DAFTAR PUSTAKA

- Ahmad, W, 2006. *Fundamentals Of Chemistry, Mineralogy, Weathering Processes, And Laterites Formations*, PT. INCO. 212 hal.
- Asy'ari, M.A., Hidayatullah, R., Zulfadli, A., 2013, "Geologi dan estimasi sumberdaya nikel laterit menggunakan metode ordinary kringing di PT. Aneka Tambang., Tbk", Jurnal INTEKNA Tahun XIII, 1, 7-15.
- Bahfie, F., Manaf, A., Astuti, W., Nurjaman, F., Herlina, U., 2021, Review on Technology of Nickel Laterite Extraction, *Jurnal Teknologi Mineral dan Batubara Volume 17*, *Nomor 3, September 2021*, pp. 135 – 152.
- Bakri, S., dan Sanwani, E.,2019, Studi Tranformasi Goetit Menjadi Hematit Secara Mekanokimia Untuk Benefisiasi Bijih Besi Laterit. Jurnal Teknologi Mineral dan Batubara Volume 15, Nomor 3, September 2019, pp. 179 – 188.
- Burger, P.A., 1996. Origins and Characteristic of Lateric Nickel Deposits, *Nickel '96 Seminar Proceedings*, Kalgoorlie. p 179-183.
- Butt, C., 2007, Nickel laterite characteristic, classification, an processing option, August
- Bold, Jr., 1967. The Winning Of Nickel. Princenton, New Jersey D. Van Nostard Co. Inc.
- Carvalho-e-silva, M.L. Ramos, A.Y. Nogueira Tolentino, H.C. Enzweiller, J. Netto, S.M. Alves, M.C. 2003. Incorporation of Ni into natural goethite: An investigation by Xray Absorption spectroscopy. *American Mineralogist*, *88*, pp. 876–882.
- Chen, N., Cao, Z.F., Zhong, H., Fan, F., Qiu, P. dan Wang, M.M., 2015, A novel approach for recovery of nickel and iron from nickel laterite ore, *Metallurgical Research & Technology*, *112(3)*, pp. 306.
- Chesword, W., 2008, *Encyclopedia of soil science*, Springer-Verlag, Berlin, pp.363-369.
- Cornell, R.M., Posner, A.M., Quirk, J.P., 1974. Crystal morphology and the dissolution of goethite. *Journal of Inorganic and Nuclear Chemistry 36*, pp.1937–1946.
- Cornell, R.M., Posner, A.M., Quirk, J.P., 1975. The complete dissolution of goethite. Journal of Applied Chemistry and Biotechnology 25, pp.701–706.
- Cornell, R.M. and Schwertmann, U. 2003. *The iron oxides: Structure, properties, reactions, occurrences and uses.* 2 Edition. Wiley-VCH., NewYork, 664 p.
- Dahn, R., Scheidegger, A.M., Manceau, A., Schlegel, M.L., Baeyens, B., Bradbury, M.H. and Chateigner, D. 2003, Structural evidence for the sorption of Ni(II) atoms on the edges of monmorillonite clay minerals: A polarized X-ray absorption fine structure study. *Geochimica et Cosmochimica Acta, 67*, 1-15.

- Dalvi, A.D, Bacon, W.G., Osborne, R.C., 2004, *The past and the future of nickel laterites*, PDAC 2004 Intenational Convention, Trade Show, & Investor Exchange
- Da Silva, F. T. (1992) A thermodynamic approach for the sulphuric acid pressure leaching of nickeliferous laterites, *Minerals Engineering*, *S*(*9*). pp.1061 1068.
- Elias M, Donaldson M. J., Giorgetta N.,1981, Geology, Mineralogy, and Chemistry of Lateritie Nickel-Cobalt Deposits near Kalgoorlie, Western Australia. *Economic Geology Vol 76*, pp. 1775-1783
- Evans, A.M., 1993. *Ore Geology and Industrial Minerals*. Blackwell Scientific Publications, Oxford, 390pp.
- Fu W., Yang, J., Yang, M., Pang, B., Liu, X., Niu, H., Huang, X.,2014, Mineralogical And Geochemical Characteristics Of A Serpentinite-Derived Laterite Profile From East Sulawesi, Indonesia: Implications For The Lateritization Process And Ni Supergene Enrichment In The Tropical Rainforest. *Journal of Asian Earth Sciences 93*, pp. 74–88
- Gaudin, A., Grauby, O., Oack, Y.N., Decarreau, A., Petit, S.,2004, Accurate Crystal Chemistry Of Ferric Smectites From The Lateritic Nickel Ore Of Murrin Murrin (Western Australia). I. XRD And Multi-Scale Chemical Approaches. *Clay Minerals* (39), pp. 301–315.
- Golightly. J. P., 1979, Nickeliferous Laterites: A General Description. *International Laterit Symposium New Orleans*, Feb 19-21, 1979.
- Golightly, J. P., 1981, Nickeliferous Laterite Deposits, Economic Geology 75th Anniversary Volume, pp. 710-735.
- Hamilton, W., 1979. Tectonics of the Indonesian Region, U.S. *geological Survey profesional Paper*, 1078, 345.p.
- Hayward, N., 1998. *Treatment of nickel laterites Bulong nickel project* process design, AJ Parker CRC/AMF "Hydrometalurgy - Current Practice" Short Course, Perth, Western Australia.
- Iller, R.K. 1952., Polymerisation of silicic acid: retarding effect of chromate ion, *J. Phys. Chem.* 56. pp. 678-679
- Isjudarto A.,2013. Pengaruh Morfologi Lokal Terhadap Pembentukan Nikel Laterit. SEMINAR NASIONAL ke 8 Tahun 2013: Rekayasa Teknologi Industri dan Informasi. pp. 10-14
- Jamaluddin, K. 2010. X-RD (X-Ray Diffractions). Makalah Fisika Material. Halaman 3-5. Kendari.
- Kadarusman, A., Miyashita, S., Maruyama, S. & Parkinson, 2004. Petrology, Geochemistry and Paleogeographic Reconstruction of the East Sulawesi Ophiolite, Indonesia. *Tectonophysics, Volume 392*, pp. 55-83.

Kuck, P.H., 2012, Nickle, U.S. Geological Survey, Mineral Commodity Summaries.

- Kyle, J. 2010. *Nickel laterite processing technologies where to next?* Paper presented at the ALTA Nickel/Cobalt/Copper Conference, Perth.
- Ma, X., Cui, Z. dan Zhao, B.,2016, Efficient utilization of nickel laterite to produce master alloy, JOM, 68(12), pp. 3006–3014.
- Mantiq, A. 2016. Preparasi Sampel. Palembang: Universitas Sriwijaya.
- McDonald, R.G., Whittington, B.I., 2008, Atmospheric acid leaching of nickel laterites review: *Part I. Sulphuric acid technologie*", Hydrometallurgy, 91,35-55.
- McDonald, R.G., Whittington, B.I., 2008, Atmospheric acid leaching of nickel laterites review: *Part II. Sulphuric acid technologies*", Hydrometallurgy, 91,56-69.\
- Meunier, A., 2005, Clays. Springer-Verlag, Berlin, 472 pp
- Monshi, A., Foroughi, M.R., Monshi, M.R., 2012. Modified Scherrer Equation to Estimate More Accurately Nano-Crystallite Size Using XRD. World Journal of Nano Science and Engineering, 2, pp. 154-160
- Mostafazadeh-Fard, B., Heidarpour, M., Aghakhani, A., & Feizi, M.,2008, Effects of leaching on soil desalinization for wheat crop in an arid region. *Plant, Soil and Environment, 54(1)*, pp.20-29.
- Nesse William D.,1991. Introduction to Optical Mineralogy, Oxford University Press, Second Edition, New York Oxford
- Noor, D., 2017. *Perhitungan Cadangan Nikel Dengan Metoda Area Of Influence Daerah Uko Uko, Kecamatan Pomalaa, Kabupaten Kolaka Propinsi Sulawesi Tenggara.* Universitas Pakuan:Bogor
- Petersen, J., Dixon, D.G., 2002, Thermophilic Heap Leaching Of A Chalcopyrite Concentrate, *Minerals Engineering Vol. 15*, pp. 777–785
- Phillips W.R., 1971. *Mineral Optics, Principles and Techniques*, W.H. Freeman and Company, San Francisco.
- Pracejus, B., 2008, *The Ore Minerals under the Microscope: An Optical Guide*. Elsevier, Amsterdam, 875 p.
- Ribeiro, P.P.M., Rezende, M.C., Neumann, R., dos Santos, I.D., Radino-Rouse, P., Bourdot Dutra, A.J.B.,2019. Nickel Carriers In Laterite Ores And Their Influence On The Mechanism Of Nickel Extraction By Sulfation-Roasting-Leaching Process. *Minerals Engineering 131*, pp.90–97
- Rodrigues, F.M., 2013. *Investigation Into The Thermal Upgrading Of Nickeliferous Laterite Ores. A thesis submitted to the Robert Buchan Departement of Mining In Corminity with the requirements for The degree of Master of Applied Sciece.* Queens University, Kingston, Toronto, Canada.

- Rusmana, E., Sukido, Sukarna, D., Haryono, E., Simandjuntak, T.O. 1993. Keterangan Peta Geologi Lembar Lasusua – Kendari, Sulawesi Tenggara, skala 1:250.000. Puslitbang Geologi, Bandung.
- Santoro, L., Putzolu, F., Mondillo, N., Boni, M., Herrington, R., 2022., Trace Element Geochemistry of iron-(oxy)-hydroxides in Ni(Co)-laterites: Review, New data and Implication for ore forming processes. *Ore Geology Reviews 140*. pp. 1-29.
- Schwertmann, U., Cambier, P., Murad, E., 1985. Properties of goethites of varying crystallinity. *Clays and Clay Minerals 33*, pp. 369–378.
- Setiawan, I., 2016, Pengolahan Nikel Laterit Secara Pirometalurgi: Kini Dan Penelitian Ke depan. *Seminar Nasional Sains dan Teknologi 2016 Fakultas Teknik Universitas Muhammadiyah Jakarta*, 8 November 2016.
- Shofi, A.S., 2003, *Pembuatan nickel pig iron (NPI) dari bijih nikel laterite Indonesia menggunakan blast furnace LIPI di UPT Balai Pengolahan Mineral Lampung-LIPI,* Laporan Akhir Insentif Riser SINas 2013.
- Simandjuntak T., Rusmana, OE., Surono, & Supanjdjono J.B., 1982.Peta geologi lembar malili. Bandung.
- Simandjuntak, T.O. 1986. Sedimentology and tectonics of the collision complex in the East Arm of Sulawesi, Indonesia. Ph.D. Thesis RHBNC University of London, UK, 374p, unpublish.
- Simandjuntak, T.O., Rusmana, E., Surono, dan Supandjono, J.B., 1991. *Geologi Lembar Malili, Sulawesi, skala 1:250.000*. Pusat Penelitian dan Pengembangan Geologi, Bandung.
- Stecmson, M. L. 1996. *Planning and execution of a metallurgical test program for laterite pressure leaching*, ALTA 1996 Nickel/Cobalt Pressure Leaching and Hydrometallurgy Forum ALTA Metalurgical Services (Melbourne).
- Sufriadin, Widodo, S., Nur, I., Ilyas, A., Ashari M.Y., 2020. Extraction of Nickel and Cobalt from Sulawesi Limonite Ore in Nitric Acid Solution at Atmospheric Pressure. *The 3rd EPI International Conference on Science and Engineering 2019*
- Sukamto., 1975., *Geologi Sulawesi, Departemen Pertambangan dan Energi*, Direktorat Jenderal Geologi Dan Sumber Daya Mineral, Pusat Penelitian Dan Pengembangan.
- Surono. 2013a. Geologi Lengan Tenggara Sulawesi. Badan Geologi, Kementerian Energi dan Sumber Daya Mineral. Bandung, 169p.
- Surono. 2013b. Kepingan Benua, dalam Surono dan U. Hartono (Eds.), Geologi Sulawesi, LIPI Press, Jakarta, 153-210p.
- Ucyildiz, Y., & Girgin, I., 2016. High Pressure Sulphuric Acid Leaching Of Lateritic Nickel Ore, *Physicochem. Probl. Miner. Process.* 53(1), 2017, pp. 475–488

- Van Leeuwen, T.M., 1994. 25 Years of Mineral Exploration and Discovery in Indonesia. Journal of Geochemical Exploration, 50, h.13-90
- Warner, A.E.M. Diaz, C.M. Dalvi, A.D., Mackey, P.J, Tarasov, A.V.,2006, *JOM World Nonferrous Smelter Survey, Part III: Nickel: Laterite., Vol 58*, pp. 11–20
- Warrent, E. 1969. X-Ray Diffraction, Addittion-wesley pub: Messach Ssetfs.
- Whittington, B. I., and Muir, D. M., 2000. Pressure Acid Leaching of Nickel Laterites: A Review, *Mineral Processing and Extractive Metallurgy Review: An International Journal*, 21:6, pp. 527-599
- Zhang, Y., Qie, J., Wang, X. F., Cui K., Fu, T., Wang, J., Qi, Y., 2019, *Mineralogical Characteristics of the Nickel Laterite, Southeast Ophiolite Belt, Sulawesi Island, Indonesia*. Mining, Metallurgy & Exploration: Springer
- Zheng, G., Zhu, D., Pan, J., Li, Q., An, Y., Zhu, J. dan Liu, Z., 2014, Pilot scale test of producing nickel concentrate from low-grade saprolitic laterite by direct reduction-magnetic separation, *Journal of Central South University*, 21(5), pp. 1771–1777.

LAMPIRAN

LAMPIRAN A

HASIL ANALISIS X-RAY DIFFRACTION (XRD)

Sampel BO-4

Cu-Ka1 (1.540598 A)

Index	Amount (%)	Name	Formula Sum
А	100.0	Goethite	Fe H O2
	1.9	Unidentified	
		peak area	

Matched Phases

rel. 1000 BO-4 950 [96-101-1088] Fe H O2 Iron(III) oxide hydroxide Goethite (100.0%) 900 850 · 800 750 · 700 650 · 600 550 500 450 · 400 -350 -300 -250 -200 -150 -100 -50 · iшi THE ELLE Тİ I İL. T i 15.00 30.00 5.00 10.00 20.00 25.00 60.00 35.00 40.00 50.00 55.00 65.00 70.00 45.00

Diffraction Pattren Graphics

2theta

No.	2theta [º]	d [Å]	<i>I/I0</i>	FWHM	Matched
1	17.50	5.0636	106.05	0.7019	А
2	21.02	4.2230	1000.00	0.7416	А
3	26.20	3.3986	96.72	0.7918	А
4	33.06	2.7074	439.11	0.8283	А
5	34.58	2.5918	319.36	0.5600	А
6	36.54	2.4571	874.67	0.7200	А
7	39.80	2.2631	187.31	0.9959	А
8	41.00	2.1996	222.05	0.9959	А
9	45.04	2.0112	42.42	0.3822	А
10	47.08	1.9287	56.50	0.5904	А
11	50.70	1.7991	98.70	0.7836	
12	53.12	1.7227	338.25	0.8800	А
13	58.94	1.5658	204.88	0.7516	А
14	61.34	1.5101	171.28	0.6345	А
15	63.80	1.4577	114.55	0.8149	А

Peak List

Sampel INA-5

Index Amount (%)		Name	Formula Sum	
Α	86.7	Iron(III) oxide hydroxide Goethite	F H O2	
В	13.3	Talc	H2 Mg3 O12 Si4	
	5.0	Unidentified peak area		

Matched Phases

No.	2theta [º]	d [Å]	<i>I/I0</i>	FWHM	Matched
1	9.38	9.4209	176.70	0.3197	В
2	17.76	4.9901	90.24	0.7713	А
3	18.84	4.7064	69.56	0.7713	В
4	21.20	4.1875	1000.00	0.8328	A,B
5	26.52	3.3583	117.49	0.6387	А
6	28.56	3.1229	239.17	0.2535	В
7	33.26	2.6916	321.08	0.9849	А
8	34.74	2.5802	215.57	0.9849	A,B
9	36.70	2.4468	702.03	0.6800	A,B
10	40.04	2.2500	158.83	0.9738	A,B
11	41.20	2.1893	160.00	0.9738	A,B
12	45.06	2.0103	21.56	0.3118	А
13	47.34	1.9187	41.47	0.8638	А
14	50.64	1.8011	74.30	1.0641	А
15	53.18	1.7209	293.66	1.0641	A,B
16	57.50	1.6015	62.21	0.3800	A,B
17	59.08	1.5624	135.75	0.7977	A,B
18	61.44	1.5079	147.40	0.7977	A,B
19	64.06	1.4524	77.05	1.1043	A,B
20	65.82	1.4178	20.48	1.1043	A,B
21	68.60	1.3669	86.13	0.3800	A,B
22	69.14	1.3576	39.49	0.2686	A,B

Peak List

Sampel PET-5

Index	Amount (%)	Name	Formula Sum		
А	76.5	Goethite	Co0.1 Fe0.9 H O2		
В	23.5	Clinochlore	Al1.7 Fe0.33 H8 Mg4.95 O18 Si3.02		
	6.4	Unidentified peak			
		area			

Matched Phases

1 12.32 7.1786 159.46 0.2080 B 2 17.94 4.9404 166.15 0.3000 A 3 18.58 4.7717 210.53 0.2931 B 4 19.60 4.5256 55.29 0.5595 B 5 21.24 4.1797 1000.00 0.6000 A 6 24.88 3.5758 156.94 0.5551 B 7 26.48 3.3633 170.55 0.5101 A,B 8 28.48 3.1315 94.10 0.2726 B 9 33.28 2.6900 485.10 0.8145 A,B 10 34.92 2.5673 277.53 0.8145 A 11 35.72 2.5116 438.12 0.8145 A 12 36.84 2.4378 891.65 0.6400 A,B 13 40.24 2.2393 214.52 0.9346 A,B 15 50.88 1.7932 436.61 0.3000 A,B 16 53.58 1.	No.	2theta [º]	d [Å]	<i>I/I0</i>	FWHM	Matched
217.944.9404166.150.3000A318.584.7717210.530.2931B419.604.525655.290.5595B521.244.17971000.000.6000A624.883.5758156.940.5551B726.483.3633170.550.5101A,B828.483.131594.100.2726B933.282.6900485.100.8145A,B1034.922.5673277.530.8145A,B1135.722.5116438.120.8145A1236.842.4378891.650.6400A,B1340.242.2393214.520.9346A,B1441.202.1893245.980.9346A,B1550.881.7932436.610.3000A,B1653.581.7090345.721.1791A,B1757.701.596419.991.1256A,B1859.561.5509132.991.0721A,B1961.821.499548.291.0721A,B	1	12.32	7.1786	159.46	0.2080	В
318.584.7717210.530.2931B419.604.525655.290.5595B521.244.17971000.000.6000A624.883.5758156.940.5551B726.483.3633170.550.5101A,B828.483.131594.100.2726B933.282.6900485.100.8145A,B1034.922.5673277.530.8145A,B1135.722.5116438.120.8145A,B1236.842.4378891.650.6400A,B1340.242.2393214.520.9346A,B1441.202.1893245.980.9346A,B1550.881.7932436.610.3000A,B1653.581.7090345.721.1791A,B1757.701.596419.991.1256A,B1859.561.5509132.991.0721A,B1961.821.499548.291.0721A,B	2	17.94	4.9404	166.15	0.3000	А
419.604.525655.290.5595B521.244.17971000.000.6000A624.883.5758156.940.5551B726.483.3633170.550.5101A,B828.483.131594.100.2726B933.282.6900485.100.8145A,B1034.922.5673277.530.8145A,B1135.722.5116438.120.8145A,B1236.842.4378891.650.6400A,B1340.242.2393214.520.9346A,B1441.202.1893245.980.9346A,B1550.881.7932436.610.3000A,B1653.581.7090345.721.1791A,B1757.701.596419.991.1256A,B1859.561.5509132.991.0721A,B1961.821.499548.291.0721A,B	3	18.58	4.7717	210.53	0.2931	В
521.244.17971000.000.6000A624.883.5758156.940.5551B726.483.3633170.550.5101A,B828.483.131594.100.2726B933.282.6900485.100.8145A,B1034.922.5673277.530.8145A,B1135.722.5116438.120.8145A1236.842.4378891.650.6400A,B1340.242.2393214.520.9346A,B1441.202.1893245.980.9346A,B1550.881.7932436.610.3000A,B1653.581.7090345.721.1791A,B1757.701.596419.991.1256A,B1859.561.5509132.991.0721A,B1961.821.499548.291.0721A,B	4	19.60	4.5256	55.29	0.5595	В
624.883.5758156.940.5551B726.483.3633170.550.5101A,B828.483.131594.100.2726B933.282.6900485.100.8145A,B1034.922.5673277.530.8145A,B1135.722.5116438.120.8145A1236.842.4378891.650.6400A,B1340.242.2393214.520.9346A,B1441.202.1893245.980.9346A,B1550.881.7932436.610.3000A,B1653.581.7090345.721.1791A,B1757.701.596419.991.1256A,B1859.561.5509132.991.0721A,B1961.821.499548.291.0721A,B	5	21.24	4.1797	1000.00	0.6000	А
726.483.3633170.550.5101A,B828.483.131594.100.2726B933.282.6900485.100.8145A,B1034.922.5673277.530.8145A,B1135.722.5116438.120.8145A1236.842.4378891.650.6400A,B1340.242.2393214.520.9346A,B1441.202.1893245.980.9346A,B1550.881.7932436.610.3000A,B1653.581.7090345.721.1791A,B1757.701.596419.991.1256A,B1859.561.5509132.991.0721A,B1961.821.499548.291.0721A,B	6	24.88	3.5758	156.94	0.5551	В
8 28.48 3.1315 94.10 0.2726 B 9 33.28 2.6900 485.10 0.8145 A,B 10 34.92 2.5673 277.53 0.8145 A,B 11 35.72 2.5116 438.12 0.8145 A 12 36.84 2.4378 891.65 0.6400 A,B 13 40.24 2.2393 214.52 0.9346 A,B 14 41.20 2.1893 245.98 0.9346 A,B 15 50.88 1.7932 436.61 0.3000 A,B 16 53.58 1.7090 345.72 1.1791 A,B 17 57.70 1.5964 19.99 1.1256 A,B 18 59.56 1.5509 132.99 1.0721 A,B 19 61.82 1.4995 48.29 1.0721 A,B	7	26.48	3.3633	170.55	0.5101	A,B
933.282.6900485.100.8145A,B1034.922.5673277.530.8145A,B1135.722.5116438.120.8145A1236.842.4378891.650.6400A,B1340.242.2393214.520.9346A,B1441.202.1893245.980.9346A,B1550.881.7932436.610.3000A,B1653.581.7090345.721.1791A,B1757.701.596419.991.1256A,B1859.561.5509132.991.0721A,B1961.821.499548.291.0721A,B	8	28.48	3.1315	94.10	0.2726	В
1034.922.5673277.530.8145A,B1135.722.5116438.120.8145A1236.842.4378891.650.6400A,B1340.242.2393214.520.9346A,B1441.202.1893245.980.9346A,B1550.881.7932436.610.3000A,B1653.581.7090345.721.1791A,B1757.701.596419.991.1256A,B1859.561.5509132.991.0721A,B1961.821.499548.291.0721A,B	9	33.28	2.6900	485.10	0.8145	A,B
1135.722.5116438.120.8145A1236.842.4378891.650.6400A,B1340.242.2393214.520.9346A,B1441.202.1893245.980.9346A,B1550.881.7932436.610.3000A,B1653.581.7090345.721.1791A,B1757.701.596419.991.1256A,B1859.561.5509132.991.0721A,B1961.821.499548.291.0721A,B	10	34.92	2.5673	277.53	0.8145	A,B
1236.842.4378891.650.6400A,B1340.242.2393214.520.9346A,B1441.202.1893245.980.9346A,B1550.881.7932436.610.3000A,B1653.581.7090345.721.1791A,B1757.701.596419.991.1256A,B1859.561.5509132.991.0721A,B1961.821.499548.291.0721A,B	11	35.72	2.5116	438.12	0.8145	А
1340.242.2393214.520.9346A,B1441.202.1893245.980.9346A,B1550.881.7932436.610.3000A,B1653.581.7090345.721.1791A,B1757.701.596419.991.1256A,B1859.561.5509132.991.0721A,B1961.821.499548.291.0721A,B	12	36.84	2.4378	891.65	0.6400	A,B
1441.202.1893245.980.9346A,B1550.881.7932436.610.3000A,B1653.581.7090345.721.1791A,B1757.701.596419.991.1256A,B1859.561.5509132.991.0721A,B1961.821.499548.291.0721A,B	13	40.24	2.2393	214.52	0.9346	A,B
1550.881.7932436.610.3000A,B1653.581.7090345.721.1791A,B1757.701.596419.991.1256A,B1859.561.5509132.991.0721A,B1961.821.499548.291.0721A,B	14	41.20	2.1893	245.98	0.9346	A,B
1653.581.7090345.721.1791A,B1757.701.596419.991.1256A,B1859.561.5509132.991.0721A,B1961.821.499548.291.0721A,B	15	50.88	1.7932	436.61	0.3000	A,B
1757.701.596419.991.1256A,B1859.561.5509132.991.0721A,B1961.821.499548.291.0721A,B	16	53.58	1.7090	345.72	1.1791	A,B
1859.561.5509132.991.0721A,B1961.821.499548.291.0721A,B	17	57.70	1.5964	19.99	1.1256	A,B
19 61.82 1.4995 48.29 1.0721 A,B	18	59.56	1.5509	132.99	1.0721	A,B
	19	61.82	1.4995	48.29	1.0721	A,B

Peak List

Sampel PL-4

Index	Amount (%)	Name	Formula Sum
Α	66.5	Goethite	Co0.07 Fe0.93 H O2
В	27.2	Silicon oxide Quartz	O2 Si
С	6.3	Maghemite	Fe2O3
	13.0	Unidentified peak	
		area	

Matched Phases

No.	2theta [º]	d [Å]	<i>I/I0</i>	FWHM	Matched
1	9.22	9.5841	57.03	0.1793	
2	17.78	4.9845	68.72	0.4696	А
3	20.86	4.2550	582.01	0.4000	В
4	21.16	4.1953	611.88	0.8000	А
5	23.90	3.7202	41.80	0.8000	
6	26.64	3.3435	1000.00	0.1493	A,B
7	28.48	3.1315	43.61	0.2358	
8	30.28	2.9493	108.15	0.1920	С
9	33.32	2.6869	230.32	0.5209	А
10	34.86	2.5716	159.19	0.5209	А
11	35.60	2.5198	415.86	0.2754	A,C
12	36.62	2.4519	534.20	0.5200	В
13	36.76	2.4429	531.37	0.7600	А
14	39.42	2.2840	108.09	0.7600	A,B
15	40.24	2.2393	145.41	0.7600	A,B
16	41.26	2.1863	144.25	0.7600	А
17	42.42	2.1291	106.28	0.7600	В
18	43.28	2.0888	45.53	0.7600	A,C
19	45.84	1.9779	59.71	0.7600	В
20	47.24	1.9225	66.06	0.7600	А
21	50.10	1.8193	81.59	0.7446	A,B
22	53.32	1.7168	206.56	0.7446	А
23	57.36	1.6051	72.89	0.4232	A,B,C
24	59.18	1.5600	111.89	0.4232	А
25	59.94	1.5420	114.85	0.4232	В
26	61.54	1.5057	92.52	0.4232	А
27	62.92	1.4759	93.69	0.4781	A,C
28	64.10	1.4516	50.03	0.4781	A,B

Peak List

Sampel PTA-6

Index	Amount (%)	Name	Formula Sum
А	82.4	Goethite	Co0.1 Fe0.9 H O2
В	9.4	Silicon oxide Quartz	Fe2 O3
С	7.6	Maghemite	H2 Mg3 O12 Si4
D	0.6	Lizardite	H4 Mg3 O9 Si2
	5.5	Unidentified peak	
		area	

Matched Phases

No.	2theta [º]	d [Å]	I/I0	FWHM	Matched	
1	9.42	9.3810	89.37	0.4417	С	
2	12.08	7.3207	62.09	0.2239	D	
3	17.86	4.9624	127.91	0.7201	А	
4	21.28	4.1720	1000.00	0.7961	A,C	
5	24.40	3.6451	44.68	0.7515	D	
6	26.58	3.3509	141.43	0.7515	А	
7	28.58	3.1208	179.68	0.3600	С	
8	30.28	2.9493	178.64	0.3411	В	
9	33.36	2.6837	436.63	0.8656	A,D	
10	34.96	2.5645	270.17	0.8656	A,C	
11	35.66	2.5157	657.00	0.4800	A,B,C,D	
12	36.86	2.4365	822.66	0.8400	A,C,D	
13	40.22	2.2404	179.09	1.7406	A,C	
14	41.40	2.1792	221.08	1.7406	A,C	
15	43.34	2.0861	80.84	1.7406	A,B,C	
16	47.46	1.9141	241.78	0.3600	A,B	
17	50.20	1.8159	145.62	0.6985	A,C,D	
18	53.64	1.7073	363.87	1.2567	A,B,C,D	
19	57.34	1.6056	38.36	1.2567	B,C	
20	59.24	1.5585	48.84	1.2567	A,C	
21	61.80	1.5000	41.25	1.2567	A,C,D	
22	62.92	1.4759	40.21	1.2567	B,C	
23	64.28	1.4480	37.79	1.2567	A,C,D	

Peak List

Sampel SL-6

Index	Amount (%)	Name	Formula Sum
А	99.2	Iron(III) oxide hydroxide Goethite	Fe H O2
В	0.8	Talc	H2 Mg3 O12 Si4
	4.4	Unidentified peak area	

Matched Phases

No.	2theta [º]	d [Å]	<i>I/I0</i>	FWHM	Matched
1	9.40	9.4009	88.38	0.4260	В
2	17.86	4.9624	90.11	0.9320	А
3	21.26	4.1758	1000.00	0.8805	A,B
4	26.48	3.3633	89.09	1.0796	А
5	28.64	3.1144	50.11	1.0796	В
6	30.70	2.9099	35.96	1.0796	
7	33.34	2.6853	387.97	1.0796	А
8	34.84	2.5730	278.87	1.0796	A,B
9	36.76	2.4429	840.44	0.8400	A,B
10	40.18	2.2425	213.28	1.4444	A,B
11	41.24	2.1873	206.95	1.4444	A,B
12	45.10	2.0087	45.76	1.4444	А
13	47.24	1.9225	56.04	1.4444	А
14	50.98	1.7899	88.22	1.4444	
15	53.36	1.7156	381.25	1.4444	A,B
16	59.06	1.5629	182.86	1.0161	A,B
17	61.58	1.5048	48.41	1.0161	A,B
18	64.02	1.4532	27.68	1.0161	A,B

Peak List

Index	Amount (%)	Name	Formula Sum				
А	85.3	Goethite	Fe H O2				
В	12.1	Maghemite	Fe3 O4				
С	2.6	Quartz	O2 Si				
	8.0	Unidentified peak area					

Matched Phases

No.	2theta [º]	d [Å]	<i>I/I0</i>	FWHM	Matched
1	6.80	12.9885	89.76	0.7826	
2	17.66	5.0181	78.95	0.6722	
3	17.96	4.9350	89.39	0.7627	А
4	18.70	4.7413	77.93	0.7627	В
5	19.44	4.5625	64.45	0.7627	
6	20.16	4.4011	95.73	0.7627	
7	20.52	4.3247	174.65	0.7638	
8	21.40	4.1488	1000.00	0.7649	А
9	22.08	4.0226	113.99	0.7649	
10	26.46	3.3658	68.90	1.1444	А
11	28.60	3.1186	26.61	1.1444	С
12	28.78	3.0995	25.61	1.1444	
13	31.32	2.8537	18.83	1.1444	
14	33.30	2.6884	363.53	0.9422	А
15	33.60	2.6651	334.39	1.1608	
16	34.96	2.5645	287.08	1.1608	А
17	35.82	2.5049	300.55	1.1608	A,B
18	37.00	2.4276	909.13	0.8163	А
19	38.76	2.3214	55.23	0.8163	
20	40.40	2.2308	173.99	1.9045	А
21	41.44	2.1772	165.88	2.2808	А
22	45.26	2.0019	35.52	0.6801	А
23	47.32	1.9195	58.20	0.9763	А
24	47.68	1.9058	73.27	0.9183	В
25	48.24	1.8850	54.63	0.9183	А
26	50.44	1.8078	55.41	2.2677	
27	50.78	1.7965	81.10	1.1636	А
28	51.38	1.7769	57.45	1.1636	
29	53.68	1.7061	370.08	1.1494	A,B,C
30	54.40	1.6852	158.96	1.1494	А
31	57.48	1.6020	68.93	0.7362	A,B
32	59.54	1.5514	165.86	1.1906	А
33	61.84	1.4991	143.84	0.9126	А
34	64.00	1.4536	96.20	2.4461	А
35	64.74	1.4388	82.38	2.2209	А

Peak List

Index Amount (%)		Name	Formula Sum		
Α	43.6	Goethite	Co0.07 Fe0.93 H O2		
В	26.2	Aluminium hydroxide Gibbsite	AI H3 O3		
С	17.4	Talc	H2 Mg3 O12 Si4		
D	7.6	Lizardite	H4 Mg3 O9 Si2		
Е	5.2	Hematite	Fe2 O3		
	1.9	Unidentified peak area			

Matched Phases

No	Othota [0]	d [Å]	1/10		Matchad
10.				0.7000	
1	9.44	9.3612	51.98	0.7600	C
2	12.22	7.2371	37.62	0.7600	D
3	17.76	4.9901	78.86	0.5754	A
4	18.32	4.8388	317.89	0.3907	В
5	21.24	4.1797	947.36	0.9582	A,C
6	22.28	3.9869	137.81	0.9582	
7	26.48	3.3633	93.14	0.5097	A,B
8	28.62	3.1165	34.73	0.5097	B,C
9	30.20	2.9570	8.64	0.5097	В
10	33.30	2.6884	409.89	1.0645	A,B,E
11	35.04	2.5588	284.84	1.0645	A,C,D
12	35.76	2.5089	358.58	1.0645	A,B,C,E
13	36.78	2.4416	1000.00	0.8389	A,B,C
14	41.30	2.1843	216.92	1.6028	A,B,C
15	47.48	1.9134	64.44	0.5756	A,B
16	50.74	1.7978	116.14	0.9343	A,B,D
17	53.20	1.7203	302.17	1.6962	C,D
18	53.52	1.7108	361.56	1.3724	A,C
19	54.22	1.6904	227.97	3.3796	A,B,C,E
20	59.22	1.5590	216.88	1.0922	A,B,C
21	61.68	1.5026	195.78	0.7872	A,B,C
22	64.14	1.4508	138.08	1.1555	A,B,C,E
23	66.20	1.4105	60.35	0.7226	B,C,E

Peak List

Index	Amount (%)	Name	Formula Sum
Α	87.1	Goethite	Co0.1 Fe0.9 H O2
В	10.3	Al(OH)3 gibbsite gibbsite	AI H3 O3
С	2.6	Montmorillonite	Al0.86 Fe0.1 H Li0.08 Mg0.14 O10 Si3.9
	5.6	Unidentified peak area	

Matched Phases

No.	2theta [º]	d [Å]	<i>I/I0</i>	FWHM	Matched
1	6.92	12.7635	73.06	1.4483	
2	9.28	9.5222	43.03	1.0008	С
3	18.00	4.9241	111.69	1.4776	А
4	18.36	4.8284	209.45	0.5532	B,C
5	21.40	4.1488	1000.00	0.8721	A,C
6	26.34	3.3809	93.71	0.7063	A,B
7	33.38	2.6822	362.36	0.9994	A,B
8	34.88	2.5702	199.10	0.9472	A,C
9	35.34	2.5378	198.69	0.9210	С
10	35.90	2.4995	265.69	0.8949	A,B,C
11	36.98	2.4289	866.13	0.7903	A,B,C
12	40.36	2.2329	194.27	1.3686	A,B,C
13	41.12	2.1934	164.30	2.8923	В
14	41.46	2.1762	168.78	1.3903	A,B,C
15	44.74	2.0240	26.23	2.2629	В
16	47.78	1.9021	29.82	1.4045	В
17	51.10	1.7860	79.37	1.6570	A,B
18	53.66	1.7067	363.27	1.2010	A,B
19	57.46	1.6025	40.00	0.9721	В
20	57.82	1.5934	42.45	1.6007	A,B,C
21	59.08	1.5624	130.40	1.4927	A,B,C
22	61.74	1.5013	127.94	1.0692	A,B
23	64.22	1.4492	94.55	2.0420	A,C
24	64.94	1.4348	71.83	1.3663	A,B,C

Peak List

Index	Amount (%)	Name	Formula Sum
А	49.9	Goethite	Fe H O2
В	31.4	Aluminium hydroxide Gibbsite	AI H3 O3
С	15.2	Spinel	Al2.401 Mg0.398 O4
D	3.5	Quartz	O2 Si
	11.8	Unidentified peak area	

Matched Phases

	No.	2theta [º]	d [Å]	<i>I/I0</i>	FWHM	Matched
-	1	6.82	12.9504	87.26	1.0352	
	2	18.42	4.8128	307.28	0.4366	В
	3	18.98	4.6720	71.87	0.4366	С
	4	20.54	4.3206	258.48	0.6043	B,D
	5	21.40	4.1488	1000.00	0.7719	А
	6	22.34	3.9763	93.56	0.7719	
	7	25.96	3.4295	53.38	0.7719	
	8	26.48	3.3633	86.15	0.8461	A,B,D
	9	26.74	3.3312	72.08	1.0576	В
	10	31.18	2.8662	44.77	0.3121	С
	11	32.56	2.7478	71.14	1.6856	
	12	33.58	2.6666	252.16	1.7714	A,B
	13	35.00	2.5616	253.55	1.7714	А
	14	35.74	2.5103	260.23	1.7714	A,B
	15	36.74	2.4442	752.38	1.1485	A,B,C
	16	37.10	2.4213	736.19	1.0656	В
	17	37.86	2.3744	127.59	1.0656	В
	18	40.52	2.2245	161.62	2.5167	A,B
	19	41.38	2.1802	160.93	1.3255	A,B
	20	44.24	2.0457	37.99	1.3255	В
	21	44.76	2.0231	85.10	0.3388	B,C
	22	45.48	1.9928	46.01	0.3568	A,B,D
	23	50.66	1.8005	78.26	0.8032	B,D
	24	51.20	1.7827	80.82	1.4579	А
	25	52.56	1.7398	96.29	1.4628	В
	26	53.42	1.7138	298.72	1.4678	А
	27	53.72	1.7049	318.69	1.3817	
	28	54.06	1.6950	252.78	2.0111	В
	29	54.54	1.6812	139.22	0.7200	A,B,D
	30	57.80	1.5939	49.23	1.2387	A,B
	31	59.24	1.5585	159.67	1.0773	A,B,C
	32	59.74	1.5467	111.69	1.8750	B,D
	33	60.82	1.5218	55.29	1.8750	В
	34	61.60	1.5044	146.44	1.8750	A,B
	35	63.92	1.4552	82.86	3.1173	A,B,D
	36	66.14	1.4117	44.70	0.9775	В
	37	66.44	1.4060	46.92	1.1380	В

Peak List

Index	Amount (%)	Name	Formula Sum
А	89.9	Goethite	Fe H O2
В	5.6	Montmorillonite	Al0.86 Fe0.1 H Li0.08 Mg0.14 O10 Si3.9
С	4.5	Hematite	Fe2 O3
	8.6	Unidentified peak area	

Matched Phases

No.	2theta [º]	d [Å]	<i>I/I0</i>	FWHM	Matched	
1	7.64	11.5622	35.85	0.2256		
2	9.26	9.5428	52.83	0.4081	В	
3	18.80	4.7163	100.76	0.6181		
4	19.74	4.4938	81.35	0.6181	В	
5	21.40	4.1488	1000.00	0.8979	A,B	
6	23.08	3.8505	43.33	0.8979		
7	26.48	3.3633	64.81	0.5800	А	
8	28.78	3.0995	42.18	0.5800		
9	33.38	2.6822	309.78	0.9528	A,C	
10	34.72	2.5817	178.37	0.9528	A,B	
11	35.12	2.5532	232.12	0.9528	В	
12	35.86	2.5022	233.56	0.9528	A,B,C	
13	36.68	2.4481	690.24	1.2122	A,B	
14	36.98	2.4289	771.89	0.9175	В	
15	40.44	2.2287	165.18	2.3723	A,B	
16	41.38	2.1802	173.88	1.2727	A,B,C	
17	50.58	1.8031	86.03	1.3454		
18	50.98	1.7899	95.18	1.2976	А	
19	53.66	1.7067	347.10	1.2585	А	
20	54.44	1.6841	168.15	1.2585	A,B,C	
21	57.62	1.5984	50.95	2.0782	A,C	
22	59.00	1.5643	144.27	1.2974	В	
23	59.54	1.5514	151.81	1.3037	А	
24	60.02	1.5401	94.12	1.3037	В	
25	61.58	1.5048	102.00	1.3284	A,B	
26	62.06	1.4943	102.02	1.6660	A,B	
27	62.92	1.4759	78.50	1.8459	B,C	
28	63.78	1.4581	105.98	1.9358	A,B	
29	64.12	1.4512	97.89	2.0258	A,B,C	
30	64.90	1.4356	73.90	1.2753	A,B	
31	69.20	1.3565	30.46	0.7807	A,B	

Peak List