teknik Sistem Perkapalan FT-UH.
- 3. Mahasiswa yang bersangkutan

Dokumen ini telah ditandatangani secara elektronik menggunakan sertifikat elektronik yang diterbitkan BSrE
 UU ITE No 11 Tahun 2008 Pasal 5 Ayat 1
 "Informasi Elektronik dan/atau Dokumen Elektronik dan/atau hasil cetaknya merupakan alat bukti hukum yang sah"

KEMENTERIAN PENDIDIKAN KEBUDAYAAN, RISET DAN TEKNOLOGI UNIVERSITAS HASANUDDIN

Jalan Perintis Kemerdekaan Km. 10, Makassar 90245

Telepon (0411) 586200, (6 Saluran), 584200, Fax (0411) 585188

Laman: www.unhas.ac.id

SURAT IZIN UJIAN SKRIPSI Nomor 26331/UN4.1.1.1/PK.03.02/2024

Berdasarkan Peraturan Rektor Universitas Hasanuddin tentang Penyelenggaraan Program Sarjana Nomor 29/UN4.1//2023 tanggal 17 Oktober 2023, dengan ini menerangkan bahwa:

Nama	5	NURHALIM DWI PUTRA
NIM	:	D091191084
Tempat/Tanggal Lahir	:	MAKASSAR/03 APRIL 2001
Fakultas	:	TEKNIK
Program Studi	1	TEK. SISTEM PERKAPALAN

Telah memenuhi syarat untuk Ujian Skripsi Strata I (S1). Demikian Surat Persetujuan ini dibuat untuk digunakan dalam proses pelaksanaan ujian skripsi, dengan ketentuan dapat mengikuti wisuda jika persyaratan kelulusan/wisuda telah dipenuhi. Terima Kasih.

Makassar, 5 Juli 2024 a.n. Direktur Pendidikan Kepala Subdirektorat Administrasi Pendidikan,

Susy Asteria Irafany, S.T., M.Si. NIP 197403132009102001

Keterangan online wisuda:

User : D091191084 Password : 2168577 Alamat Web : http://wisuda.unhas.ac.id

www.balesio.com

Gathy 150 9501

KEMENTERIAN PENDIDIKAN KEBUDAYAAN, RISET, DAN TEKNOLOGI UNIVERSITAS HASANUDDIN FAKULTAS TEKNIK DEPARTEMEN TEKNIK SISTEM PERKAPALAN

Jalan Poros Malino Km. 6 Bontomarannu92171 Gowa, Sulawesi Selatan Telp/Fax : +62-411-588400, E-Mail: marine.eng@unhas.ac.id Laman : eng.unhas.ac.id/tsp

No.	:	20285/UN4.7.7/T	D.06/2024						
Lampiran	1								
Hal	:	Penerbitan Surat I Ujian Sarjana Stra	Penugasan ata Satu (S]	Panitia L)					
Kepada Yth.	:	Wakil Dekan Bidang Akademik							
		dan Kemanasisw di-	аал гакш	las Teknik UNHAS					
		Dengan hormat, Berdasarkan Persetujuan Pembimbing Mahasiswa, Bersama ini diusulkan susun:							
		Ujian Sarjana Strata Satu (S1) bagi mahasiswa Departemen Teknik Sistem Perkapa Fakultas Teknik Universitas Hasanuddin atas nama :							
		Nama	:	Nurhalim Dwi Putra					
		Stambuk	:	D091191084					
		Maka dengan ini l berikut :	kami sampa	aikan Susunan Panitia Ujian Sarjana Strata Satu (S1) sebagai					
		Ketua	9	Dr. Eng. Ir. Faisal Mahmuddin, S.T., M.Inf., Tech., M.Eng., IPM					
		Sekretaris	:	Ir. Syerly Klara, M.T.					
		Anggota	:	1. Ir. Zulkifli, M.T.					
				2. Baharuddin, S.T., M.T.					

Judul Tugas Akhir mahasiswa yang bersangkutan adalah :

Analisa Respon Gerak Turbin Angin Terapung Lepas Pantai Tipe Barge Terhadap Variasi Bentuk Floater

Untuk dapat diterbitkan surat penugasannya.

Demikian penyampaian kami, atas perhatian dan kerjasamanya diucapkan terima kasih.

Dr.Eng.Ir.Faisal Mahmudin, S.T,M.Inf.Tech,M.Eng.,IPM Nip. 19810211 200501 1 003

:

Isi

KEMENTERIAN PENDIDIKAN, KEBUDAYAAN, RISET, DAN TEKNOLOGI UNIVERSITAS HASANUDDIN

FAKULTAS TEKNIK

Jalan Poros Malino km. 6 Bontomarannu Gowa, 92171, Sulawesi Selatan Telepon (0411) 586200, 584002, e-mail: teknik@unhas.ac.id Laman : eng.unhas.ac.id.

SURAT PENUGASAN

No. 20286/UN4.7.1/TD.06/2024

- Dari : Dekan Fakultas Teknik Universitas Hasanuddin
- Kepada : Mereka yang tercantum namanya dibawah i

M	ereka yang terca	ntum namanya dibawah ini.						
1.	Bahwa Berdasa	arkan Peraturan Rektor Universitas Hasanuddi	n Nomor 29/	UN4.1/2023 tentang				
	Penyelenggaraan Program Sarjana Universitas Hasanuddin dengan ini menugaskan Saudara sebagai PANITIA UJIAN SARJANA Program Strata Satu (S1) Teknik Sistem Perkapalan							
	Fakultas Tekni	k Universitas Hasanuddin dengan susunan seb	agai berikut :	24				
	Ketua	: Dr. Eng. Ir. Faisal Mahmuddin, S.T., M.Inf., Tech., M.Eng., IPM						
	Sekretaris	: Ir. Syerly Klara, M.T.						
	Anggota	: 1. Ir. Zulkifli, M.T.						
		2. Baharuddin, S.T., M.T.						
	Untuk menguji	bagi mahasiswa tersebut dibawah ini :						
	Nama/NIM	: Nurhalim Dwi Putra	1	D091191084				

ama/NIM : Nurhalim Dwi Putra /

Judul Thesis/Skripsi :

Analisa Respon Gerak Turbin Angin Terapung Lepas Pantai Tipe Barge Terhadap Variasi Bentuk Floater

- 2. Waktu ujian ditetapkan oleh Panitia Ujian Akhir Program Strata Satu (S1).
- 3. Agar surat penugasan ini dilaksanakan sebaik-baiknya dengan penuh rasa tanggung jawab.
- 4. Surat penugasan ini berlaku sejak tanggal ditetapkan sampai dengan berakhirnya Ujian Sarjana tersebut, dengan ketentuan bahwa segala sesuatunya akan ditinjau dan diperbaiki sebagaimana mestinya apabila dikemudian hari ternyata terdapat kekeliruan dalam keputusan ini.

Ditetapkan di Gowa, Pada Tanggal 19 Agustus 2024 a.n Dekan, Wakil Dekan Bidang Akademik dan Kemahasiswaan,

Dr. Amil Ahmad Ilham, S.T., M.IT. Nip. 19731010 199802 1 001

Tembusan:

- 1. Dekan FT-UH
- 2. Ketua Departemen Teknik Sistem Perkapalan
- 3. Kasubag Umum dan Perlengkapan FT-UH

KEMENTERIAN PENDIDIKAN KEBUDAYAAN, RISET, DAN TEKNOLOGI UNIVERSITAS HASANUDDIN FAKULTAS TEKNIK DEPARTEMEN TEKNIK SISTEM PERKAPALAN Jalan Poros Malino Km. 6 Bontomarannu 92171 Gowa. Sulawesi Selatan Telp Fax : ~62-411-588400, E-Mail: marine.eng@unhas.ac.id

Laman : eng unhas ac id tsp

BERITA ACARA UJIAN SEMINAR TUTUP

Terhadap Mahasiswa

Nama		Nurhalim Dwi Putra				
Stambuk	:	D091191084				
Judul	2	Analisa Respon Gerak Turbin Angin Terapung Lepas Pantai Tipe Barge Terhadap Variasi Bentuk Floater				
Hari/Tanggal	:	Selasa, 20 Agustus 2024				
Waktu	:	10:30 - 12:30 WITA				
Tempat	:	Ruang Sidang Teknik Sistem Perkapalan				
Keputusan Sidang/ Catatan	:	Wey dengen with or7.75 (A)				
Catatan	:					

PANITIA UJIAN

No.	Susunan Panitia	Nama	Tanda Tangan
1.	Ketua/Anggota	Dr. Eng. Ir. Faisal Mahmuddin, S.T., M.Inf., Tech., M.Eng., IPM	M.
2.	Sekretaris/Anggota	Ir. Syerly Klara, M.T.	27
3.	Anggota	Ir. Zulkifli, M.T.	3- Alma
4.	Anggota	Baharuddin, S.T., M.T.	4. Mmn
Ketua S	idang	Gowa, Agustus 202 Sekretaris Sidang	4

B Eng. Ir. Faisal Mahmuddin, S.T., M.Inf., PM

PDF

Optimized using trial version www.balesio.com 200501 1 003

kretaris Sidang

Ir. Syerly Klara, M.T. Nip. 19640501 199002 2 001