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LAMPIRAN 

1. Pengujian I-V pada suhu 300 °C 

Tegangan (mV) I (mA) J(A/cm2) Pout efisiensi 

(%) 

50.7 0.0257 0.011422 5.79107E-07 0.104086804 

47.9 0.0266 0.011822 5.66284E-07 0.101782178 

44.1 0.0274 0.012178 5.3704E-07 0.096525874 

40.6 0.0279 0.0124 5.0344E-07 0.090486716 

35.8 0.029 0.012889 4.61422E-07 0.082934573 

31.5 0.0294 0.013067 4.116E-07 0.073979684 

30.2 0.0264 0.011733 3.54347E-07 0.063689151 

28.2 0.0251 0.011156 3.14587E-07 0.056542814 

26 0.0235 0.010444 2.71556E-07 0.048808538 

24.8 0.0228 0.010133 2.51307E-07 0.045169067 

23.9 0.0216 0.0096 2.2944E-07 0.041238821 

Menghitung efisiensi 

Diketahui: 

Vmaks = 50.7 mV 

Imaks = 0.0257 mA 

A = 2.25 cm2 

Voc = 23.9 mV 

Isc = 0.0257 mA 

Pin = 0.000556369 mW/cm2 

  Penyelesaian: 

  Jsc =
Isc

A
  =

0.0257

2.25
 

     = 0.01142222 

  FF =
Jmaks∙Vmaks

Jsc∙Voc
  =

(0.0257)(50.7)

(0.01142222)(43.9)
 

       = 83.68% 

  Pout = Jmaks ∙ Vmaks   = (0.011422) (50.7) 

       = 5.7910x10-7 mW/cm2 

  η =
Pout

Pin
× 100%  =

5.7910x10-7 

0.000556369
× 100% 

       = 0.1040 % 
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Gunakan rumus yang sama untuk variasi suhu 400°C dan 500°C. 

2. Pengujian I-V 400°C 

Tegangan (mV) I (mA) J(A/cm2) Pout efisiensi 

(%) 

57.3 0.0291 0.012933 7.4108E-07 0.133199379 

54.3 0.0301 0.013378 7.26413E-07 0.130563239 

53.4 0.031 0.013778 7.35733E-07 0.132238386 

49.4 0.0321 0.014267 7.04773E-07 0.126673733 

47.8 0.0329 0.014622 6.98942E-07 0.125625668 

34.7 0.0331 0.014711 5.10476E-07 0.091751264 

32.6 0.0337 0.014978 4.88276E-07 0.087761106 

30.8 0.034 0.015111 4.65422E-07 0.08365352 

28.3 0.0345 0.015333 4.33933E-07 0.077993807 

25.1 0.0349 0.015511 3.89329E-07 0.069976745 

22.1 0.035 0.015556 3.43778E-07 0.061789532 

 

3. Pengujian I-V 500°C 

Tegangan (mV) I (mA) J(A/cm2) Pout efisiensi 

(%) 

94 0.0465 0.020667 1.94267E-06 0.349168772 

87.7 0.0487 0.021644 1.89822E-06 0.341179669 

81.7 0.0507 0.022533 1.84097E-06 0.330890733 

74 0.0511 0.022711 1.68062E-06 0.302069731 

65.6 0.0521 0.023156 1.519E-06 0.273021062 

52 0.0529 0.023511 1.22258E-06 0.219742269 

42 0.054 0.024 0.000001008 0.181174737 

39.1 0.0549 0.0244 9.5404E-07 0.171476137 

37.4 0.0551 0.024489 9.15884E-07 0.164618178 

35.6 0.0557 0.024756 8.81298E-07 0.15840168 

33.8 0.0562 0.024978 8.44249E-07 0.151742629 
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Abstract: Improving the efficiency of dye sensitized solar cell (DSSC) by applying 

hybrid materials in the form of rGO combined with TiO2 on the photoanode. In addition, 

the optimal TiO2 deposition method can increase energy conversion efficiency. The 

hybrid material synthesis method is carried out by integrating rGO into the TiO2 structure 

to increase electrical conductivity and improve optoelectronic properties, the material 

characterization is carried out by various analyses, including spectroscopy and 

microscopy. This review provides information on the characteristics of TiO2 as a 

photoanode, characteristics of (rGO) development of rGO/TiO2 as a photoanode, methods 

of deposition TiO2 on glass substrates. This review will help researchers conduct research 

in the field of DSSC enhancement using rGO. 

Keyword: Efficiency; Reduced Graphene Oxide; Titanium Dioxide.  

 

1. Introduction 

 Energy is a primary requirement in life activities around the world, with a daily 

consumption of about 17,4 TW [1]. Rapid population growth and global economy 

increase energy demand in the mid-21st century, increasing energy demand will lead to 

energy crisis, climate change, fossil fuel shortages and environmental issues [2].  

The source of greenhouse gas emissions comes from the use of fossil fuels that produce 

carbon dioxide (CO2), the continuous production of CO2 will form a blanket, retaining 

earth’s heat nd projecting it into space and will further cause planetary warming [3]. 

 Conventional energy sources are generally obtained from petroleum, coal and 

natural gas, but their continuous use causes damage to ecosystems and human health,  

so renewable energy source are required sourced from solar, wind, geothermal, 

hydropower and biomass [4]. The most promising renewable energy is solar cell because 

mailto:dtahir@fmipa.unhas.ac.id


it is obtained from the sun, providing clean energy [5]. The solar energy that can be 

generated in a year is 3.8 EJ, which is able to convert energy from sunlight into light and 

warmth that trigger chemical processes in plants and produced energy [6]. Photovoltaic 

(PV) technology has the advantage of low production costs and no toxic effects on the 

environment [7]. 

 PV is generally based on inorganic materials which require high cost, difficult 

fabrication, some toxic materials and little availability in nature [8]. The presence of 

organic-based PV is the answer to these problems called Dye Sensitized Solar cell. DSSC 

are the third generation of solar cells that are very attractive because they are semi-

transparent, low fabrication cost, and low energy consumption [9], high flexibility, 

environmental friendliness and abundant material availability [10]. Photoanode, 

electrolyte and cathode from the DSSC structure. As a contender to silicob-based solar 

cell, DSSC has demonstrated a very promising photoconversion efficiency 14% [11] 

Titanium Dioxide is the most widely used photoanode due to its n-type 

semiconductor features, wide band gap energy, high transmittance in the range of visible 

light, environmentally friendly, ease of production and good chemical and thermal, 

however the conductivity in TiO2 is low and the nanocrystalline particles in  TiO2 inability 

to withstand external electric fields has an impact on DSSC performance [12]. To 

overcome these problems, improving the performance of photoanodes is done by adding 

various TiO2-based composite materials such as carbon nanotube-TiO2 [13], [14], 

Graphene-TiO2 [15], [16], reduced graphene TiO2 [17], [18]. Graphene a material with 

strong electron mobility, a vast surface area and exceptional optical transparency, is the 

source of rGO [18]. The fusion of rGO to TiO2, will form a Schottky barrier on the surface 

of rGO/ TiO2, which causes electron recombination to be reduced so that the rGO/TiO2 

composite system will include an acceleration of electron transport [19].  

Several investigations have revealed in recent years use of graphene in TiO2 

photoanodes including Kumar Subalakshmi et al [20], using rGO/TiO2 as a photoanode 

in solar cell fabrication with a resulting efficiency of 6.14% under sunlight with an 

illumination of 100 mW/cm2 [20]. Ghasem Habibi et al, also reported the addition of 

0.001% rGO was able to increase the current density from 10.18 mAcm-2 to 10.79 10.18 

mAcm-2 [21]. 



 

 Based on the review of several journals, this review describes the addition of rGO 

to TiO2 semiconductor as a photoanode in solar cells. This topic is important to discuss 

because rGO has the ability to increase electron transfer efficiency and mechanical and 

thermal stability. This research contributes to the scientific literature and understanding 

of the addition of rGO in TiO2 to obtain better efficiency. Through better understanding, 

this research can be used as a reference for further researchers in developing TiO2 doped 

by other materials.  

2. Titanium Dioxide (TiO2) as photoanode material  

  Because of its larger conduction band gap, ample surface area for loading 

photosynthetic sensitizers, and effective recombination with holes, defects, and crystal 

boundaries, TiO2 material is employed in DSSCs with great efficacy [22], [23]. TiO2 is 

classified in different crystal forms namely brookite, rutile and anatase shown in  

Figure 1(a). Anatase TiO2 polymorphs are more efficient because they support the process 

of charge transportation and charge separation compared to rutile, this is supported by the 

nature of anatase, namely higher electrical conductivity so that it is able to transport 

electrons and energy production [24]. The difference of refractive index in the rutile phase 

may intensify the dispersion impact, in brookite phase the energy band gap is larger than 

other phases, brookite phase has the highest open circuit voltage (Voc) evaluation and the 

most negative conduction band edge. However, the brookite phase hs a small surface and 

low conductivity, which makes it less effective in collecting charge and dye load at the 

same time [25]. 

 In terms of the small size of semiconductor nanoparticles, it is capable offering  

semiconductors with a large surface and high porosity ratio [3]. Figure 1(b) shows a 

FESEM of a semiconductor film of TiO2 nanoparticles that has a surface thickness of 

approximately 10 µm, porosity of about 50% and excellent surface area for dye absorption 

[26]. The thick mesopores structure offers a high surface area that is useful for attaching 

dye molecules to the photoanode; thus, the photoanode's morphology which includes its 

particle size, porosity, pore size, and nanostructure plays a crucial role in controlling the 

photovoltaic properties [27]. 



TiO2 may create a variety of nanoarchitectures as photoanodes, including one-

dimensional (1D) structures like nanorods, nanofibers, and nanotubes, zero-dimensional 

(0D) structures like TiO2 nanoparticles, and three-dimensional (3D) structures like 

1D/0D composites and effective 1D/1D composites for DSSC [28]. TiO2 is generally 

synthesized by sol-gel, hydrothermal and electrochemical methods, which will form 

nano-TiO2 morphologies such as TiO2 nanotubes (TNTs), TiO2 nanorods (TNRs), TiO2 

nanosheets (TNSs), hierarchical TiO2, multi-shelled TiO2 hollow nanoparticle, ellipsoidal 

TiO2, TiO2 nanoparticle (TNPs), cubic TiO2, illustrated in Figure 2. 

 

Figure 1. (a) Structure of Anatase, Rutile dan Brookite [29] (b) FESEM images of TiO2 

nanoparticles deposition onto FTO glass (a) TiO2 morphology (b) TiO2 nanoparticles 

onto FTO cross-section [26] 

 



 

Figure 2. SEM images (a) TNTs[30]–[32] (b) TNRs[33]–[35] (c)TNSs[36], [37]         

(d) Hierarchical TiO2[38], [39] (e) Multi shelted-TiO2 [40], [41](f) Ellipsoidal TiO2 [42]  

(g) TNPs [43]–[45](h) Cubic TiO2 [46], [47]. 

 

 

3. Structure and Properties of reduced graphene oxide (rGO) 

According to the international Union of Pure and Applied Chemistry (IUPAC), 

graphene is a single carbon sheet derived from the graphite structure. It is comparable to 

a quasi-infinite sized polycyclic aromatic hydrocarbon  [48]. Graphene-based materials 

as affordable price, safety, prosperity, particular area of surface, flexibility, and greater 

stability, graphene based materials can be used in DSSC [24]. 

 

 



 Due to its quicky charge carrier mobility and great light transparency, graphene is 

an effective photoanode in deep solar cell technology. The carbon material network is 

shown in figure 3(a), where a single layer of 2D graphene is thought to be the dominating 

material 1D rolled nanotubes, 3D stacked graphite and 0D folded fulcrums [3] powder 

based nanomaterials for the development of graphene include graphene oxide (GO), 

nanowire, nanoparticle plats, and quantum dots, among other forms of pure graphene 

nanostructure [49]  

  To produce graphene oxide, GO is generally chemically clamped and reduced to 

rGO [50]. In rGO, each carbon atom employs three of its four outer orbital electrons to 

establish three sigma bonds with an angle of 120° with three nearby carbon atoms in the 

same plane. rGO is a two-dimensional material with a single-layered structure and zero 

band gap. As seen in figure 3(b), this permits the fourth electron to travel, allowing the 

electrons in rGO to behave as relativistic particles free from the restrictions of a crystal 

lattice [12].  

Researches have been drawn to rGO because of its mechanical, thermal, electrical 

and optical qualities. Figure 4 shows some of its physical characteristics. The synthesis 

of GO into rGO generally uses chemical, microwave, photoreduction, electrochemical 

and other methods [51], the advantages and disadvantages of the rGO synthesis process 

are shown in table 1. rGO through chemical techniques, results in rGO that has a wrinkled 

structure, aggregated sheets, and low hydrophilic properties. These limitations have been 

overcome with the creation of a new technique. The thermal reduced rGO exhibits a 10:1 

C/O ratio and strong electrical conductivity, suggesting a successful reduction [52]. The 

newly discovered method produces rGO with improved thermal and electrical 

conductivity and a reduced oxygen content [53].  

  



 

Figure 3. (a) family of carbon networks under 2D graphene [3] (b) Reduction process of 

graphite to rGO [54] 

 

Figure 4. Physical properties rGO 

 



Table 1. Advantages and disadvantages of rGO synthesis methods 

Synthesis Metode Advantages Disadvantages ref 

Thermal Reduction Easy fabrication, properties and 

characteristics of rGO. 

High energy consumption, exhaust 

emissions, defect limitation and control 

[55] 

 

Chemical Reduction Stabilty, economical Difficult fabrication process, toxic to the 

environment 

[56] 

 

Microwave-reduction Good effectiveness, 

saving time and 

production costs. 

Non-scalable, unsuitable for monitoring the 

reaction. 

[57] 

 

 

4. Development of rGO/TiO2 as Photoanode 

  TiO2 nanomaterial is a good photocatalyst used in DSSC, however weak 

power conversion efficiency (PCE) is caused by significant electron-hole pair 

recombination, a possible substance to increase the effectiveness of DSSC, which is 

typically used as a photocathode, is graphene film [58].  In a DSSC, TiO2 transports 

electrons from the dye to the conduction band of TiO2 as well as from the photoanode 

to the external circuit. However, charge recombination occurs, necessitating the use 

of techniques to improve electron transport, such as combining charge carriers to 



direct light-generated electrons in the external circuit, adding doping elements to 

TiO2, and combining composite semiconductors with different bandgaps. [59].  TiO2 

nanoparticles can be bonded to rGO, which allows rGO to provide a fast electron 

transport channel, which accelerates electron transport, reduces recombination losses, 

and increases light scattering. Therefore, rGO/ TiO2 nanocomposites can be used in 

DSSC because of the unique properties of rGO[60]. In accordance with the literature, 

the synthesis of TiO2/rGO nanocomposites is currently aimed at various applications, 

enhancing the functionality of lithium-ion batteries, solar cell, photocatalysts and 

photodetectors, among other devices. Compared to pure TiO2, TiO2/rGO has 

photocatalytic activity that is many times greater [61]. The purpose of inserting rGO 

sheets into the TiO2 anode is to decrease resistance and raise chemical capacitance 

(Cμ) [62].  

 



 

Figure 5. (a)-(e) J-V characteristic DSSC [63] [64] [65] [17] [66], (f) efficiency values 

from J-V plot of DSSC (a)-(e) 



Table 2 shows the parameters efficiency of rGO/TiO2-based DSSCs from various 

references. Prior to the deposition of the nanopores TiO2 film over TCO, rGO was 

integrated into a thin rGO/TiO2 interfacial thin layer to reduce recombination of electrons. 

This layer's potential resistance was shown by a rise in the open-circuit voltage with an 

unchanged short photon current Jsc. Several subsequent studies showed how to create 

rGO/TiO2 composites, which may be used in place of pure TiO2 in DSSC working 

electrodes [11].  

Merazga et al.[17] was reported also the impact of rGO on DSSC by varying mass 

fractions of rGO and TiO2 were combined in distilled water solution, ranging from 0 to 

5%. The optical properties of the rGO/TiO2 composite film are responsible for its 

photovoltaic features. The effectiveness of DSSC rises linearly as the fraction of rGO 

increases. The researcher Gao et al. [67] was demonstrated N-doped TiO2/graphene 

nanofiber for DSSC photoanode with photo-conversion efficiency (PCE) of 5.01%. In 

another study, Venkatraman et al. [68] found that a 3% RGO/ TiO2 composite had a 

photo-conversion efficiency (PCE) of 6.58%. Figure 5 (a)-(e) shown the J-V 

characteristic of DSSC use TiO2 with rGO. Figure 5 (f) shows the efficiency value 

obtained from Figure 6 (a)-(e) which shows different efficiency values, this is influenced 

by the addition of different rGO compositions to TiO2, as in Figure 5 (a) obtained an 

efficiency value of 3.60 with 5% rGO while in Figure 5 (b) obtained an efficiency value 

of 7.17 with NaBH4-doped rGO. Figure 5(c) obtained an efficiency value of 1.21% with 

the addition of 0.1% wt rGO and figure 5(d) shows value of 3.39% with the addition of 6 

mg rGO and figure 5(e) is 4.43% with the addition of 5%wt rGO. 

 

 

Table 2. Some research related to rGO/TiO2 

Material Deposition 

Method 

Jsc 

(mA/cm2) 

Voc (V) Fill 

Factor 

η (%) Ref 

rGO/TiO2 Spin Coating 14.08 0.73 66.35 6.87 [69] 

rGO/TiO2 Doctor Blade 28.36 0.54 0.47 7.20 [70] 

rGO/TiO2 Spin Coating 15.29 0.74 0.66 7.48 [71] 



TiO2-rGO 0.5% Spin Coating 7.2 0.74 0.67 3.6 [72] 

TiO2-rGO Doctor Blade 14.68 0.78 0.54 7.68 [73] 

TiO2-rGO Spin Coating 25.02 0.63 0.54 8.51 [74] 

TiO2-rGO 3% Doctor Blade 6.95 0.64 0.68 3.09 [75] 

TiO2-rGO 2mg Doctor Blade 10.82 0.647 58.61 4.10 [66] 

rGO/TiO2 Doctor Blade 10.92 0.65 0.62 4.43 [66] 

rGO/TiO2 Spin Coating 16.27 0.59 0.72 6.90 [76] 

0.1 wt% TiO2-rGO Spin Coating 0.049 0.600 0.612 1.21 [65] 

TiO2/rGO Doctor Blade 13.42 0.66 0.47 4.63 [64] 

 

5. TiO2 deposition method on glass substrate 

a. Doctor Blade 

Doctor blade known as blade coating is one of the most economical, 

flexible and simple thin film fabrication methods [58]. This method involves 

pouring a slurry combination containing nanoparticles onto the substrate and 

continuously moving it between the blade and the substrate. This modifies the 

distance between the substrate and the blade, ensuring a thin layer thickness. It is 

also possible to add thin layers of film or thicken the film by repeating this process. 

The spread is cleansed and allowed to dry after a consistent coating has developed 

[77], as shown in figure 6(a). 

The doctor blade method has a thickness that varies from 10 to 150 µm 

[78]. Research conducted by Zhi et al[79], A modest quantity of 3D graphene 

mixed with nanocrystalline TiO2 film has been used to study the composition of 

flexible DSSC photoanodes. Using the doctor blade method, the film was applied 

on ITO/PET, and N719 dye was utilized as a sensitizer. The results indicate that 

the maximum rate of 6.41% may be obtained by incorporating 0.85% by weight 

of 3D graphene into 13 μm-thick TiO2 nanoparticles. 

 

b. Spin coating 

A common and fast procedure known as spin coating is used to coat 

conductive substrates with a thin and uniform layer. The substrate surface is 



covered with drops of solution, which are subsequently uniformly distributed by 

the strong spin action. The coating and spin process factors, such the rotation 

speed have an impact on the final film thickness, surface tension, solids, viscosity, 

and drying rate [80]. Fabrication of nanocrystalline thin films using sol-gel spin 

coating, showing homogeneous and uniform TiO2 thin films, which are in 

crystalline anatase phase with a band gap reaching 2.69 eV, shown in Figure 6(b).  

 

c. Screen Printing  

Screen printing uses a high-density TiO2 paste during the printing process, 

which enables the attachment of bigger dye molecules, it is regarded as an 

effective manufacturing approach. The photoanode paste and the conductive 

substrate are separated by a mesh, and the paste is pressed into the substrate with 

a racket to create a pattern depending on the holes in the mesh. [80]. 

   Screen printing is one of the oldest and most commonly used deposition 

methods [81]. During the screen printing process, paste is forced onto the surface 

of the wafer through holes in the emulsion layer. This allows the paste to move 

through the screen in a predetermined pattern, aligned with the pattern to be 

moved, as shown in figure 6(c) 

 

   



 

Figure 6. (a) Diagrammatic representation of the doctor blade method [58]. (b) Spin 

coating method [78] (c) Schematic illustration of screen printing process [82]. 

 

 

 

 

d. Electrophoretic Deposition 

This deposition technique offers a lot of benefits. The EPD process 

produces an electric current when an electric current passes through a solution or 

solvent and charged particles move. Some of these benefits are simple equipment, 



cheap cost, high deposition rate, enabling the fabrication of suitable conductive 

substrates, and excellent repeatability  [83].  

There are two steps in the EPD technique. The particles gravitate toward 

one of the electrodes when an electric field is added to the solution. The 

migration process is influenced by the bath's real field strength as well as 

additional colloidal dispersion properties as bath conductivity, surface charge 

density, viscosity, size distribution, and particle concentration. Complicated 

aggregation and electrochemical processes help to advance the deposition phase. 

The particles must lose charge after being deposited on the electrode in order to 

create a dense and cohesive deposit [78], shown in figure 7(a). 

 

e. Electrospray Deposition 

One drop of sample solution is deposited at a time using the 

straightforward electrospray deposition technique, which allows for the creation 

of nano-sized spheres of photoanode nanoparticles and the production of 

substructures in film [84]. Figure 7(b) shows an example of a spray deposition 

system configuration design consisting of a sprayer, a pipe connecting the pump 

to the sprayer, a beaker for the precursor solution, and a pump, either manually or 

automatically operated [78]. 

A nozzle that atomizes droplets and a power source that charges the 

atomized droplets make up an electrospray deposition (ESD) device. The pump 

applies pressure to the solution. These charged droplets deposition upon reaching 

the grounded substrate. This method uses less nanoparticles and wastes between 

5 and 8% of them [85]. 

 

 

f. Pulse Laser Deposition (PLD) 

Thin film production frequently uses PLD, a kind of physical vapor deposition. 

The material's target surface is diluted, ionized, and evaporated as a result of the 

laser pulse width's high power density and limited frequency bandwidth. After 

drying, the substance is applied to the substrate thinly. Furthermore, a heating step 



of the substrate is necessary to guarantee that the atoms on its surface are 

thoroughly absorbed. A strong vacuum is also necessary to remove impurities that 

might degrade the thin layer's quality [86], shown in figure 7(c). 

 

Figure 7. (a) Schematic of the EPD [78], (b) Spray deposition system setup design [78] 

  (c) Schematic presentation of PLD technique [86].] 

 

6. Conclusion, Limitation and Challenges and Future research prospect 

Conclusion 

Dye sensitized solar cell (DSSC) performance has been effectively increased by the use 

of hybrid materials on the photoanode, such as rGO with TiO2. Integration of rGO 

contributes positively to electrical conductivity and optoelectronic properties, which has 

a positive impact on energy conversion efficiency. This review places emphasis on 

developing an optimal TiO2 deposition method for DSSC photoanodes. This deposition 

method is intended to ensure the TiO2 layer has a structure that matches the performance 

requirements of the solar cell. A deeper understanding of the interaction between 

materials and deposition methods is key in improving solar cell efficiency. The use of 

various characterization techniques, such as spectroscopy and microscopy, in this study 

provides an in-depth understanding of the optical and structural properties of the rGO/ 



TiO2 hybrid material. This analysis is important to understand the impact of changes at 

the microscopic level on DSSC performance. This review makes an important 

contribution to the development of DSSC technology by integrating hybrid materials and 

optimizing TiO2 deposition methods. Improving the performance of dye-sensitive solar 

cells through this approach could open up wider potential applications in solar energy 

conversion. This review has significant relevance to the development of renewable 

energy. Increased energy conversion efficiency from sunlight can support the 

advancement of solar cell technology as a more sustainable energy source. Thus, the 

conclusion of this review emphasizes that the incorporation of rGO/ TiO2 hybrid materials 

and the optimization of TiO2 deposition methods can positively affect DSSC 

performance, opening up the potential for significant improvements in dye-sensitive solar 

cell technology. Limitations and challenges as well as future research prospects regarding 

the addition of rGO in TiO2 as a photoanode are described in detail as follows: 

Limitation and Challenges 

1. Recombination: The efficiency of the solar cell may be decreased by unintended 

recombination between the injected electrons and the electrolyte on the 

TiO2/electrolyte interface, even if rGO can enchance electron transport.  

2. Stability dan Disperse rGO: The stability and disperse of rGO in the mixture 

can be challenging. Ensuring that the rGO remains well dispersed and stable in 

the TiO2 matrix. 

3. Production Price Growth: If the production process of rGO/TiO2 is inefficient 

or the raw materials used are expensive, which can affect the production price and 

can be an obstacle to mass application. 

4. Electronic Properties rGO: although rGO improves electron transfer, its 

electronic properties that are not as optimal as pure graphene may limit overall 

performance. 

5. Limited Improvement Efficiency: although rGO can improve the power 

conversion efficiency of DSSC, the improvement may have certain limits and 

such challenges need to be overcome to achieve more significant improvements. 

Future Research Prospect 



1. Structure and Composition Optimization: Further research in optimizing the 

structure and composition of rGO/TiO2 to improve solar cell performance. 

Involve variations in rGO to TiO2 ratio, particle size and distribution, and more 

efficient synthesis methods. 

2. Stability and Durability: Focus on improving the stability and durability of 

rGO/TiO2 under solar cell operational conditions to ensure long-term performance 

and address potential issues such as material degradation. 

3. Improved Energy Conversion Efficiency: Focus on developing new strategies 

to improve energy conversion efficiency in DSSCs utilizing rGO/TiO2, such as 

enhancing the interaction between rGO and TiO2 to improve electron transfer. 

4. Integration with latest technology: Exploration of the potential of rGO/TiO2 

with current technologies, such as smart use, renewable energy management, or 

development of materials for other energy applications. 

5. Other Application Development: Exploration of the potential of rGO/TiO2 in 

applications other than DSSC, such as photocatalysis for water or air treatment, 

sensors, and energy storage technologies. 
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