DAFTAR PUSTAKA

- Bahfie, F., Manaf, A., Astuti, W., Nurjaman, F., & Herlina, U. (2021). Tinjauan Teknologi Proses Ekstraksi Bijih Nikel Laterit. Jurnal Teknologi Mineral dan Batubara, 17, 136-149.
- Basturkcu, H., & Acarkan, N. (2016). Separation of Nickel and Iron from Lateritic Ore Using a Digestion Roasting Leaching Precipitation Process. *Physicochem. Probl. Miner. Process*, 52(2), 564-574.
- Brand, N. W., Butt, C. M., & Elias, M. (1998). Nickel Laterites: classification and features . *AGSO Journal of Australian Geology & Geophysics*.
- Biro Pusat Statistik. (2021). Analisis Produktivitas Jagung dan Kedelai di Indonesia: BPS-Statistics Indonesia.
- Burger, P. A. (1996). *Origins and Characteristic of Lateritic Deposits*. Meulbourne: Australisian institute of mining and metallurgy.
- Butt, C. M., & Zeegers, H. (1992). *Regolith Exploration Geochemistry in Tropical and Subtropical Terrains* (Handbook of Exploration Geochemistry ed.). Amsterdam: Elsevier.
- Cahit, H., Selahattin, K., Necip, G., Tolga, Q., Ibrahim, G., Hasan , S., & Osman, P. (2017). Mineralogy and genesis of the lateritic regolith related Ni-Co deposit of the Çaldağ area (Manisa, western Anatolia), Turkey. *Canadian Journal of Earth Sciense*.
- Dalvi, A. D., Bacon, W. G., & Osborne, R. C. (2004). The Past and the Future of Nickel Laterites. PDAC 2004 International Convention, Trade Show & Inventors Exchange, 7.
- Elias, M. (2002). *Nickel laterite deposite geological overview, resources and exploitation*. Burswood, Australia: Mick Elias Associates, CSA Australia Pty Ltd.
- Elliott, R. S. (2015). A study on the role of sulphur in the thermal upgrading of nickeliferous laterite ores. Ontario, Canada: Queen's University.
- Elliott, R., Rodrigues, F., Pickels, C. A., & Peacey, J. (2015). A two-stage thermal upgrading process for nickeliferous limonitic laterite ores. *Canadian Metallurgy Quarterly*, 54(4), 395-405.
- Elshkaki, A., Reck, B. K., & Graedel, T. E. (2017). Anthropogenic nickel supply, demand, and associated energy and water use. *Resources, Conservation & Recycling*.

- Forster, J., Pickles, C. A., & Elliott, R. (2016). Microwave carbothermic reduction roasting of a low grade nickeliferous silicate laterite ore. *Minerals Engineering*, 88, 18-27.
- Golightly, J. P. (1979). Nickeliferous Laterite Deposits. *Economic Geology 75th* Anniversary Volume, 710-735.
- Hakim, H. Z., Sanwani, E., Sari, Y., & Nurjaman, F. (2022). Reduksi selektif untuk nikel laterit menggunakan natrium klorida dan arang cangkang sawit dilanjutkan dengan pemisahan magnetik. *Journal of Science, Technology, and Virtual Science, 2*(1), 201-207.
- Harris, C. T., Peacey, J. G., & Pickles, C. A. (2010). Selective sulphidation of a nickeliferous lateritic ore. *Minerals Engineering*, 24, 650-660.
- Jiang, M., Sun, T., Liu, Z., Kou, J., Liu, N., & Zhang, S. (2013). Mechanism of sodium sulfate in promoting selective reduction of nickel laterite ore during reduction roasting process. *International Journal of Mineral Processing*, 123, 32-38.
- Kim, J., Dodbiba, G., Tanno, H., Okaya, K., Matsuo, S., & Fujita, T. (2010). Calcination of low-grade laterite for concentration of Ni by magnetic separation. *Minerals Engineering*, 23, 282-288.
- Kuck, P. H. (2016). *Mineral Commodity Summaries 2016*. Virginia: U.S. Geological Survey.
- Kurniadi, A., Rosana, F. M., Yuningsih, T. E., & Pambudi, L. (2017). Karakteristik Batuan Asal Pembentukan Endapan Nikel Laterit Di Daerah Madang dan Serakaman Tengah. *Padjadjaran Geoscience Journal*.
- Kyle, J. (2010). Nickel Laterite Processing Technologies- Where to Next? Perth: ALTA 2010 Nickel/Cobalt/Copper Conference.
- Li, G., Luo, J., Peng, Z., Zhang, Y., Rao, M., & Jiang, T. (2015). Effect of quaternary basicity on melting behavior and ferronickel particles growth of saprolitic laterite ores in Krupp–Renn process. *ISIJ International*, 55(9), 1828-1833.
- Li, G., Rao, M., Jiang, T., Huang, Q., Shi, T.-m., & Zhang, Y. (2011). Innovative process for preparing ferronickel materials from laterite ore by reduction roasting-magnetic separation. *The Chinese Journal of Nonferrous Metals*, 21(12), 3137-3142.
- Li, G., Shi, T., Rao, M., Jiang, T., & Zhang, Y. (2012). Beneficiation of nickeliferous laterite by reduction roasting in the presence of sodium sulfate. *Minerals Engineering*, 32, 19-26.
- Liu, Z., Sun, T., Wang, X., & Gao, E. (2015). Generation process of FeS and its inhibition mechanism on iron mineral reduction in selective direct reduction

of laterite nickel ore. *International Journal of Minerals, Metallurgy, and Materials*, 22(9), 901-906.

- Lu, J., Liu, S., Shangguan, J., Du, W., Pan, F., & Yang, S. (2013). The effect of sodium sulphate on the hydrogen reduction process of nickel laterite ore. *Minerals Engineering*, 49, 154-164.
- Lu, L., Liang, T., Zhao, Z., & Liu, S. (2018). A Unique Association of scheelite and magnetite in the Tiemuli W-Fe skarn deposit: Implications for Early Cretaceous metallogenesis in the Nanling Region, South China. Ore Geology Reviews, 94, 136-154.
- Ma, X., Cui, Z., & Zhao, B. (2016). Efficient Utilization of Nickel Laterite to Produce Master Alloy. *JOM*, 68(12), 3006-3014.
- Mayangsari, W., & Prasetyo, A. B. (2016). Proses Reduksi Selektif Bijih Nikel Limonit Menggunakan Zat Aditif CaSO4. *Metalurgi*, 1, 1-68.
- McRae, M. E. (2020). *Mineral Commodity Summaries 2020*. U.S. Geological Survey.
- McRae, M. E. (2021). *Mineral Commodity Summaries 2021*. U.S. Geological Survey.
- McRae, M. E. (2022). *Mineral Commodity Summaries 2022*. U. S. Geological Survey.
- Nurjaman, F., Bahfie, F., Herlina, U., Astuti, W., & Suharno, B. (2020). Kajian Literatur Parameter Proses Reduksi Selektif Bijih Nikel Laterit. *Jurnal Metal Indonesia*, 42(2).
- Nurjaman, F., Rahmahwati, A., Karimy, M. F., Hastriana, N., Shofi, A., Herlina, U., & Ferdian, D. (2019). The role of sodium-based additives on reduction process of nickel lateritic ore. *IOP Conference Series: Materials Science* and Engineering, 478.
- Oxley, A., & Barcza, N. (2013). Hydro-pyro integration in the processing of nickel laterites. *International Journal of Minerals Engineering*, 2-13.
- Pengzheng, S., Wenguang, D., Song, Y., Shoujun, L., & Ju, S. (2016). Influence of sodium thiosulfate in the process of reduction roasting and magnetic separation for nickel laterite ore. *Journal of Taiyuan University of Technology*(2), 144-149.
- Pickels, C. A., & Elliott, R. (2015). Thermodynamic analysis of selective reduction of nickeliferous limonitic laterite ore by carbon monoxide. *Mineral Processing and Extractive Metallurgy*, 124(4), 208-216.
- Rao, M., Li, G., Zhang, X., Luo, J., Peng, Z., & Jiang, T. (2016a). Reductive roasting of nickel laterite ore with sodium sulfate for Fe-Ni production. Part

I: Reduction/sulfidation characteristics. *Separation Science and Technology*, *51*(8), 1408-1420.

- Rao, M., Li, G., Zhang, X., Luo, J., Peng, Z., & Jiang, T. (2016b). Reductive roasting of nickel laterite ore with sodium sulphate for Fe-Ni production. Part II: Phase transformation and grain growth. *Separation Science and Technology*, 51(10), 1727-1735.
- Rhamdhani, M. A., Jak, E., & Hayes, P. C. (2009). Nickel Laterite Part 1 -Microstructure and phase characterisations during reduction roasting and leaching. *Miner. Process. Extr. Metall. Rev. 3.*, 118, 129-145.
- Solihin. (2015). Synthesis of Nickel Containing Pig Iron (NCPI) by Using Limonite Type of Lateritic Ore from South East Sulawesi. *Ris. Geo. Tam*, 25(1), 31-36.
- Subagja, R., Prasetyo, A. B., & Sari, W. M. (2016). Peningkatan Kadar Nikel Dalam Laterit Jenis Limonit Dengan Cara Peletasi, Pemanggangan Reduksi Dan Pemisahan Magnet Campuran Bijih, Batubara, Dan Na₂SO₄. Jurnal Metalurgi, 2.
- Sundari, W. (2012). Analisis Data Eksplorasi Bijih Nikel Laterit Untuk Estimasi Cadangan dan Perancangan Pit pada PT. Timah Eksplomin di Desa Baliara Kecamatan Kabaena Barat Kabupaten Bombana Provinsi Sulawesi Tenggara. Prosiding Seminar Nasional Aplikasi Sains & Teknologi (SNAST) Periode III.
- Tonggiroh, A., Suharto, & Muhardi, M. (2012). Analisis Pelapukan Serpentin dan Endapan Nikel Laterit Daerah Pallangga Kabupaten Konawe Selatan Sulawesi Tenggara. *Prosiding 2012*, 978-979.
- Valix, M., & Cheung, W. H. (2002). Effect of sulfur on the mineral phases of laterite ores at high temperature reduction. *Minerals Engineering*, 15, 523-530.
- Yuningsih, L. M., Mulyadi, D., & Kurnia, A. J. (2016). Pengaruh Aktivasi Arang Aktif dari Tongkol Jagung dan Tempurung Kelapa Terhadap Luas Permukaan dan Daya Jerap Iodin . Jurnal Kimia VALENSI: Jurnal Penelitian dan Pengembangan Ilmu Kimia, 2(1), 30-34.
- Zheng, G., Zhu, D., Pan, J., Li, Q., An, Y., Zhu, J., & Liu, Z. (2014). Pilot scale test of producing nickel concentrate from low-grade saprolitic laterite by direct reduction-magnetic separation. *Journal of Central South University*, 21(5), 1771-1777.
- Zhu, D. Q., Cui, Y., Vining, K., Hapugoda, S., Douglas, J., Pan, J., & Zheng, G. L. (2012). Upgrading low nickel content laterite ores using selective reduction followed by magnetic separation. *International Journal of Mineral Processing*, 106-109, 1-7.

Lampiran 1 Hasil Analisi XRD

1. Sampel Awal

D 1	T •
Pool	r 10t
I Can	. LIM

No.	2theta [°]	d [Å]	<i>I/10</i>	FWHM	Matched
1	17.86	4.9624	70.66	0.7701	A,C
2	18.60	4.7666	65.45	0.7317	А
3	21.20	4.1875	1000.00	0.6933	A,B,C
4	26.56	3.3534	77.77	0.8369	A,C
5	30.32	2.9455	42.72	0.3950	А
6	33.22	2.6947	436.67	0.6400	A,C,D
7	34.68	2.5845	252.45	0.6689	A,C
8	36.70	2.4468	823.03	0.6571	A,C
9	39.98	2.2533	178.68	0.7753	A,B,C
10	41.08	2.1955	214.82	0.7753	A,B,C,D
11	45.02	2.0120	29.21	0.3765	A,C
12	47.18	1.9248	42.95	0.5726	A,C
13	50.62	1.8018	85.26	0.9638	B,C
14	51.44	1.7750	50.90	0.8961	B,C
15	53.22	1.7197	401.22	0.8285	С
16	57.38	1.6046	65.49	0.8350	C,D
17	58.90	1.5667	201.19	0.8416	С
18	61.34	1.5101	185.52	0.9079	С
19	63.78	1.4581	126.20	1.0406	C,D
20	65.70	1.4201	44.04	1.0406	С

No.	2theta [°]	d [Å]	<i>I/I0</i>	FWHM	Matched
1	18.52	4.7870	51.85	0.2854	D
2	25.28	3.5202	76.38	0.2861	С
3	30.36	2.9417	262.80	0.3423	A,B,D
4	31.94	2.7997	142.97	0.3205	A,B,C
5	33.42	2.6790	179.30	0.3809	A,B
6	34.36	2.6079	71.41	0.3809	С
7	35.76	2.5089	957.22	0.3793	A,B,D
8	36.40	2.4663	627.50	0.3200	A,B,G
9	37.42	2.4013	72.81	0.4700	A,B,C,D
10	42.28	2.1359	1000.00	0.2487	A,B,C
11	43.36	2.0851	171.77	0.3425	A,B,D
12	44.16	2.0492	140.79	0.4363	A,B,C,E,F
13	49.78	1.8302	64.67	0.4461	A,B,C
14	51.60	1.7699	91.63	0.7096	A,B,C,E,F
15	54.22	1.6904	76.38	0.9548	A,B,C
16	57.30	1.6066	183.61	0.5805	A,B,C,D
17	61.18	1.5137	548.78	0.3128	A,B,C
18	62.88	1.4768	261.71	0.5663	A,B,C,D

No.	2theta [°]	d [Å]	<i>I/I0</i>	FWHM	Matched
1	25.10	3.5450	54.66	0.4897	A,C
2	30.26	2.9512	94.04	0.4823	D,H
3	31.80	2.8117	107.78	0.3563	C,H
4	33.24	2.6931	110.76	0.3157	Н
5	35.62	2.5185	328.81	0.8983	C,D,H
6	36.24	2.4768	325.81	0.3600	A,G,H
7	42.12	2.1436	490.44	0.2992	C,G,H
8	43.12	2.0962	82.34	0.2989	A,D,H
9	43.86	2.0625	215.90	0.2985	B,C,H
10	44.72	2.0248	1000.00	0.2592	A,E,F,H
11	49.54	1.8385	31.38	0.5954	C,H
12	51.14	1.7847	74.22	0.3751	C,H
13	51.60	1.7699	91.03	0.4509	C,E,H
14	54.08	1.6944	55.29	0.4801	A,H
15	57.08	1.6123	78.42	0.6867	A,B,C,D,H
16	61.02	1.5173	271.99	0.3917	C,G,H
17	62.72	1.4802	111.00	0.6576	B,D,H
18	65.08	1.4321	96.22	0.3950	A,C,F,H

No.	2theta [°]	d [Å]	<i>I/I0</i>	FWHM	Matched
1	25.12	3.5422	38.58	0.2685	A,B
2	30.20	2.9570	35.98	0.5285	B,E,H
3	31.78	2.8135	40.91	0.3826	A,B
4	35.58	2.5212	127.39	0.9834	A,B,E,G
5	42.12	2.1436	62.46	0.6417	A,B,G,I
6	43.86	2.0625	90.72	0.3001	A,B,C,H
7	44.70	2.0257	1000.00	0.2366	B,C,D,F,I
8	51.48	1.7737	46.71	0.4536	А
9	61.04	1.5168	46.40	0.5005	A,B,G,I
10	62.70	1.4806	33.60	0.8078	B,E,H,I
11	65.04	1.4329	121.37	0.2895	B,F,I

No.	2theta [°]	d [Å]	<i>I/I0</i>	FWHM	Matched
1	25.14	3.5395	18.83	0.2757	С
2	31.68	2.8221	29.64	0.2951	C,D
3	35.86	2.5022	54.49	0.5278	C,D,F,H,I
4	43.86	2.0625	71.29	0.2371	A,C,D,E,G
5	44.70	2.0257	1000.00	0.2205	A,B,D,F
6	51.08	1.7867	25.89	0.4168	C,D,E,F
7	51.44	1.7750	28.42	0.3731	C,D
8	65.02	1.4333	102.54	0.3295	B,D,F

No.	2theta [°]	d [Å]	<i>I/I0</i>	FWHM	Matched
1	30.16	2.9608	104.16	0.7373	B,C,F,I
2	35.54	2.5239	336.28	0.4000	B,C,D
3	35.94	2.4968	416.48	0.9600	C,D,F
4	36.26	2.4755	482.80	0.3836	A,C,F
5	42.10	2.1446	1000.00	0.2409	A,C,D
6	43.28	2.0888	117.95	0.5143	B,C,F
7	44.74	2.0240	460.06	0.3030	C,E,F,G
8	57.14	1.6107	106.17	0.5576	B,C,D,F,I
9	61.02	1.5173	506.63	0.3237	A,C,D,F
10	62.68	1.4810	142.02	0.5382	B,C,D,F,I
11	65.02	1.4333	44.96	0.7769	C,D,F,G,H

No.	2theta [°]	d [Å]	<i>I/10</i>	FWHM	Matched
1	25.10	3.5450	54.66	0.4897	A,C
2	30.26	2.9512	94.04	0.4823	D,H
3	31.80	2.8117	107.78	0.3563	C,H
4	33.24	2.6931	110.76	0.3157	Н
5	35.62	2.5185	328.81	0.8983	C,D,H
6	36.24	2.4768	325.81	0.3600	A,G,H
7	42.12	2.1436	490.44	0.2992	C,G,H
8	43.12	2.0962	82.34	0.2989	A,D,H
9	43.86	2.0625	215.90	0.2985	B,C,H
10	44.72	2.0248	1000.00	0.2592	A,E,F,H
11	49.54	1.8385	31.38	0.5954	C,H
12	51.14	1.7847	74.22	0.3751	C,H
13	51.60	1.7699	91.03	0.4509	C,E,H
14	54.08	1.6944	55.29	0.4801	A,H
15	57.08	1.6123	78.42	0.6867	A,B,C,D,H
16	61.02	1.5173	271.99	0.3917	C,G,H
17	62.72	1.4802	111.00	0.6576	B,D,H
18	65.08	1.4321	96.22	0.3950	A,C,F,H

No.	2theta [°]	d [Å]	<i>I/I0</i>	FWHM	Matched
1	18.42	4.8128	58.86	0.3814	В
2	21.10	4.2071	239.24	0.3120	E,G
3	30.16	2.9608	237.37	0.3097	B,G,J
4	34.80	2.5759	134.08	0.9114	E,F,G
5	35.50	2.5267	1000.00	0.2800	B,F
6	36.20	2.4794	407.09	0.3600	C,E,F,G,I
7	42.00	2.1495	560.05	0.3440	C,E,F,G
8	43.14	2.0953	147.53	0.3527	B,E,F,I
9	44.10	2.0519	84.03	0.3527	D,F,H
10	53.52	1.7108	112.79	0.2813	B,E,F,G,I
11	56.96	1.6154	252.83	0.3302	B,E,F,G,J
12	60.84	1.5213	324.03	0.5039	A,C,E,F,G,I
13	62.60	1.4827	438.50	0.3454	B,E,F,G,I,J

No.	2theta [°]	d [Å]	<i>I/10</i>	FWHM	Matched
1	16.72	5.2981	51.25	0.2337	A,B
2	18.40	4.8180	79.91	0.2771	D
3	21.02	4.2230	225.57	0.2943	G,H
4	30.22	2.9550	322.83	0.2560	D,J
5	34.70	2.5831	102.13	0.7702	A,G
6	35.56	2.5226	1000.00	0.2140	A,D,H
7	36.12	2.4847	476.06	0.2800	E,G,H,I
8	37.24	2.4125	89.75	0.2684	A,B,D,G,H
9	41.96	2.1514	314.39	0.3279	A,E,G,H
10	43.22	2.0916	223.12	0.2279	C,D,F,G,H
11	53.58	1.7090	81.62	0.2732	A,D,G,H,I
12	57.08	1.6123	260.33	0.2809	A,D,G,H,I,J
13	60.78	1.5227	169.67	0.4748	A,B,E,G,H
14	62.64	1.4819	336.72	0.3194	D,G,H,J

Lampiran 2 Hasil Analisi XRF

No	Idant	NiO	Fe2O3	SiO2	A12O3	CaO	MgO	P2O5	TiO2	Cr2O3	MnO
INO	Ident	%	%	%	%	%	%	%	%	%	%
1	Shany XRF SB01	2,104	24,797	28,647	5,786	0,048	16,661	0,034	0,092	1,926	0,376
1	Shany XRF SB01	2,110	24,788	28,582	5,819	0,055	16,546	0,036	0,095	1,919	0,38
2	Shany XRF SB02	2,006	23,127	28,385	5,575	0,074	16,466	0,029	0,093	1,933	0,305
2	Shany XRF SB02	2,009	23,089	28,274	5,078	0,074	16,436	0,018	0,096	1,93	0,298
3 -	Shany XRF SB03	1,811	22,316	27,571	4,735	0,054	16,119	0,011	0,068	1,967	0,148
	Shany XRF SB03	1,808	22,315	27,585	4,761	0,046	16,101	0,012	0,078	1,968	0,148
4	Shany XRF SB04	1,769	22,046	27,265	4.466	0,06	15,955	0,08	0,074	1,938	0,15
4	Shany XRF SB04	1,766	22,045	27,253	4,551	0,054	16,902	0,04	0,08	1,936	0,148
5	Shany XRF SA01	2,339	20,989	26,927	4,948	0,07	16,202	0,029	0,09	1,921	0,198
5 -	Shany XRF SA01	2,349	20,982	26,787	4,885	0,065	16,207	0,032	0,09	1,922	0,202
6	Shany XRF SA02	2,396	20,344	25,146	4,865	0,043	16,735	0,033	0,089	1,876	0,515
6 -	Shany XRF SA02	2,394	20,324	25,281	4,867	0,048	16,725	0,03	0,094	1,879	0,519

Hasil Analisis XRF Sampel

Shany XRF 7 SA03	2,326	19,428	25,044	4,697	0,044	17,335	0,031	0,087	1,889	0,601
Shany XRF SA03	2,324	19,429	25,034	4,677	0,049	17,331	0,038	0,09	1,889	0,605
Shany XRF SA04	2,065	18,828	24,907	4,132	0,062	17,686	0,043	0,119	1,901	0,585
8 Shany XRF SA04	2,067	18,879	24,943	4,09	0,065	17,684	0,044	0,121	1,9	0,588
Shany XRF	1,933	26,929	36,543	5,986	0,026	14,884	0,012	0,072	1,889	0,167
Shany XRF	1,941	26,943	36,539	5,998	0,028	14,883	0,014	0,067	1,89	0,168
	Shany XRF SA03 Shany XRF SA03 Shany XRF SA04 Shany XRF SA04 Shany XRF Shany XRF	Shany XRF SA032,326Shany XRF SA032,324Shany XRF SA042,065Shany XRF SA042,067Shany XRF SA042,067Shany XRF Shany XRF1,933Shany XRF1,941	Shany XRF 2,326 19,428 SA03 2,324 19,429 Shany XRF 2,324 19,429 Shany XRF 2,065 18,828 Shany XRF 2,067 18,879 Shany XRF 2,067 18,879 Shany XRF 1,933 26,929 Shany XRF 1,941 26,943	Shany XRF SA032,32619,42825,044Shany XRF SA032,32419,42925,034Shany XRF SA042,06518,82824,907Shany XRF SA042,06718,87924,943Shany XRF SA042,06718,87924,943Shany XRF SA041,93326,92936,543Shany XRF Shany XRF1,94126,94336,539	Shany XRF SA032,32619,42825,0444,697Shany XRF SA032,32419,42925,0344,677Shany XRF SA042,06518,82824,9074,132Shany XRF SA042,06718,87924,9434,09Shany XRF SA041,93326,92936,5435,986Shany XRF1,94126,94336,5395,998	Shany XRF SA032,32619,42825,0444,6970,044Shany XRF SA032,32419,42925,0344,6770,049Shany XRF SA042,06518,82824,9074,1320,062Shany XRF SA042,06718,87924,9434,090,065Shany XRF SA042,06718,87924,9435,9860,026Shany XRF SA041,93326,92936,5435,9860,026Shany XRF1,94126,94336,5395,9980,028	Shany XRF SA032,32619,42825,0444,6970,04417,335Shany XRF SA032,32419,42925,0344,6770,04917,331Shany XRF SA042,06518,82824,9074,1320,06217,686Shany XRF SA042,06718,87924,9434,090,06517,684Shany XRF SA042,06718,87924,9435,9860,02614,884Shany XRF SA041,94126,94336,5395,9980,02814,883	Shany XRF SA032,32619,42825,0444,6970,04417,3350,031Shany XRF SA032,32419,42925,0344,6770,04917,3310,038Shany XRF SA042,06518,82824,9074,1320,06217,6860,043Shany XRF SA042,06718,87924,9434,090,06517,6840,044Shany XRF SA042,06718,87924,9435,9860,02614,8840,012Shany XRF SA041,94126,94336,5395,9980,02814,8830,014	Shany XRF SA032,32619,42825,0444,6970,04417,3350,0310,087Shany XRF SA032,32419,42925,0344,6770,04917,3310,0380,09Shany XRF SA042,06518,82824,9074,1320,06217,6860,0430,119Shany XRF SA042,06718,87924,9434,090,06517,6840,0440,121Shany XRF SA041,93326,92936,5435,9860,02614,8840,0120,072Shany XRF SA041,94126,94336,5395,9980,02814,8830,0140,067	Shany XRF SA032,32619,42825,0444,6970,04417,3350,0310,0871,889Shany XRF SA032,32419,42925,0344,6770,04917,3310,0380,091,889Shany XRF SA042,06518,82824,9074,1320,06217,6860,0430,1191,901Shany XRF SA042,06718,87924,9434,090,06517,6840,0440,1211,9Shany XRF SA042,06718,87924,9435,9860,02614,8840,0120,0721,889Shany XRF SA041,94126,94336,5395,9980,02814,8830,0140,0671,89

Lampiran 3 Perhitungan Recovery

Kadar	Berat	Awal (gr)	Ber Kal	rat setelah sinasi (gr)	Kada	r Akhir (%)	Reco	very (%)
awal (%)	Daduktor	Reduktor	Daduktor	Reduktor	Daduktor	Reduktor	Daduktor	Reduktor
	Reduktor	dan Aditif	Reduktor	Aditif	Reduktor	Aditif	Reduktor	Aditif
1,53	21	23	1,85	1,66	1,85	1,66	92,94	76,34
1,53	22	24	1,88	1,58	1,88	1,58	84,31	74,19
1,53	23	25	1,83	1,42	1,83	1,42	74,32	67,78
1,53	24	26	1,62	1,39	1,62	1,39	61,65	66,37

A. Nikel

Recovery Ni dihitung menggunakan rumus sebagai berikut:

Recovery (%) =
$$\frac{(M \text{ produk Ni x Kadar Produk Ni})}{(M \text{ Awal Ni × Kadar Awal Ni})} \times 100\%$$

1. *Recovery* Ni hasil kalsinasi menggunakan 5% reduktor arang tongkol jagung selama 1 jam pada suhu 1.000°C

Recovery (%) =
$$\frac{(\text{M produk Ni x Kadar Produk Ni})}{(\text{M Awal Ni × Kadar Awal Ni})} \times 100\%$$

Recovery (%) =
$$\frac{(16,18(gr) \times 1,85(\%))}{(21(gr) \times 1,53(\%))} \times 100\%$$

Recovery (%) = 93,16 %

2. *Recovery* Ni hasil kalsinasi menggunakan 10% reduktor arang tongkol jagung selama 1 jam pada suhu 1.000°C

Recovery (%) =
$$\frac{(\text{M produk Ni x Kadar Produk Ni})}{(\text{M Awal Ni × Kadar Awal Ni})} \times 100\%$$

Recovery (%) =
$$\frac{(15,09(gr) \times 1,88(\%))}{22(gr) \times 1,53(\%))} \times 100\%$$

Recovery (%) = 84,28 %

3.*Recovery* Ni hasil kalsinasi menggunakan 15% reduktor arang tongkol jagung selama 1 jam pada suhu 1.000°C

Recovery (%) =
$$=\frac{(M \text{ produk Ni x Kadar Produk Ni})}{(M \text{ Awal Ni × Kadar Awal Ni})} \times 100\%$$

Recovery (%) = $\frac{(14,32(gr) \times 1,83(\%))}{23(gr) \times 1,53(\%))} \times 100\%$

Recovery (%) = 74,47 %

4. *Recovery* Ni hasil kalsinasi menggunakan 20% reduktor arang tongkol jagung selama 1 jam pada suhu 1.000°C

Recovery (%) =
$$\frac{(\text{M produk Ni x Kadar Produk Ni})}{(\text{M Awal Ni × Kadar Awal Ni})} \times 100\%$$

Recovery (%) =
$$\frac{(13,49(gr) \times 1,62(\%))}{24(gr) \times 1,53(\%))} \times 100\%$$

Recovery (%) = 61,50 %

5. *Recovery* Ni hasil kalsinasi menggunakan 10% reduktor arang tongkol jagung dan 5% aditif Na₂SO₄ selama 1 jam pada suhu 1.000°C

Recovery (%) =
$$= \frac{(M \text{ produk Ni x Kadar Produk Ni})}{(M \text{ Awal Ni × Kadar Awal Ni})} \times 100\%$$

Recovery (%) =
$$\frac{(16,20(gr) \times 1,66(\%))}{23(gr) \times 1,53(\%))} \times 100\%$$

Recovery (%) = 76,42 %

6. *Recovery* Ni hasil kalsinasi menggunakan 10% reduktor arang tongkol jagung dan 10% aditif Na₂SO₄ selama 1 jam pada suhu 1.000°C

Recovery (%) =
$$= \frac{(\text{M produk Ni x Kadar Produk Ni})}{(\text{M Awal Ni × Kadar Awal Ni})} \times 100\%$$

Recovery (%) =
$$\frac{(17,26(gr) \times 1,58(\%))}{24(gr) \times 1,53(\%))} \times 100\%$$

Recovery (%) = 74,27 %

7.*Recovery* Ni hasil kalsinasi menggunakan 10% reduktor arang tongkol jagung dan 15% aditif Na₂SO₄ selama 1 jam pada suhu 1.000°C

Recovery (%) =
$$= \frac{(\text{M produk Ni x Kadar Produk Ni})}{(\text{M Awal Ni × Kadar Awal Ni})} \times 100\%$$

Recovery (%) =
$$\frac{(18,25(gr) \times 1,42(\%))}{25(gr) \times 1,53(\%))} \times 100\%$$

Recovery (%) = 67,75 %

8. Recovery Ni hasil kalsinasi menggunakan 10% reduktor arang tongkol jagung dan 20% aditif Na₂SO₄ selama 1 jam pada suhu 1.000°C

Recovery (%)	$= = \frac{(M \text{ produk Ni x Kadar Produk Ni})}{(M \text{ Awal Ni } \times \text{ Kadar Awal Ni})} \times 100\%$
Recovery (%)	$=\frac{(19,02(gr) \times 1,39(\%))}{26(gr) \times 1,53(\%))} \times 100\%$
Recovery (%)	= 66,46 %

B. Besi

Kadar	Berat A	wal (gr)	Berat s Kalsina	setelah asi (gr)	Kadar A	khir (%)	Recove	ery (%)
awal (%)	Reduktor	Reduktor dan Aditif	Reduktor	Reduktor dan Aditif	Reduktor	Reduktor dan Aditif	Reduktor	Reduktor dan Aditif
18,84	21	23	16,18	16,20	14,68	17,34	60,03	64,83
18,84	22	24	15,09	17,26	14,22	16,15	51,77	61,65
18,84	23	25	14,32	18,25	13,59	15,61	44,91	60,48
18,84	24	26	13,94	19,02	13,20	15,42	40,70	59,87

Recovery Fe dihitung menggunakan rumus sebagai berikut:

Recovery (%) =
$$\frac{(M \text{ produk Fe x Kadar Produk FE})}{(M \text{ Awal Fe } \times \text{ Kadar Awal Fe})} \times 100\%$$

1. *Recovery* Fe hasil kalsinasi menggunakan 5% reduktor arang tongkol jagung selama 1 jam pada suhu 1.000°C

Recovery (%) =
$$= \frac{(M \text{ produk Fe x Kadar Produk Fe})}{(M \text{ Awal Fe × Kadar Awal Fe})} \times 100\%$$

Recovery (%) =
$$\frac{(16,18(gr) \times 14,68(\%))}{21(gr) \times 18,84(\%))} \times 100\%$$

Recovery (%) = 60,03 %

2. *Recovery* Fe hasil kalsinasi menggunakan 10% reduktor arang tongkol jagung selama 1 jam pada suhu 1.000°C

Recovery (%) =
$$\frac{(M \text{ produk Fe x Kadar Produk Fe})}{(M \text{ Awal Fe × Kadar Awal Fe})} \times 100\%$$

Recovery (%) =
$$\frac{(15,09 (gr) \times 14,22(\%))}{22(gr) \times 18,84(\%))} \times 100\%$$

Recovery (%) = 51,77 %

3. *Recovery* Fe hasil kalsinasi menggunakan 15% reduktor arang tongkol jagung selama 1 jam pada suhu 1.000°C

Recovery (%) =
$$= \frac{(M \text{ produk Fe x Kadar Produk Fe})}{(M \text{ Awal Fe × Kadar Awal Fe})} \times 100\%$$

Recovery (%) =
$$\frac{(14,32 (gr) \times 13,59(\%))}{23(gr) \times 18,84(\%))} \times 100\%$$

Recovery (%) = 44,91 %

4. *Recovery* Fe hasil kalsinasi menggunakan 20% reduktor arang tongkol jagung selama 1 jam pada suhu 1.000°C

Recovery (%) =
$$= \frac{(\text{M produk Fe x Kadar Produk Fe})}{(\text{M Awal Fe × Kadar Awal Fe})} \times 100\%$$

Recovery (%) =
$$\frac{(13,94 \text{ (gr) × } 13,20(\%))}{24(\text{gr}) \times 18,84(\%))} \times 100\%$$

Recovery (%) = 40,70 %

5. *Recovery* Fe hasil kalsinasi menggunakan 10% reduktor arang tongkol jagung dan 5% aditif Na₂SO₄ selama 1 jam pada suhu 1.000°C

Recovery (%) =
$$= \frac{(M \text{ produk Fe x Kadar Produk Fe})}{(M \text{ Awal Fe × Kadar Awal Fe})} \times 100\%$$

Recovery (%) =
$$\frac{(16,20 (gr) \times 1,66(\%))}{23 (gr) \times 18,84(\%))} \times 100\%$$

Recovery (%) = 64,83 %

6. *Recovery* Fe hasil kalsinasi menggunakan 10% reduktor arang tongkol jagung dan 10% aditif Na₂SO₄ selama 1 jam pada suhu 1.000°C

Recovery (%) =
$$= \frac{(\text{M produk Fe x Kadar Produk Fe})}{(\text{M Awal Fe × Kadar Awal Fe})} \times 100\%$$

Recovery (%) =
$$\frac{(17,26 (gr) \times 1,58(\%))}{24 (gr) \times 18,84(\%))} \times 100\%$$

Recovery (%) = 61,65 %

7.*Recovery* Fe hasil kalsinasi menggunakan 10% reduktor arang tongkol jagung dan 15% aditif Na₂SO₄ selama 1 jam pada suhu 1.000°C

Recovery (%) =
$$=\frac{(M \text{ produk Fe x Kadar Produk Fe})}{(M \text{ Awal Fe } \times \text{ Kadar Awal Fe})} \times 100\%$$

Recovery (%) =
$$\frac{(18,26 (gr) \times 1,42(\%))}{25 (gr) \times 18,84(\%))} \times 100\%$$

Recovery (%) = 60,48 %

8. *Recovery* Fe hasil kalsinasi menggunakan 10% reduktor arang tongkol jagung dan 20% aditif Na₂SO₄ selama 1 jam pada suhu 1.000°C

Recovery (%) =
$$\frac{(M \text{ produk Fe x Kadar Produk Fe})}{(M \text{ Awal Fe } \times \text{ Kadar Awal Fe})} \times 100\%$$

Recovery (%) =
$$\frac{(19,02 (gr) \times 1,39(\%))}{26 (gr) \times 18,84(\%))} \times 100\%$$

Recovery (%) = 59,87%

Lampiran 4 Kartu Konsultasi Tugas Akhir

Lampiran B 10

Kartu Konsultasi Tugas Akhir

JUDUL: STUDI PENINGKATAN KADAR BIJIH NIKEL LATERIT DENGAN METODE KALSINASI MENGGUNAKAN (LEDUKTOR ARANG TONGKOL JAGUNG OAN ADITIF NATRIUM SULFAT

(Konsultasi minimal 8 kali)

TANGGAL	MATERI KONSULTASI	DOSEN
26/01/2073	Perbaitan BABI dan BAB II	IA
30/01/1023	Perbaircon dan penambahan BAB []	A
01/02/2023	Perbancan BAB IV	M.
10/02/2023	Perbaikan Abstrak, BAB W	M.
17/02/202	Perbaikan Bais V	M
21/02/2013	Perbaikan Laporan Lengrap	M,
28/02/	Perbaikan abstrat dan kasımpulan	M
03/03/2003	Perbairon Kelenykapan laporan lengkap, artikel, Oan posten	A
	Ac	2