
AN EXPERIMENT OF ATTENTION-BASED GUIDED
REINFORCEMENT LEARNING IN THE GAME OF

SPACE INVADERS

UNDERGRADUATE THESIS

ARSYI SYARIEF AZIZ
H071191003

INFORMATION SYSTEMS UNDERGRADUATE PROGRAM

DEPARTMENT OF MATHEMATICS

FACULTY OF MATHEMATICS AND NATURAL SCIENCES

UNIVERSITAS HASANUDDIN

MAKASSAR

MARCH, 2023

AN EXPERIMENT OF ATTENTION-BASED GUIDED
REINFORCEMENT LEARNING IN THE GAME OF

SPACE INVADERS

UNDERGRADUATE THESIS

Submitted in partial fulfillment of the requirements for the degree of Bachelor

of Computer Science from the Information Systems Undergraduate Program,

Department of Mathematics, Faculty of Mathematics and Natural Sciences,

Universitas Hasanuddin

ARSYI SYARIEF AZIZ
H071191003

INFORMATION SYSTEMS UNDERGRADUATE PROGRAM

DEPARTMENT OF MATHEMATICS

FACULTY OF MATHEMATICS AND NATURAL SCIENCES

UNIVERSITAS HASANUDDIN

MAKASSAR

MARCH 2023

i

Universitas Hasanuddin

ABSTRACT
This research aims to imitate three competencies of human-level general
intelligence: perception, learning, and attention. The objective of the study was
to investigate the effects of visual attention mechanisms on guided-reinforcement
learning models. The methodology for the study involved performing two
experiments in the Space Invaders game. The first experiment implemented
two guided reinforcement learning algorithms and assessed them based on their
acquired scores to obtain the most suitable model for the environment. The
second experiment then integrated the obtained best model with three types
of visual-attention modules and evaluated the modules based on their acquired
scores and a visual analysis of their saliency maps. The results demonstrated that
the visual attention mechanisms improved the guided-reinforcement learning
models’ ability to focus on objects in the environment. However, further research
is needed to establish performance improvements over non-attention models.

Keywords: Reinforcement Learning, Imitation Learning, Visual Attention,
Generative Adversarial Network, Deep Learning.

ABSTRAK
Penelitian ini bertujuan untuk meniru tiga kompetensi kecerdasan umum manusia:
persepsi (perception), pembelajaran (learning), dan perhatian (attention).
Objektif penelitian ini adalah untuk menyelidiki efek mekanisme visual
attention pada model guided reinforcement learning. Metodologi penelitian
ini melibatkan dua eksperimen pada permainan Space Invaders. Eksperimen
pertama mengimplementasikan dua algoritme guided reinforcement learning dan
mengevaluasinya berdasarkan skor untuk memperoleh model yang paling sesuai
untuk lingkungan tersebut. Setelah itu, eksperimen kedua mengintegrasikan
model terbaik yang diperoleh dengan tiga jenis modul visual attention dan
mengevaluasi modul-modul tersebut berdasarkan skor yang diperoleh dan analisis
visual dari peta saliensinya. Hasil penelitian menunjukkan bahwa mekanisme
visual attention meningkatkan kemampuan model guided reinforcement learning
untuk fokus pada objek-objek di lingkungan. Namun, penelitian lebih
lanjut diperlukan untuk menunjukkan peningkatan kinerja dibandingkan dengan
model-model tanpa visual-attention.

Kata kunci: Reinforcement Learning, Imitation Learning, Visual Attention,
Generative Adversarial Network, Deep Learning

Judul : An Experiment of Attention-Based Guided Reinforcement
Learning in the Game of Space Invaders

Nama : Arsyi Syarief Aziz
NIM : H071191003
Program studi : Sistem Informasi

vii

Universitas Hasanuddin

TABLE OF CONTENTS

Title Page i

Statement of Originality ii

Approval Page iii

Legalization Page iv

Acknowledgements v

Approval For Publication vi

Abstract vii

Table of Contents viii

List of Figures x

List of Tables xi

1 Introduction 1
1.1 Background of Study . 1
1.2 Research Questions . 1
1.3 Research Objectives . 2
1.4 Research Significance . 2
1.5 Overview of Structure . 2

2 Literature Review 3
2.1 Reinforcement Learning Foundations 3

2.1.1 Markov Decision Process 3
2.1.2 Rewards . 4
2.1.3 Returns . 5
2.1.4 Policy . 5
2.1.5 Value Functions . 6
2.1.6 Bellman Equations . 6
2.1.7 Model-Free Reinforcement Learning 7

2.2 Building Blocks of Deep Reinforcement Learning 12
2.2.1 Artificial Neural Network 12
2.2.2 Convolutional Neural Network 13

2.3 Generative Adversarial Networks 16
2.3.1 Improved GANs . 17

2.4 Guided Reinforcement Learning 18
2.4.1 Deep Q-Learning from Demonstrations 19

viii

Universitas Hasanuddin

2.4.2 Policy Optimization from Demonstrations 19
2.5 Visual Attention Mechanisms in Deep Learning 20

2.5.1 Non-Local Block . 21
2.5.2 Convolutional Block Attention Module 21
2.5.3 Dual Attention . 22

2.6 Implementations of Visual Attention in Deep Learning 24
2.6.1 Visual Attention in Reinforcement Learning 25
2.6.2 Visual Attention in Generative Models 25

3 Research Methodology 27
3.1 Environment Setup . 27

3.1.1 Preprocessing . 28
3.2 Demonstration Dataset Collection 29
3.3 Spectrally Normalized Guided Adversarial Learning 30
3.4 Experiment Setup . 31

3.4.1 Network Implementation for the Algorithms 31
3.4.2 Implemented Hyperparameters 34
3.4.3 Visualizing Saliency . 35

4 Results and Discussions 36
4.1 Implementing Guided Reinforcement Learning in Space Invaders . 36
4.2 Integrating Attention into Guided Reinforcement Learning 37

4.2.1 Where To Add the Non-Local Block? 37
4.2.2 Benchmarking Visual Attention Mechansims 38
4.2.3 Visualizing the GradCAMs of Visual Attention Mechanisms 39

4.3 Discussions . 41

5 Conclusion and Recommendations 43
5.1 Conclusion . 43
5.2 Recommendations . 43

References 45

I Benchmark Results 51

ix

Universitas Hasanuddin

LIST OF FIGURES

Figure 2.1 A visual representation of the agent-environment interaction
in the Markov decision process 4

Figure 2.2 A computational graph that visualizes the forward
propagation and backpropagation processes of a feed-forward neural
network . 13

Figure 2.3 A visualization of the convolution operation 14
Figure 2.4 A visualization of the max pooling operation 15
Figure 2.5 An example of a complete convolution neural network . . . 16
Figure 2.6 A flowchart visualizing the adversarial process in GANs. . 16
Figure 2.7 A visualization of the non-local block 22
Figure 2.8 A visualization of the convolutional block attention module 23
Figure 2.9 A visualization of the dual attention module 24

Figure 3.1 Two screenshots of Space Invaders 28
Figure 3.2 An example of a preprocessed state 29
Figure 3.3 A visualization of the implemented agent network. 32
Figure 3.4 A visualization of the implemented discriminator network. 33

Figure 4.1 The learning curves of PPO, POfD, and SNGAL averaged on
three different runs . 37

Figure 4.2 The learning curves of pure SNGAL and SNGAL with the
three attention mechanisms: non-local block, CBAM, and dual
attention . 39

Figure 4.3 The visualized GradCAMs of pure SNGAL and SNGAL with
the three attention mechanisms: non-local block, CBAM, and dual
attention . 40

x

Universitas Hasanuddin

LIST OF TABLES

Table 3.1 The implemented hyperparameters for PPO, POfD, and SNGAL34

Table 4.1 The returns of PPO, POfD, and SNGAL obtained from 200
evaluation episodes performed in three different runs 36

Table 4.2 The returns of an agent trained using SNGAL with the
non-local block applied after either the first, second, or third
convolutional layers . 37

Table 4.3 The returns of PPO, pure SNGAL, SNGAL with non-local
block, SNGAL with CBAM, and SNGAL with dual attention
obtained from 200 evaluation episodes performed in three different
runs . 38

Table I.1 The results of the guided reinforcement learning experiment 51
Table I.2 The results of the attention-based guided reinforcement

learning experiment . 52

xi

Universitas Hasanuddin

CHAPTER I
INTRODUCTION

1.1 Background of Study

Recent advancements in artificial intelligence have demonstrated its capability
of achieving ”superhuman” performance in numerous complicated tasks. For
example, artificial intelligence has demonstrated the ability to defeat grandmasters in
tournaments such as chess, shogi, and Go (Silver et al., 2016; 2017). Furthermore,
in a more recent development, it has also demonstrated the ability to generate
hyper-realistic images from text data (Ramesh et al., 2022), which in the past was
only possible through an artist’s rendition.

Currently, one particular long-term goal of much artificial intelligence research
is to develop a unified framework known as artificial general intelligence (AGI). AGI
contributes to the ability of machines to comprehend, learn, and act intelligently in
all tasks that humans can do. One way to achieve this goal of developing AGI
is to imitate the competencies of human-level general intelligence, including, but
not limited to, perception, learning, and attention (Goertzel, 2014). Moreover, in
learning, machines are required to have the ability to imitate other’s behavior and to
reinforce previous positive and negative experiences.

Two machine learning paradigms support the competencies stated above:
reinforcement learning and imitation learning. In reinforcement learning, a machine
learns how to solve a problem through self-exploration. Meanwhile, in imitation
learning, a machine learns by imitating others’ behavior.

Previous studies have combined reinforcement learning and imitation learning
(Hester et al., 2018; Kang et al., 2018) to create the guided-reinforcement learning
approach. In guided-reinforcement learning, the machine not only learns the actions
of a demonstrator, but it also can explore on its own. The studies showed improved
performance over reinforcement learning and imitation learning alone.

However, studies on guided reinforcement learning have only shown its capability
to perform perception and learning, and they are yet to incorporate it with attention.
Therefore, this research experiments to integrate visual-attention mechanisms with
guided-reinforcement learning models to fill the research gap.

1.2 Research Questions

Based on the background mentioned above, the researcher asks two important
questions:

1

Universitas Hasanuddin

1. How can visual-attention mechanisms be used to improve guided
reinforcement learning models?

2. What effect do visual-attention mechanisms have on guided reinforcement
learning models?

1.3 Research Objectives

By exploring the research questions, the objectives of this research are:

1. To investigate the effects of visual-attention mechanisms on guided
reinforcement learning models.

2. To combine visual-attention mechanisms with guided reinforcement learning
models.

1.4 Research Significance

This research explores the feasibility of incorporating visual-attention
mechanisms into guided reinforcement learning models to simultaneously imitate
three competencies of human-level general intelligence: perception, learning, and
attention.

1.5 Overview of Structure

This thesis is structured as follows: introduction/background of study; review
of literature; research methodology; results and discussions; and conclusion and
recommendations.

2

Universitas Hasanuddin

CHAPTER II
LITERATURE REVIEW

This literature review covers six topics related to this research. The chapter will
begin with an introduction to reinforcement learning, including its foundational
concepts and several of the most notable model-free reinforcement learning
algorithms. After that, the chapter will provide an overview of deep reinforcement
learning by explaining its building blocks. Next, the chapter will discuss what
generative adversarial networks are and a few of their stabilization techniques. Then,
the chapter will explain guided reinforcement learning, along with its algorithms.
After that, the chapter will explain the visual attention mechanisms employed in
this research. To conclude, the chapter will review previous implementations of
visual-attention in the deep learning literature.

2.1 Reinforcement Learning Foundations

Reinforcement learning is an approach to machine learning that involves the
interaction between a learner, known as the agent, and its surroundings, the
environment. The goal of the agent in this approach is to learn how to behave
in the environment which it achieves though a process of trial and error, receiving
rewards and punishments for certain actions. Through reinforcement learning, the
agent learns to take the most beneficial actions in order to maximize its rewards.

This section will explain how reinforcement learning occurs through six
subtopics. Firstly, it will describe the Markov decision process and explain how
it relates to reinforcement learning. Then it will formulate the definition of rewards
and returns. After that, it will describe what a policy means in reinforcement
learning. Next, it will explain what value functions are and the Bellman equations
that relate to it. Finally, it will describe several model-free reinforcement learning
algorithms.

2.1.1 Markov Decision Process

The Markov decision process (MDP) is a mathematical framework used to
describe reinforcement learning problems. This framework models the environment
as a stochastic process, where the agent can influence the environment’s behavior
through a selected action (Boutilier et al., 1999, p. 3; Puterman, 2005, p. 17), which
determines the environment’s next states (Boutilier et al., 1999, p. 3). In addition,
the environment also provides a reward signal to the agent, that the agent learns

3

Universitas Hasanuddin

to maximize through its interactions with the environment (Sutton & Barto, 2018,
p. 48).

More specifically, the MDP can be described as a 4-tuple ⟨S,A, 𝑃, 𝑅⟩, which
consists of a set of states, S, a set of actions, A, a transition probability function,
𝑃 : S ×A ×S → [0, 1], and a reward function, 𝑅 : S ×A → R (Kang et al., 2018;
Schulman et al., 2015; Puterman, 2005, p. 20). The interaction of the agent and its
environment occurs at a sequence of discrete time-steps (𝑡 = 0, 1, 2, . . .). For each
time-step, 𝑡, the agent observes a state, 𝑠𝑡 ∈ S, of the environment and performs an
action, 𝑎𝑡 ∈ A. At the proceeding time step, 𝑡+1, responding to the performed action,
the environment gives a reward signal, 𝑟𝑡+1 = 𝑅(𝑎𝑡 , 𝑠𝑡), to the agent, and updates its
state to 𝑠𝑡+1 ∈ S based on the transition probability distribution, 𝑃(·|𝑠𝑡 , 𝑎𝑡). This
processes repeats until the final timestep, 𝑇 , to which a sequence of interactions is
obtained known as a trajectory, 𝜏 = (𝑠0, 𝑎0, 𝑟1, 𝑠1, 𝑎1, 𝑟2, 𝑠2, 𝑎2, 𝑟3, . . .).

Agent

Environment

Rt+1

St+1

St
State

Rt
Reward

At
Action

Figure 2.1: A visual representation of the agent-environment interaction in the
Markov decision process (adapted from Sutton and Barto, 2018).

2.1.2 Rewards

Rewards are the values that the agent receives as a result of its interactions with
the environment. These values are used by the environment to communicate to the
agent what it wants to be achieved (Sutton & Barto, 2018, p. 53). A positive reward
value indicates that the goals of the problem are being achieved, while a negative
value indicates the goals are not being achieved. By receiving rewards, the agent
learns which actions are beneficial and which are not in reaching its goal.

4

Universitas Hasanuddin

2.1.3 Returns

Returns refer to the total amount of rewards that an agent accumulates throughout
its interactions with the environment. In episodic tasks that have a finite sequence
of time steps 𝑇 , returns can simply be calculated as the summation of all rewards
received by the agent (Sutton & Barto, 2018):

𝐺 𝑡 = 𝑟𝑡+1 + 𝑟𝑡+2 + · · · + 𝑟𝑇 , (2.1)

where 𝑟𝑡 represents the reward obtained at time step 𝑡.
For non-episodic tasks, with an infinite sequence of time steps, i.e. when 𝑇 = ∞,

a discount factor 𝛾 ∈ [0, 1) is introduced to induce convergence to the return
calculation. The returns for non-episodic tasks is formulated as:

𝐺 𝑡 = 𝑟𝑡+1 + 𝛾𝑟𝑡+2 + 𝛾2𝑟𝑡+3 + · · · =
∞∑︁
𝑘=0

𝛾𝑘𝑟𝑘+𝑡+1. (2.2)

Equivalently, equation 2.2 can also be applied to the episodic task formulation by
replacing the summation to a finite number of terms. This type of formulation is
known as discounted returns.

The addition of a discount factor in the discounted returns allows agents to view
the environment in a near-sighted or far-sighted view of rewards (Sutton & Barto,
2018, p. 55). That is, when 𝛾 is close to 0, the agent will have a near-sighted view
on the rewards and prefer rewards acquired close to the present. Meanwhile, when
𝛾 is close to 1, the agent will have a far-sighted view of rewards and will consider
rewards acquired in the future.

2.1.4 Policy

An agent’s behavior is determined by a set of mathematical rules, known as the
policy. These mathematical rules map an agent’s observed state to a corresponding
action. Achiam (2018) explains that there are two ways to formulate the rules:
deterministically and stochastically. In the deterministic setting, the rules are referred
to as deterministic policies which are functions, 𝜇(𝑠), that map a state, 𝑠, to a
deterministic action, 𝑎. On the other hand, in the stochastic setting, the rules are
known as stochastic policies which are functions that map an observed state, 𝑠, to
a probability distribution, 𝜋(·|𝑠), of all possible actions under the given state. In
a stochastic policy, the selected action is obtained by sampling an action from the
induced probability distribution.

5

Universitas Hasanuddin

2.1.5 Value Functions

The value functions are used to describe how well an agent is expected to
perform in the environment. Sutton and Barto (2018) explains that there are two
types of value functions: the state-value function and the action-value function. The
state-value function, 𝑉𝜋 (𝑠), defines the amount of rewards that an agent is expected
to obtain when starting from state, 𝑠, and thereafter always acting under the policy,
𝜋. It is formulated as:

𝑉𝜋 (𝑠) = E𝜋 [𝐺 𝑡 |𝑠0 = 𝑠] = E𝜋

[∞∑︁
𝑘=0

𝛾𝑘𝑟𝑘+𝑡+1

�����𝑠𝑡 = 𝑠
]
, (2.3)

where 𝑡 is the current timestep and 𝑘 are the future timesteps. Likewise, the
action-value function, 𝑄𝜋 (𝑠, 𝑎), defines the expected rewards of performing an
action, 𝑎, at a state, 𝑠, and then following the policy, 𝜋:

𝑄𝜋 (𝑠, 𝑎) = E𝜋 [𝐺 𝑡 |𝑠0 = 𝑠, 𝑎0 = 𝑎] = E𝜋

[∞∑︁
𝑘=0

𝛾𝑘𝑟𝑘+𝑡+1

�����𝑠𝑡 = 𝑠, 𝑎𝑡 = 𝑎
]
. (2.4)

Furthermore, the state-value and action-value functions can be combined to
define another value function known as the advantage, 𝐴𝜋 (𝑠, 𝑎) (François-Lavet
et al., 2018, p. 238). The advantage describes the addition (or reduction) of rewards
that an agent is expected to acquire when taking action, 𝑎, at a state, 𝑠, instead of
following the action induced by the policy 𝜋:

𝐴𝜋 (𝑠, 𝑎) = 𝑄𝜋 (𝑠, 𝑎) −𝑉𝜋 (𝑠). (2.5)

2.1.6 Bellman Equations

The Bellman equations are value functions written in recursive form. They are
an essential formulation for some reinforcement learning algorithms because they
enable the use of dynamic programming. For the state-value function, its Bellman
equation is defined as:

𝑉𝜋 (𝑠) = E𝜋

[
𝑟𝑡+1 +

∞∑︁
𝑘=1

𝛾𝑘𝑟𝑘+𝑡+1

�����𝑠𝑡 = 𝑠
]

= E𝑎∼𝜋,𝑠′∼𝑃(·|𝑠,𝑎) [𝑟𝑡+1 + 𝛾𝑉𝜋 (𝑠′) |𝑠𝑡 = 𝑠] .
(2.6)

6

Universitas Hasanuddin

Meanwhile, for the action-value function, its Bellman equation is defined as (Achiam,
2018):

𝑄𝜋 (𝑠, 𝑎) = E𝜋

[
𝑟𝑡+1 +

∞∑︁
𝑘=1

𝛾𝑘𝑟𝑘+𝑡+1

�����𝑠𝑡 = 𝑠
]

= E𝑠′∼𝑃(·|𝑠,𝑎) [𝑟𝑡+1 + E𝑎∼𝜋 [𝑄𝜋 (𝑠′, 𝑎)] |𝑠𝑡 = 𝑠, 𝑎𝑡 = 𝑎] .
(2.7)

In these equations, 𝑠′ is a future state sampled from the transition probability
function, 𝑃(·|𝑠, 𝑎).

2.1.7 Model-Free Reinforcement Learning

There are two methods that can be used to solve reinforcement learning problems:
model-based and model-free reinforcement learning. In model-based reinforcement
learning, a known (Anthony et al., 2017; Silver et al., 2017) or learned model (Ha
& Schmidhuber, 2018; Nagabandi et al., 2018; Sutton, 1991) of the environment
is used to plan a sequence of actions. Meanwhile, in model-free reinforcement
learning, the agent learns purely from trial and error.

This section will explain about the model-free methods which are used
throughout this research. More specifically, this section reviews two classes of
model-free reinforcement learning: temporal difference and policy gradient.

2.1.7.1 Temporal Difference Learning

Temporal difference (TD) is a method of model-free reinforcement learning that
applies dynamic programming and the Monte Carlo methods to solve reinforcement
learning problems. In this formulation, TD exploits the recursive property of the
Bellman equations to approximate the value functions. These estimates are updated
using a method known as bootstrapping, which involves using an estimate of the
value function to update the value function itself (Sutton & Barto, 2018).

2.1.7.2 One-step temporal difference learning

The simplest form of the TD method is known as one-step temporal difference
learning, TD(0), and it approximates the state-value function. In this method, the
learned state value function, 𝑉 (𝑠), is defined by a look-up table where each entry in
the table describes a mapping from a state to a state-value estimate.

The look-up table in TD(0) is updated iteratively based on the agent’s interaction
with its environment. For each state that an agent encounters in the interaction,

7

Universitas Hasanuddin

TD(0) observes the acquired reward, 𝑟𝑡+1, and then updates the state’s value in the
table through the update rule:

𝑉 (𝑠𝑡) ← 𝑉 (𝑠𝑡) + 𝛼 [𝑟𝑡+1 + 𝛾𝑉 (𝑠𝑡+1) −𝑉 (𝑠𝑡)] , (2.8)

where 𝛼 is the step size that controls how fast the algorithm learns, and 𝛾 is the
discount factor used to weigh the importance of future rewards.

2.1.7.3 Q-Learning

Q-learning (C. J. C. H. Watkins, 1989) is a variant of the TD method which
approximates the optimal action-value function, 𝑄∗(𝑠, 𝑎). Like TD(0), Q-learning
implements a look-up table to define the learned action-value function,𝑄(𝑠, 𝑎). The
method learns 𝑄(𝑠, 𝑎) by selecting the maximizing action for the next state, 𝑠𝑡+1, in
the Bellman equation (2.7), and then updating the corresponding entry in the table:

𝑄(𝑠𝑡 , 𝑎𝑡) ← 𝑄(𝑠𝑡 , 𝑎𝑡) + 𝛼
[
𝑟𝑡+1 + 𝛾max

𝑎
𝑄(𝑠𝑡+1, 𝑎) −𝑄(𝑠𝑡 , 𝑎𝑡)

]
. (2.9)

An interesting property of Q-learning is that if 𝑄∗(𝑠, 𝑎) is known, then the
optimum policy, 𝜇∗(𝑠), can be found simply by selecting the maximizing action for
each state:

𝜇∗(𝑠) = max
𝑎
𝑄∗(𝑠, 𝑎). (2.10)

This property, however, cannot be directly exploited since the look-up table in
Q-learning provides only an approximation of the optimum action-value function,
𝑄∗(𝑠, 𝑎). As a result, the estimated values might lead to exploration issues (Sutton
& Barto, 2018, p. 29). To address this issue, a method known as 𝜖-greedy is utilized,
which allows for exploration:

𝜇(𝑠) =


max𝑎 𝑄(𝑠, 𝑎) with probability 1 − 𝜖

randomly select 𝑎 ∈ A with probability 𝜖
(2.11)

In Q-learning with 𝜖-greedy, the agent selects the maximizing action with a
probability of 1 − 𝜖 , and selects a random action with a probability of 𝜖 .

2.1.7.4 Deep Q-Learning

Deep Q-Learning (Mnih et al., 2013), DQN, is a variant of Q-learning which
approximates the mappings of state-action pairs to action values through a deep
neural network (see Section 2.2). This approximation helps reduce the memory

8

Universitas Hasanuddin

requirements of Q-learning. In addition to using a neural network, DQN implements
a replay buffer, which stores previous interactions used to update the policy in an
off-policy way (see Mnih et al., 2013).

2.1.7.5 Policy Gradient

As described in the previous subsection, temporal difference methods learn a
policy through value function approximations. These methods work well and have
even been proven by C. J. Watkins and Dayan (1992). However, Sutton et al. (1999)
explains that the temporal difference methods have some fallbacks: (1) the policy
in temporal difference learning is usually deterministic, which does not reflect the
usually stochastic optimum policy, and (2) small changes in the approximate can
cause the agent to select sub-optimal actions.

An alternate approach to reinforcement learning is to directly learn an
approximation of the optimum policy through a policy gradient method. In the
policy gradient methods, the goal is to optimize a parameterized policy 𝜋𝜃 by
maximizing a cost function, 𝐽 (𝜃), defined as the state-value function evaluated at
the starting state 𝑠0. The optimization of the policy is performed using the gradients
of the cost function, formulated as (see Sutton and Barto, 2018, p. 325 for derivation):

∇𝜃𝐽 (𝜃) ∝ E𝜋𝜃 [𝑄𝜋𝜃 (𝑠, 𝑎)∇𝜃 ln 𝜋𝜃 (𝑎 |𝑠)] , (2.12)

in methods which will be elaborated in the following subsections.

2.1.7.6 REINFORCE

REINFORCE (Williams, 1992) is a policy gradient method that directly
optimizes the policy, 𝜋𝜃 , based on the policy gradient equation (2.12). To perform
this optimization, REINFORCE utilizes the Monte Carlo methods. Let 𝑠𝑡 ∈ S be the
state encountered at time-step 𝑡 and 𝑎𝑡 ∼ 𝜋𝜃 be the action sampled under the policy
𝜋𝜃 at time-step 𝑡. The policy gradient equation then becomes (Sutton & Barto, 2018,
p. 327):

∇𝜃𝐽 (𝜃) ∝ E𝜋𝜃 [𝑄𝜋𝜃 (𝑠, 𝑎)∇𝜃 ln 𝜋𝜃 (𝑎 |𝑠)]
= E𝜋𝜃 [𝑄𝜋𝜃 (𝑠𝑡 , 𝑎𝑡)∇𝜃 ln 𝜋𝜃 (𝑎𝑡 |𝑠𝑡)]
= E𝜋𝜃 [𝐺 𝑡∇𝜃 ln 𝜋𝜃 (𝑎𝑡 |𝑠𝑡)] (since E𝜋𝜃 [𝐺 𝑡 |𝑠𝑡 , 𝑎𝑡] = 𝑄𝜋𝜃 (𝑠𝑡 , 𝑎𝑡)).

(2.13)
Using the equation above, REINFORCE works to sample a trajectory under the

policy, 𝜋𝜃 , and for each state-action pair in the trajectory, at timestep 𝑡, it calculates

9

Universitas Hasanuddin

Equation 2.13. The obtained value is then used to update the policy parameters, 𝜃,
through gradient ascent:

𝜃𝑡+1 ← 𝜃𝑡 + 𝛼𝛾𝑡𝐺 𝑡∇𝜃 ln 𝜋𝜃 (𝑎𝑡 |𝑠𝑡), (2.14)

where 𝛼 is the learning rate and 𝛾 is the discount factor.
In the gradient ascent step above, it can be seen that the policy updates linearly

with the discounted returns. That is, if the discounted returns are positive, the policy
parameters will be updated in the magnitude of 𝛾𝑡𝐺 𝑡 and make the probability of
choosing the action 𝑎 at state 𝑠 higher for future visitations. Conversely, if the
discounted returns are negative, the policy update will be updated in the opposite
direction with the magnitude of 𝛾𝑡𝐺 𝑡 and make the probability of choosing action 𝑎
at state 𝑠 lower for future visitations.

2.1.7.7 REINFORCE with baseline

The use of Monte Carlo methods to approximate Equation 2.13 in REINFORCE
makes it prone to high variance which can make learning slow (Sutton & Barto,
2018, p. 329). One way to reduce variance is to introduce a baseline function,
𝑏(𝑠), into the policy gradient formulation (2.12) to define an extension to the policy
gradient equation:

∇𝜃𝐽 (𝜃) ∝ E𝜋𝜃 [(𝐺 𝑡 − 𝑏(𝑠𝑡))∇𝜃 ln 𝜋𝜃 (𝑎𝑡 |𝑠𝑡)] . (2.15)

The subtraction of 𝑏(𝑠) from𝐺 𝑡 in the equation above is permitted since the baseline
term does not change the value of the gradient. More precisely, it is because the
value of the baseline quantity is zero:

E𝑎∼𝜋𝜃 [𝑏(𝑠)∇𝜃 ln 𝜋𝜃 (𝑎 |𝑠)] = 𝑏(𝑠)
∑︁
𝑎

𝜋𝜃 (𝑎 |𝑠)
∇𝜃𝜋𝜃 (𝑎 |𝑠)
𝜋𝜃 (𝑎 |𝑠)

= 𝑏(𝑠)∇𝜃
∑︁
𝑎

𝜋𝜃 (𝑎 |𝑠)

= 𝑏(𝑠)∇𝜃1 = 0.

(2.16)

The choice of baseline to reduce variance can be an arbitrary function so long
as the function itself is not parameterized by 𝑎. Examples of baselines include
a constant or a learned estimate of the state-value function 𝑉 (𝑠). The latter is
commonly used in reinforcement learning since its usage formulates the advantage,
𝐴𝑡 = 𝐺 𝑡 − 𝑉 (𝑠), which can be approximated by a parametric function 𝑉𝑤 (𝑠) to
calculate the advantage estimate, 𝐴̂𝑡 = 𝐺 𝑡 − 𝑉𝑤 (𝑠). By substituting 𝑏(𝑠𝑡) with

10

Universitas Hasanuddin

𝑉𝑤 (𝑠𝑡) in Equation 2.15, it then becomes:

∇𝜃𝐽 (𝜃) ∝ E𝜋𝜃 [(𝐺 𝑡 −𝑉𝑤 (𝑠))∇𝜃 ln 𝜋𝜃 (𝑎𝑡 |𝑠𝑡)]
= E𝜋𝜃

[
𝐴̂𝑡∇𝜃 ln 𝜋𝜃 (𝑎𝑡 |𝑠𝑡)

]
.

(2.17)

From the formulation above, it is straightforward to show that the steps of this
method are to first sample a trajectory under 𝜋𝜃 . Then calculate the advantage
estimate 𝐴̂𝑡 = 𝐺 𝑡 − 𝑉𝑤 (𝑠). Finally, update the parameters 𝑤 and 𝜃 of the value
function estimate 𝑉𝑤 and policy 𝜋𝜃 .

2.1.7.8 Proximal Policy Optimization

Proximal Policy Optimization (Schulman et al., 2017), also known as PPO, is
an extension to REINFORCE with baselines that allows multiple optimizations to
be performed on a single data sample. The algorithm achieves this by optimizing a
surrogate objective function to equation 2.17, based on importance sampling:

𝐽 (𝜃) = Ê𝑡
[
𝜋𝜃 (𝑎𝑡 |𝑠𝑡)
𝜋𝜃old (𝑎𝑡 |𝑠𝑡)

𝐴̂𝑡

]
, . (2.18)

Here, 𝜋𝜃 refers to the current policy, while 𝜋𝜃old refers to the policy before the update.
An issue that occurs with directly applying multiple optimizations on the

surrogate objective function, however, is that it can make the policy update too
large. To prevent this from occurring, Schulman et al. (2017) introduces a constraint
to equation 2.18, which constrains the allowed divergence from a previous policy to
an updated policy. Let 𝑟𝑡 (𝜃) = 𝜋𝜃 (𝑎𝑡 |𝑠𝑡)

𝜋𝜃old (𝑎𝑡 |𝑠𝑡)
denote the probability ratio of the current

policy, 𝜋𝜃 , and the policy before the update, 𝜋𝜃old . The algorithm constrains the
surrogate objective function by performing a clipping operation defined as:

𝐿𝐶𝐿𝐼𝑃𝑡 (𝜃) = Ê𝑡
[
min(𝑟𝑡 (𝜃) 𝐴̂𝑡 , clip(𝑟𝑡 (𝜃), 1 − 𝜖, 1 + 𝜖) 𝐴̂𝑡)

]
, (2.19)

where 𝜖 is a hyper-parameter that controls the allowed divergence of a policy update
from the previous policy.

In addition to the policy gradient loss above, PPO also introduces an entropy
regularization term, 𝑆[𝜋𝜃] (𝑠𝑡), to increase exploration of the policy, as well as a
squared error loss, 𝐿𝑉𝐹 (𝜃) = (𝑉𝜃 (𝑠𝑡) − 𝑉 targ

𝑡)2, to train the learned value function.
Together, these terms are combined to define the loss function of PPO:

𝐿𝐶𝐿𝐼𝑃+𝑉𝐹+𝑆𝑡 (𝜃) = Ê𝑡 [𝐿𝐶𝐿𝐼𝑃𝑡 (𝜃) − 𝑐1𝐿
𝑉𝐹
𝑡 (𝜃) + 𝑐2𝑆[𝜋𝜃] (𝑠𝑡)], (2.20)

11

Universitas Hasanuddin

where 𝑐1 and 𝑐2 are hyperparameters that control the weights of the value function
and the entropy regularization, respectively. Algorithm 1 describes how PPO is
trained.

Algorithm 1 Proximal Policy Optimization (Schulman et al., 2017)
1: for iteration = 1, 2, . . . do
2: for actor = 1, 2, . . . , 𝑁 do
3: Run policy 𝜋𝜃old in the environment for 𝑇 timesteps.
4: Compute advantage estimates 𝐴̂1, . . . , 𝐴̂𝑇 .
5: end for
6: Optimize surrogate 𝐿 w.r.t. 𝜃, with 𝐾 epochs and minibatch size 𝑀 ≤ 𝑁𝑇 .
7: 𝜃old ← 𝜃.
8: end for

2.2 Building Blocks of Deep Reinforcement Learning

This section discusses how the policies and value functions of the agents are
constructed in the perspective of deep reinforcement learning. In this discussion,
two key concepts will be covered: the artificial neural network and the convolution
neural network.

2.2.1 Artificial Neural Network

The artificial neural network, often abbreviated as the neural network or simply
network, is the most fundamental concept in deep reinforcement learning and it can
be understood as the building blocks of the agent’s brain. Like a real brain, the
artificial neural network consists of a network of neurons that work together to make
inferences. This network is arranged in several layers. The first layer of a network
is called the input layer, which serves as the entry point of an environment signal
before it is processed. The middle layers are called the hidden layers, which process
the signal through the chaining of non-linear mathematical calculations. The last
layer is the output layer, which outputs the resulting inference.

Each neuron between two consecutive layers of a network is connected by a
connection, which propagates a signal based on a weight 𝜃. When a neuron receives
a signal from a previous neuron, the neuron activates the signal using a non-linear
activation function and outputs another signal. This signal is then propagated to the
connected neurons at the subsequent layers until it reaches the output layer. The
resulting signal at the output layer is what determines the inferences made by the
network, which can include an action selection for a policy representation, or a value
function estimate.

12

Universitas Hasanuddin

To update the network parameters, the neural network performs backpropagation
based on the cost function, 𝐽, induced by the network inference. In this process,
the network calculates the gradients of the cost function and propagates its value
backward through the network to obtain gradients of the cost function with respect
to the network parameters (see Figure 2.2b). Using these gradients, the network
then performs a parameter update, either through gradient ascent, 𝜃 = 𝜃 + 𝛼 𝜕

𝜕𝜃
𝐽 (𝜃),

or gradient descent, 𝜃 = 𝜃 − 𝛼 𝜕
𝜕𝜃
𝐽 (𝜃), with 𝛼 as the learning rate of the network.

𝑥1 𝑥2

𝑦
(1)
1 𝑦

(1)
2 𝑦

(1)
3

𝑦
(2)
1 𝑦

(2)
2 𝑦

(2)
3

𝑦
(3)
1 𝑦

(3)
2

𝜃
(1)
12

𝜃
(2)
21

𝜃
(3)
12

y (1) = 𝑓 (1) (z (1))
z (1)
𝑗

= θ(1)⊤x

y (2) = 𝑓 (2) (z (2))
z (2) = θ(2)⊤x

y (3) = 𝑓 (3) (z (3))
z (3) = θ(3)⊤x

ŷ = y (3)

Output layerOutput layer

2nd hidden layer

1st hidden layer

Input layer

(a)

𝑥1 𝑥2

𝑦
(1)
1 𝑦

(1)
2 𝑦

(1)
3

𝑦
(2)
1 𝑦

(2)
2 𝑦

(2)
3

𝑦
(3)
1 𝑦

(3)
2

𝜃
(1)
12

𝜃
(2)
21

𝜃
(3)
12

𝜕J
𝜕y (3)

𝜕J
𝜕z (3)

=
𝜕y (3)

𝜕z (3)
𝜕J
𝜕y (3)

𝜕J
𝜕θ (3)

= 𝜕z (3)

𝜕θ (3)
𝜕J
𝜕z (3)

𝜕J
𝜕y (2)

= 𝜕θ (3)

𝜕y (2)
𝜕J
𝜕θ (3)

𝜕J
𝜕z (2)

=
𝜕y (2)

𝜕z (2)
𝜕J
𝜕y (2)

𝜕J
𝜕θ (2)

= 𝜕z (2)

𝜕θ (2)
𝜕J
𝜕z (2)

𝜕J
𝜕y (1)

= 𝜕θ (2)

𝜕y (1)
𝜕J
𝜕θ (2)

𝜕J
𝜕z (1)

=
𝜕y (1)

𝜕z (1)
𝜕J
𝜕y (1)

𝜕J
𝜕θ (1)

= 𝜕z (1)

𝜕θ (1)
𝜕J
𝜕z (1)

(b)

Figure 2.2: A computational graph that visualizes a feed-forward neural network.
For visual simplicity, the bias term is removed. (a) shows the process of forward
propagation which is used to produce an inference 𝑦̂ from an input vector 𝑥. In the
figure, it can be seen that the values of the neurons at each layer (𝑙) are obtained
by multiplying the activation values of the connected neurons at the previous layer
with the corresponding connection weights 𝜃 (𝑙) . These values are activated through
an activation function 𝑓 (𝑙) (𝑧) to obtain the activation values. (b) shows the process
of calculating the gradients of the network through backpropagation. This step is
performed after a forward propagation step. In backpropagation, the value of a cost
function, 𝐽, is calculated along with its gradient and is then backwards propagated
to the previous layers of the network, through the chain rule, to obtain the gradients

of the objective function w.r.t. the network parameters.

2.2.2 Convolutional Neural Network

The convolutional neural network (CNN) is a special type of neural network
that performs image processing tasks based on a special operation known as the
convolution. The convolution is used to extract features from an image, such as
its edges and curves. Moreover, these feature extractions can be chained together

13

Universitas Hasanuddin

through several convolution operations to obtain higher-level features of an image,
such as the features of objects or even the object itself.

In the following subsections, the three general components of the CNN will be
discussed: The convolutional layer, the pooling layer, and the fully connected layer.

2.2.2.1 Convolutional Layer

The convolutional layer is a layer in the CNN that performs the convolution
operation on an input image. In performing this operation, the convolution uses
a set of learnable parameters known as the kernel. The kernel is defined as a
matrix of a smaller spatial dimensionality than the input image, which can span
several channels. Furthermore, each of these channels represent a unique matrix of
learnable parameters.

0 1 1 1 0 0 0
0 0 1 1 1 0 0
0 0 0 1 1 1 0
0 0 0 1 1 0 0
0 0 1 1 0 0 0
0 1 1 0 0 0 0
1 1 0 0 0 0 0

I

1 0 1
0 1 0
1 0 1

K

1 4 3 4 1
1 2 4 3 3
1 2 3 4 1
1 3 3 1 1
3 3 1 1 0

.73 .98 .95 .98 .73

.73 .88 .98 .95 .95

.73 .88 .95 .98 .73

.73 .95 .95 .73 .73

.95 .95 .73 .73 .50

𝜎(I ∗K)I ∗K

×1 ×0 ×1

×0 ×1 ×0

×1 ×0 ×1

Figure 2.3: A visualization of the convolution operation performed on a single
channel image of size 7 × 7 with a 3 × 3 kernel. In this operation, the kernel slides
across the input image and performs a dot product between 𝐼 and 𝐾 to obtain the
resulting feature map. After obtaining the feature map, its values are then fed into an
activation function. In this example, the activation function is the sigmoid function.

During a convolution operation, the convolutional layer slides its kernel across
an image, and for each position, it calculates the dot product between the input image
and the kernel. The resulting values of these dot products make up an output image
known as the feature map. In addition, the convolutional layer applies an activation
function to the feature maps to provide non-linearity to the network.

2.2.2.2 Pooling Layer

After extracting the features of an input image, a pooling layer can then be
implemented to downsample the feature maps. I. Goodfellow et al. (2016) explains
that this downsampling operation provides two benefits to the network: (1) it reduces

14

