DAFTAR PUSTAKA

- Ahmad, W. 2006. Nickel Laterites: Fundamental of Chemistry, Mineralogy, Weathering Processes, and Laterite Formation, VALE Inco.
- Ahmad, W. 2008. Nickel Laterites Fundamentals of Chemistry, Mineralogy, Weathering Processes, Formation, and Exploration. VALE Inco.
- Astuti, W. 2012. Pembuatan Nickel Pig Iron (NPI) dari Bijih Nikel Laterit Indonesia Menggunakan *Mini Blast Furnace. Prosiding INSINas*. Hal. 66-71.
- Burger, P. A. 1996. Origins and Characteristic of Lateritic Deposits. *Proseding nickel'96* the australisian institute of mining and metallurgy. Hal. 179-183.
- Brand, N. W., Butt, C. R. & Elias, M., 1998. Nickel laterites: Classification and Features. AGSO Journal of Australian Geology and Geophysics, Volume 17, pp. 81-88.
- Boldt., 1967. Genesa Bahan Galian Bijih Nikel Laterit. *Indonesian Association of Geologist*. Bandung.
- Dalvi, A. D., Bacon, W. G. and Osborne, R.C. 2004. The Past and The Future of Nickel Laterites. *PDAC 2004 International Conference Trade Show and Investors Exchange, Toronto, Canada, March 7–10, Proceedings: Toronto, Canada, Prospectors and Developers Association of Canada.* Hal. 22-27.
- Golightly, J., 1979. Nickelferous Laterites: A General Description. *Journal of Electrostatics*, pp. 3-23.
- Golightly, J. P. (1981). Nickeliferous Laterite Deposits. *Economic Geology 75th Anniversary*, 710–735
- Hamilton, W. 1979. Tectonics of The Indonesian Region. U. S. Geological Survey Profesional Paper. Hal. 345.
- Hasria., Hasan, E.S., Deniyatno, Salihin, L.M.I. dan Asdiwam. 2020. Characteristics of Ultramafic Igneous Rock Ofiolite Complex in Asera District, North Konawe Regency, Southeast Sulawesi Province, Indonesia. Journal of Geoscience, Engineering, Environment, and Technology. 5(3), pp.108-112. https://doi.org/10.25299/jgeet.2020. 5.3.4113
- Hutabarat, J. dan Ismawan. 2015. *Tinjauan Keterdapatan Batuan Ultramafik dalam Komplek Ofiolit Ciletuh di Daerah Ciletuh, Jawa Barat*. Bulletin of Scientific Contribution: Geology. 13(3), pp.213-220. https://jurnal.unpad.ac.id/bsc/article/ view/8408

Moore, E. M. 1992. *Structural Geology*. W. H. Freeman & Co : New York.

- Nahon, D. B., Boulange, B. & Colin, F., 1992. Mettalogeny of Weathering: an Introduction, In Martini and Chesworth. *Weathering, Soil and Paleosols*, pp. 445-471.
- Parkinson, C. D., K. Miyazaki, K. Wakita, A.J. Barber, D.A. Carswell. 1998. An Overview and Tectonic Synthesis of The Pre-Tertiary Very-High-Pressure Metamorphic and Associated Rocks of Java, Sulawesi and Kalimantan, Indonesia, Island Arc. Hal. 184-200.
- Simandjuntak, T. O., Rusmana, E., Supandjono, J. B. dan Koswara, A. 1993. *Peta Geologi Lembar Bungku, Sulawesi, Skala 1:250.000*. Pusat Penelitian dan Pengembangan Geologi.
- Superiadi, A. 2007. Processing Technology vs. Nickel Laterite Ore Characteristic, PT Inco.
- Suratman. 2000. Geology of Laterite Nickel Deposit in Sorowako Area, South Sulawesi Province. *Indonesia in Proceedings of 29th Indonesia Association of Geologist*. Hal. 37-43.
- Surono, Simandjuntak, T. O. dan Rusmana, E., 1997. *Collision Mechanism Between The Oceanic and Continental Terranes in The Southeast Private Arm of Sulawesi, Eastern Indonesia. Bulletin Geology Research and Development Centre.* Hal. 109-125.
- Streckeisen, A. 1976. To Each Plutonic Rock Its Proper Name. Earth Science Revision 12, 1-33
- Trescases, J. J., 1975. *Levolution Geochimique Supergene des Roches Ultrabasiques en Zone Tropicale; Formations des Gisements Nickeliferes de Nouvelle-Caledonie.* Paris, ORSTOM Mem. 78..
- Tonggiroh, Adi., 2009. Presisi Lapisan Endapan Nikel Laterit Berdasarkan Model Geokimia Batuann Ultramafik Daerah Sorowako Sulawesi Selatan. Jurnal Penelitian Enjinering Vol. 12, No. 2. Fakultas Teknik Universitas Hasanuddin
- Yıldırım, H., Turan, A. and Yücel, O. 2012. Nickel Pig Iron (NPI) Production From Domestic Lateritic Nickel Ores Using Induction Furnace. *International Iron & Steel Symposium, Karabük, Türkiye.* Hal. 337-344.
- Waheed, A., 2002. Nickel Laterites-A Short Course : Chemistry, Mineralogy, and Formation of Nickel Laterites (tidak dipublika- sikan). 212 h
- Waheed, A. 2009. Nickel Laterites Fundamentals of Chemistry, Mineralogy, Weathering Processes, Formation, and Exploration. VALE Inc

LAMPIRAN

LAMPIRAN A PETA TUNJUK LOKASI

LAMPIRAN B HASIL DESKRIPSI MINERAL

N	No. Sayatan: 1																					
F	oka oto	51		: P.		., Ρ	ן עו	ava		егка		iine	erai		_							
-																						
	A	В	С	D	Е	F	G	Н	Ι	J		А	В	С	D	E	F	G	Η	Ι	J	
1	1	X.B.	1	1-1-1	-CO-DA	Yab		- and a	North C	A.C.	1		<u>739</u>		4	100		· •	. ()			1
2								2														
3	No. No.	1					Px				3					When a	Px					3
4		a							Sp		4		٦	14	All and a second				S	р 1 (ф		4
5	1,		ì		100	Sale and					5		R.									5
6	Na.			Opq	and the search	衣					6			Op	a	ACIO (CPP)						6
Ŭ		·	ikol																	v		
	// Nil	– Ivi kol	ког																	Λ	-	
	1.0		01.	Jan	. 10								1.000	0	hual	<i>L:C</i> .	-					
	Lei Pe	nsa rhee	OKU	n Tr	: 10, ntal	х •5Лх	,						Lens	a U	буек		5X					
-	ina	Det						Pal	///													
T	ipe ipe	bau Str	uan ukt	ur	: C : N	lasi	ian if	Der	u													
Μ	likro	osk	opis	5	:																	
	Warı	าล	abs	orbs	i a	bu-a	abu	ke	cokl	atar), V	varr	na i	nter	ferer	nsi a	abu-	-abu	ı k	ehi	tam	an,
	eksi elas	ur si ind	krist eaui	aiin arai	nulai	iipo r. ka	Krisi omn	laiin Iosis	, gr i mi	nera	iarit al tei	as rdiri	rane dar	eriuk i kua	, be	ntuk plagi	anı iokla	neai as c	rai-s orto	sud klag	nea S bi	rai, otit
(dan	mus	skov	it.	laia	, is	σmp	00.0					a.a.			plag		, .			, 51	0 0 0
									Des	skrij	osi I	Min	era									
	Κοι	mpo	osis	i Mi	ner	al	Ju	mla							Kete	eran	gan	o Op	otik	Mi	ner	al
							Г (ı %)														
Ρ	irok	ser) (P)	x)			4	10		Pirc	ksir	۱	n	nemi	liki	١	warr	าล		ab	sorb	osi
			-	-						transparan/colourless, warna interferensi abu-												
										abu	kea	cokl	atan	. Me	milik	i reli	ef se	edai	ng,i	nte	nsita	as
										sed	ang	, r I an	nem	IIIKI rəl-c	bela	ahan	2	ar	an,	D 01	enti	JK n-
	0.5 mm tidak memiliki kembaran pecaba						an															
uneven, sudut gelapan 47.5°, jenis gelap						lapa	an															
miring.																						
Olivin (OI) 35					Olivin memiliki warna absorbs						bs											
						trar	ispa 	iran	col	ourle	<i>255</i> V	warn	air	nter	tere	ensi	bi	ru				
							Keh	ijau	an,	re		Seda	ang	Inte	ensi	itas	Se	edar	ng			
										ben		anr	ieura	al-SU	iune(l Ib IL Ichit	ikur	ant	U,UU 1111/1	וווו כ הם	In-U	,2 20
										uiii cud	i pe	cdí ielei	nan	une 47⁰≠	vell rolar	uudł nan n	nirir		IIIKI	ne		all
										Suu	ury		Jan	т/ Ц	ycia		111 11	ıy.				

Serpentin (Sp)	15	Serpentin memiliki warna absorbs transparan/ <i>colourless</i> , warna interferensi putih keabuan relief sedang, intensitas sedang, tidak memiliki belahan tidak memiliki pecahan, bentuk anhedral-subhedral ukuran 0.02 – 0.5 mm sudut gelapan 40 ° jenis gelapan miring.
Klorit (Cl)	10	Memiliki warna absorbsi hijau, bentuk anhedral- subhedral, relief rendah, intensitas kuat, pleokroisme kuat, ukuran mineral 0,2 mm, warna interferensi hijau,tidak memiliki kembaran, jenis gelapan miring 25°.

LAMPIRAN C

HASIL ANALISIS X-RAY DIFFRACTION (XRD)

Match! Phase Analysis Report Sample: LIM-PIT-C (5-70)

Sample Data File name LIM-PIT-C.RAW D:/ika/ika/XRD IKA TAMBANG/LIM-PIT-C/LIM-PIT-C File path Data collected Dec 13, 2022 13:34:25 Data range 5.0200 - 70.0200 5.000° - 70.000° Original data range Number of points 3251 Step size 0.020 Rietveld refinement converged No Alpha2 substracted No Background subtr. No Data smoothed Yes 0.02° 2theta correction Radiation X-rays 1.540600 Å Wavelength

Matched Phases

Inde	Amount	Name	Formula sum
x	(%)		
А	37.9	Goethite	Fe H O2
В	26.7	Talc	H2 Mg3 O12 Si4
С	26.4	Chlorite	H4 Mg3 O9 Si2
D	4.6	Magnetite	Fe3 04
Е	4.5	Maghemite	Fe2 O3
	7.9	Unidentified peak area	

Amounts calculated by RIR (Reference Intensity Ratio) method

Elemental composition of sample (identified crystalline phases only)

Element Amount (weight %)

0	43.46%
Fe	30.28%
Si	13.24%
Mg	12.06%
H	0.96%
LE (sum)	44.42%

Matching entry details

A: Goethite (37.9 %)*

Formula sum Entry number	Fe H O2 96-900-2159
Figure-of-Merit (FoM)	0.707083*
Total number of peaks	182
Peaks in range	32
Peaks matched	13
Intensity scale factor	0.83*
Space group	P n m a
Crystal system	orthorhombic
Unit cell	a= 9.9134 Å b= 3.0128 Å c= 4.5800 Å
I/Ic	2.57
Calc. density	4.314 g/cm ³

Reference	Gualtieri A., Venturelli P., "In situ study of the goethite- hematite phase transformation by real timesynchrotron powder diffractionSample at $T = 25$ C", American Mineralogist 84 , 895-904 (1999)
B: Talc (26.7 %)*	
Formula sum	H2 Mg3 O12 Si4
Entry number	96-900-8298
Figure-of-Merit (FoM)	0.625052 [*]
Total number of peaks	251
Peaks in range	167
Peaks matched	38
Intensity scale factor	0.24*
Space group	C -1
Crystal system	triclinic (anorthic)
Unit cell	a= 5.2900 Å b= 9.1730 Å c= 9.4600 Å a= 90.460° β= 98.680 ° γ= 90.090 °
I/Ic	1.03
Calc. density	2.776 g/cm ³
Reference	Perdikatsis B., Burzlaff H., "Strukturverfeinerung am talk Mg3[(OH)2Si4O10]", Zeitschrift fur Kristallographie 156 , 177-186 (1981)
<i>C: Chlorite (26.4 %)[*]</i> Formula sum	H4 Mq3 O9
Entry number	96-900-0159 Figure-of-Merit (FoM) 0 659152*
Total number of peaks Peaks in range Peaks matched Intensity scale factor Space group Crystal system Unit cell ° γ= 90.000 ° I/Ic	91 91 23 0.18 [*] C 1 triclinic (anorthic) a= 5.3350 Å b= 9.2400 Å c= 28.7350 Å a= 90.000° β = 90.000 0.81

Calc. density Reference 2.599 g/cm³ Lister J. S., Bailey S. W., "Chlorite polytypism: IV. Regular two-layer structuresrefined structure", American Mineralogist **52**, 1614-1631 (1967

D: Magnetite (4.6 %) [*]	
Formula sum	Fe3 O4
Entry number	96-900-2331
Figure-of-Merit (FoM)	0.615835 [*]
Total number of peaks	34
Peaks in range	9
Peaks matched	5
Intensity scale factor	0.22
Space group	F d -3 m
Unit cell	a= 8.1177 Å
I/Ic	5.68
Calc. density	5.750 g/cm ³
Reference	Haavik C., Stolen S., Fjellvag H., Hanfland M., Hausermann
	D., "Equation of state of magnetite and its high- pressure
	noullication: Thermouynamics of the Fe-O system at high pressureSample at P = 26.9 GPa ⁺ American Mineralogist
	85 , 514-523 (2000)
Γ Machanita (A Γ α)*	
E: Magnemite (4.5 %)	Ee2 03
Entry number	96-901-2693
Figure-of-Merit (FoM)	0.566507 [*]
Total number of peaks	393
Peaks in range	77
Peaks matched	13
Intensity scale factor	0.14*
Space group	P 43 21 2
Crystal system	tetragonal
Unit cell	a= 8.3396 Å c= 8.3220 Å
I/Ic	3.62
Calc. density	4.887 g/cm ³
Reference	Greaves C., "A powder neutron diffraction investigation of vacancy ordering and covalencein gamma-Fe2O3 Locality: synthetic Sample: $T = 4 \text{ K}$ ", Journal of Solid State Chemistry 49 , 325-333 (1983)

(*) 2theta values have been shifted internally for the calculation of the amounts, the intensity scaling factors as well as the figure-of-merit (FoM), due to the active search-match option 'Automatic zero point adaption'.

Candidates

Name	Formula	Entry No.	<i>FoM</i>
(Mo4 Pt)1.6	Mo6.4 Pt1.6	96-210-7217	0.7444
Ir2 (Nb V)3 (Moo 8 Pt0 2)	Ir2 Nb3 V3	96-152-3138	0.7443
(Mo17 Pt3)0.4	Mo6.8 Pt1.2	96-153-9144	0.7419
	Sn V3	96-152-7072	0.7418
	Sn V3	96-154-0205	0.7355
Britvinite	C2 B3.468 F2 Mg9 O58 Pb14.144 Si10.532	96-901-2669	0.7262
Barium	Ir II3 Ba	96-153-7944	0.7234
(Mo0.7 Re0.3)	Mo0.7 Re0.3	96-152-2723	0.7213
	Mo3 Os	96-152-2995	0.7198
Course little		96-210-6125	0.7185
Gyrollte Dirubidium copper	AI Ca16 H28 Na O82 SI23 C6 Cu Fe N6 Rb2	96-900-9473 96-101-0365	0.7123
hexacyanoferrate(II)		50 101 0000	0.7 200
Diskstite		96-153-7951	0.7098
Richetite	FeU.47 H24 MgU.83 0173 PD8.74 U36	96-900-4468	0.7024
Okenite	Ca5 H18 O32 Si9	96-901-5623	0.7011
Ag3 S I	Ag3 I S	96-151-0009	0.6978
Na (Cl O4)	CI Na O4	96-722-3700	0.6963
Litharge	O Pb	96-901-2697	0.6892
Charoite	ND P2 58 Ba0 16 Ca12 82 F H4 18 K6 94 Mp0 18 Na3 18	96-153-4699	0.6881
Charolic	092.59 Si35 Sr0.5	50 501 0705	0.0047
Ca8 H2 (P O4)6 (H2 O)5	Ca8 H12 O29 P6	96-153-4328	0.6840
Calcium Catena-polyphosphat		96-153-4328	0.6840
		90-724-1117	0.0014
Coppor dipiobato		96-201-4099	0.6792
		90-100-0091	0.0707
Zh Se		96-153-8614	0.6784
	Ag Cr O2	96-720-9333	0.6776
	C49.05 Cl0.42 F21.89 O0.21	96-403-2118	0.6/55
	C10 H10 F6 N O10 P	96-770-0269	0.6730
Dipotassium copper hexacyanoferrate(II)	C6 Cu Fe K2 N6	96-101-0360	0.6723
	C111 N5 O12 Se5 Sn4	96-722-3367	0.6711
	H7.5 I0.5 Lu2 O6.5	96-703-1395	0.6706
Silicon carbide (Moissanite 3C)	Si C	96-101-0996	0.6705
Dysprosium	Dy	96-900-8495	0.6705
	C Si	96-900-8857	0.6705
U30	Li Mg4 O239 U30	96-702-5955	0.6699
(((Mg Al) (Si4 O10 (H2 O)2 (O H))) (H2 O)1.46) (C16 N2 O2 H10)0.045	C0.72 H8.37 Al Mg N0.09 O14.55 Si4	96-153-3370	0.6693
-,	Cs4 Se4 Si	96-810-1314	0.6682
bismuth cadmium oxide phosphate	Bi15.32 Cd10 O58 P10	96-433-2414	0.6678
	C30 H61 N9 O26 Pt3	96-200-9381	0.6675
	C82.5 H10.5 F16	96-705-3323	0.6673
Ashcroftine-(Y)	C16 H14.8 K10.4 Na8.26 O202.96 Si54.16 Y24	96-900-1108	0.6673
Zn Mn3 O7 (H2 O)3	H6 Mn3 O10 Zn	96-231-0846	0.6671
propane-1,3-diammonium bis(zinc phosphate)	C1.875 H7.5 N1.25 O5 P1.25 Zn1.25	96-220-0281	0.6670
Nb N	N0.77 Nb	96-154-0243	0.6668
Pb O	O Pb	96-153-3610	0.6665
beta-Na3PS4	Na3 P S4	96-722-9734	0.6659
	C14 N6 O5 W	96-407-9201	0.6658
	Cu Fe K O8 P2	96-156-3290	0.6657

and 5344 others...

Search-Match

COD-Inorg 2021.06.14
Yes
Yes
0.60
0.30 deg.
1
0.50
0.50
0.50

Criteria for entries added by user

Reference:

Entry number:	96-201-4618;96-201-4619;96-201-4931;96-220-
5377;96-220-7380;96-220-73	381;96-900-0159;96-900-
	4189;96-901-0164;96-901-0165;96-901-0166;96-
	901-0167;96-901-0168;96-901-0169;96-901-
	0170;96-101-
	1153;96-300-0049;96-900-8041;96-900-8298;96-
	900-8732;96-901-4436;96-900-1115;96-900-
	6317;96-900-
	6318;96-900-6319;96-901-2693;96-100-8767;96-
	100-8768;96-100-8769;96-101-1088;96-221-
	1653;96-900-
	2159;96-900-2160;96-900-3077;96-900-3078;96-
	900-3079;96-900-3080;96-900-3081;96-901-
	0407;96-901-
	0408;96-901-0409;96-901-0410;96-901-0411;96-
	901-1413;96-901-5697;96-901-6060;96-901-
	6179;96-901-
	6407;96-101-1033;96-101-1085;96-722-8111;96-
	900-0927;96-900-0928;96-900-0929;96-900-
	0930;96-900-
	0931;96-900-0932;96-900-0933;96-900-0934;96-
	900-0935;96-900-2317;96-900-2318;96-900-
	2319;96-900-
	2320;96-900-2321;96-900-2322;96-900-2323;96-
	900-2324;96-900-2325;96-900-2326;96-900-
	2327;96-900-
	2328;96-900-2329;96-900-2330;96-900-2331;96-
	900-2332;96-900-2333;96-900-2674;96-900-
	2675;96-900-
	4088;96-900-4156;96-900-4157;96-900-5813;96-
	900-5814;96-900-5815;96-900-5816;96-900-
	5817;96-900-

5837;96-900-5838;96-900-5839;96-900-5840;96-900-5841;96-900-5842;96-900-5843;96-900-6185;96-900-6190;96-900-6195;96-900-6200;96-900-6243;96-900-6248;96-900-6253;96-900-6266;96-900-6921;96-900-6922;96-900-7645;96-900-7707;96-900-7708;96-900-9769;96-900-9770;96-901-0940;96-901-0941;96-901-0942;96-901-3530;96-901-3531;96-901-3532;96-901-3533;96-901-3534;96-901-3535;96-901-3536:96-101-1098;96-101-1160;96-101-1173;96-101-1177;96-101-1201;96-110-0020;96-500-0036;96-900-0776;96-900-0777:96-900-0778:96-900-0779:96-900-0780:96-900-0781;96-900-5018;96-900-5019;96-900-5020;96-900-5021;96-900-5022;96-900-5023;96-900-5024;96-900-5025;96-900-5026;96-900-5027;96-900-5028;96-900-5029;96-900-5030;96-900-5031;96-900-5032;96-900-5033;96-900-5034;96-900-7379;96-900-8093;96-900-8094;96-900-9667;96-901-0145;96-901-0146;96-901-0147;96-901-1494;96-901-1495;96-901-1496;96-901-1497;96-901-2601;96-901-2602;96-901-2603;96-901-2604;96-901-2605;96-901-2606;96-901-3322;96-901-5023;96-101-1241;96-101-1268;96-210-8028;96-210-8029;96-591-0083;96-900-0140;96-900-2161;96-900-2162;96-900-2163;96-900-9783;96-901-4881;96-901-5066;96-901-5504;96-901-5965;96-901-6458;96-101-1046;96-155-0599;96-900-9231;96-900-9235;96-901-5000;96-100-1742;96-100-1744;96-101-0918;96-101-0929;96-101-0963;96-210-0993;96-591-0096;96-721-4218;96-721-4219;96-900-0096;96-900-0575;96-900-0966;96-900-0967;96-900-0968;96-900-0969;96-900-0970;96-900-0971;96-900-1298;96-900-1299;96-900-7287;96-900-7688;96-900-7690;96-900-9668;96-900-9669;96-900-9866;96-901-2074;96-901-3466;96-901-4217;96-901-4345;96-901-4393;96-901-4416;96-901-4525;96-901-4612;96-901-4745;96-901-4773;96-9014878;96-901-4892;96-901-5067;96-901-5074;96-901-5391;96-901-5461;96-901-5482;96-901-5488;96-901-5692;96-901-5762;96-901-5836;96-901-6021;96-

901-6023;96-901-6180;96-901-6201;96-901-6465;96-901-

6706;96-901-6707;96-900-1591;96-150-5105;96-154-0680;96-101-1082;96-120-0017;96-154-4376;96-900-

3875;96-900-8238;96-901-1748;96-901-5516;96-901-5977;96-900-0097;96-900-0381;96-900-0972:96-900-

0973;96-900-0974;96-900-0975;96-900-0976;96-900-1850;96-900-1851;96-900-1852;96-900-1853;96-900-

1854;96-900-1855;96-900-2811;96-900-2812;96-900-2813;96-900-2814;96-900-2815;96-900-2816;96-900-

2817;96-900-2818;96-900-2819;96-900-2820;96-900-2821;96-900-7693;96-900-9130;96-901-0201;96-901-

0202;96-901-0203;96-901-0209;96-901-0210;96-901-0211;96-901-0214;96-901-0215;96-901-0216;96-901-

0217;96-901-0218;96-901-0224;96-901-0225;96-901-0226;96-901-0227;96-901-1208

Peak List

N	2theta	d [Å]	I/I0 (peak beight)	Counts (peak	FWHM	Matche d
1	9.60	9 2055	340.29	13.98	0 4400	B
2	12 48	7 0869	522 40	21 46	0.1100	C
2 3	18.80	4 7163	498.00	27.10	0.4800	вср
4	19 94	4 4492	206 65	20.84	1 0800	D,0,D
5	21.36	4,1565	1000.00	89.64	0.9600	ABCE
6	25.12	3.5422	651.73	21.91	0.3600	B
7	26.72	3.3336	596.36	22.27	0.4000	A.C
8	28.72	3.1059	978.28	29.23	0.3200	B
9	31.54	2.8343	164.85	4.93	0.3200	Ċ
10	33.26	2.6916	481.98	25.20	0.5600	A
11	34.86	2.5716	371.60	23.59	0.6800	A,B,C
12	35.86	2.5022	741.67	77.56	1.1200	A,B,C,E
13	36.84	2.4378	971.21	87.06	0.9600	A,B,C,D
14	40.32	2.2351	237.36	19.50	0.8800	A,B,C,E
15	41.34	2.1822	174.87	24.17	1.4800	Á,B
16	44.34	2.0413	602.75	15.76	0.2800	B,Ċ,D
17	53.66	1.7067	385.10	38.83	1.0800	A,B,E
18	59.12	1.5614	215.46	11.27	0.5600	A,B,D
19	60.22	1.5355	177.55	17.90	1.0800	В
20	61.96	1.4965	189.40	19.10	1.0800	A,B
21	63.20	1.4701	136.45	34.66	2.7200	A,B,E
22	65.06	1.4325	164.83	7.39	0.4800	B,D,E

Integrated **Profile Areas**

Based on calculated profile

Drofile area

Profile area	Counts	Amount
Overall diffraction profile	74859	100.00%
Background radiation	41559	55.52%
Diffraction peaks	33300	44.48%
Peak area belonging to selected phases	27365	36.56%
Peak area of phase A (Goethite)	13051	17.43%
Peak area of phase B (Talc)	6225	8.32%
Peak area of phase C (Chlorite)	4317	5.77%
Peak area of phase D (Magnetite)	1830	2.44%
Peak area of phase E (Maghemite)	1942	2.59%
Unidentified peak area	5935	7.93%

Peak Residuals

Peak data	Counts	Amount
Overall peak intensity	649	100.00%
Peak intensity belonging to selected phases	361	55.62%
Unidentified peak intensity	288	44.38%

Diffraction **Pattern Graphics**

Match! Copyright © 2003-2021 CRYSTAL IMPACT, Bonn, Germany

Match! Phase Analysis Report Sample: SAP-PIT-C (5-70)

Sample Data File name	SAP-PIT-C.RAW
File path PIT-C	D:/ika/ika/XRD IKA TAMBANG/SAP-PIT-C/SAP-
Data collected	Dec 13, 2022 13:34:26
Data range	5.000° - 70.000°
Original data range	5.000° - 70.000°
Number of points	3251
Rietveld refinement converged	i No
Step size	0.020
Background subtr.	No
Data smoothed	Yes
Radiation	X-rays
Wavelength	1.540600 Å

Matched Phases

Inde x	Amount (%)	Name	Formula sum
А	36.2	Antigorite	H58 Mg45 O138 Si32
В	29.5	Goethite	Fe H O2
С	20.3	Lizardite	H4 Mg3 O9 Si2
D	10.8	Talc	H2 Mg3 O12 Si4
Е	3.3	Enstatite	Fe0.41 Mg0.59 O3 Si
	13.9	Unidentified peak area	51

Amounts calculated by RIR (Reference Intensity Ratio) method

Elemental composition of sample (identified crystalline phases only) Element Amount (weight %)

Element / inioune (meight	,0)
0	47.43%
Fe	18.56%
Mg	17.74%
Si	16.14%
Н	1.18%
LE (sum)	48.61%

Matching entry details

A: Antigorite (36.2 %)*

Formula sum	H58 Mg45 O138 Si32
Entry number	96-900-4000
Figure-of-Merit (FoM)	0.626451 [*]
Total number of peaks	327
Peaks in range	327
Peaks matched	54
Intensity scale factor	0.24*
Space group	C 1 2/m 1
Crystal system	monoclinic
Unit cell 91.409 º	a= 81.6640 Å b= 9.2550 Å c= 7.2610 Å β=
I/Ic	0.70
Calc. density	2.578 g/cm ³
Reference	Capitani G. C., Mellini M., "The crystal structure of a second antigorite polysome (m = 16),by single-crystal synchrotron diffraction", American Mineralogist 91 , 394- 399 (2006)
B: Goethite (29.5 %) [*] Formula sum	Fe H O2
Entry number	96-900-2159
Figure-of-Merit (FoM)	0.657432*
Total number of peaks	182
Peaks in range	182
Peaks matched	10
Intensity scale factor	0.72*
Space group	P n m a
Crystal system	orthorhombic
Unit cell	a= 9.9134 Å b= 3.0128 Å c= 4.5800 Å
I/Ic	2.57
Calc. density	4.314 g/cm ³

Reference	Gualtieri A., Venturelli P., "In situ study of the goethite-hematite phase transformation by real timesynchrotron powder diffractionSample at T = 25 C", American Mineralogist 84 , 895-904 (1999)
C: Lizardite (20.3 %) [*]	
Entry number	96-900-0849
Figure-of-Merit (FoM)	0 551063*
Total number of peaks	112
Peaks in range	112
Peaks matched	7
Intensity scale factor	0.26*
Space group	P 3 1 m
Crystal system	trigonal (hexagonal axes)
Unit cell	a= 5.3320 Å c= 7.2330 Å
I/Ic	1.35
Calc. density	2.584 g/cm ³
Reference	Mellini M., "The crystal structure of lizardite 1T: hydrogen bonds and polytypism", American Mineralogist 67 , 587-598 (1982)
D: Talc (10.8 %) [*]	

Formula sum	H2 Mg3 O12 Si4
Entry number	96-900-8041
Figure-of-Merit (FoM)	0.589295^{*}
Total number of peaks	298
Peaks in range	298
Peaks matched	32
Intensity scale factor	0.11*
Space group	C 1 2/c 1
Crystal system	monoclinic

Unit cell 100.000 º	a= 5.2600 Å b= 9.1000 Å c= 18.8100 Å β=
I/Ic	1.05
Calc. density	2.841 g/cm ³
Reference	Gruner J. W., "The crystal structures of talc and pyrophylliteLocality: Harford County, Maryland, USA", Zeitschrift fur Kristallographie 88 , 412-419 (1934)
E: Enstatite (3.3 %) [*] Formula sum	Fe0.41 Mg0.59 O3 Si
Entry number	96-900-6428
Figure-of-Merit (FoM)	0.576745 [*]
Total number of peaks	500
Peaks in range	500
Peaks matched	22
Intensity scale factor	0.02*
Space group	Pbca
Crystal system	orthorhombic
Unit cell	a= 18.2974 Å b= 8.9040 Å c= 5.2092 Å
I/Ic	0.63
Calc. density	3.548 g/cm ³
Reference	Hugh-Jones D A, Chopelas A., Angel R. J., "Tetrahedral compression in (Mg,Fe)SiO3 orthopyroxenesSample: P = 0.00 GPa, synthetic En60 orthopyroxene", Physics and Chemistry of Minerals 24 , 301-310 (1997)

(*)2theta values have been shifted internally for the calculation of the amounts, the intensity scaling factors as well as the figure-of-merit (FoM), due to the active search-match option 'Automatic zero point adaption'.

Candidates

Name	Formula	Entry No.	FoM
Ba3 (P Mo12 O40)2 (D2 O)55.3	Mo24 O113.6 P2	96-153-3530	0.7382
H3 (P Mo12 O40) (H2 O)6	H15 Mo12 O46 P	96-210-6186	0.6823
	C7 F N O7 P2 Zr	96-723-8536	0.6688
	069 P W12	96-901-5518	0.6645
Trihydrogen dodecatungstophosphate hydrate(29)	H61 O69 P W12	96-101-0634	0.6627
Pd21 TI50 Si100 Al92 O384	Al92 O384 Pd21 Si100 Tl50	96-152-7030	0.6606
	Cs11.5 K1.5 Na1.5 O134 Si3 Ti10 W27	96-430-6277	0.6605
Pd18 TI56 (Si100 Al92 O384)	Al92 O384 Pd18 Si100 Tl56	96-152-7029	0.6523
(Cs45.3 Na46.7) (Al92 Si100 O384)	Al92 Cs45.3 Na46.7 O384 Si100	96-153-3075	0.6496
Cs27.49 Na60.88 (Al88 Si104 O384) (H2 O)18.72	Al88 Cs27.49 H37.44 Na60.88 O402.72 Si104	96-152-1411	0.6486
	C4 N Nd O11 P2 S	96-400-3143	0.6483
Ag23 TI69 (Al92 Si100 O384)	Ag23 Al92 O384 Si100 Tl69	96-150-9758	0.6435
	NI2 SC SI2	96-153-9239	0.6404
Rhomboclase	Fe H9 012 S2	96-901-3792	0.639/
Cs44.8 Na54.4 (Al96 Si96 O384)	Al96 Cs44.8 Na54.4 O384 Si96	96-154-0967	0.6390
(Agu.76 Mgu.24)2 Ca	Ag1.48 Ca Mg0.52	96-150-9597	0.6389
Fencooperite		96-900-4632	0.631/
Okazita	B CI2 H4 N O3 Zh2	96-400-3328	0.6313
Okenite		96-900-0664	0.0312
	Cd5 F16 U52 519	90-901-5025	0.0312
112.42 AI22 U34.0	AI22 III2.42 034.0	90-155-0597	0.0304
Cus Alz Sis Olz		90-155-6596	0.6290
berymum bis(hypophospinice)		96-201-4099	0.0290
Disovudacito	CO TITI S TI Alla Cd0 105 No1 008 017 111	96-403-0499	0.0200
	AIII CUU.105 Nd1.006 O17.111 Br2 Ca	90-901-1272	0.0279
catena-(octakis(2-Methylpiperidinium) 96-410-2795 0.6278	C48 H112 Ga14 N8 Se33 Sn2 Zn4	96-900-0736	0.6275
tritriaconta-selenido- tetradeca-gallium-			
tetra-zinc-di-tin)			
	Fe2 O4 Si	96-900-6926	0.6274
Nd Ga3 (B O3)4	B4 Ga3 Nd O12	96-151-1742	0.6273
Fayalite	Fe2.001 O4 Si0.999	96-900-0396	0.6272
	Fe2 O4 Si	96-900-5823	0.6270
	C5 H13 N O44 Si22	96-154-6305	0.6263
Picropharmacolite	As4 Ca4 H24 Mg O27	96-900-0812	0.6263
Lithium Manganese(III) Manganese(IV) Ovide	Li Mn2 O4	96-151-3968	0.6258
diammonium tetrabromocuprate dihydrate	Br4 Cu H12 N2 O2	96-721-4573	0.6257
Tm0 524 Al0 58 B14	AI0 58 B14 Tm0 524	06-154-0307	0 6254
(Zn4 In16 S33) ((N2 C4 H8) ((N H2) C3	In16 S33 Zn4	96-412-3978	0.6250
H6)2)	Ge4 K4 Li2 O13 Ti	96-400-3457	0.6249
	Eu 2 0 7 To 2		0 6246
	Euz 07 Taz	90-901-5250	0.0240
Richelsdorfite	As4 Ca2 Cl Cu5 H18 O28 Sb	96-901-1487	0.6245
	C102 B2 N2	96-413-5311	0.6244
Ho.63 Al.74 B14	Al0.74 B14 Ho0.63	96-153-8906	0.6243
	Ce4 O4 Se3	96-430-5045	0.6243
Zn13 Tl66 Si100 Al92 O384 (Zn O)2	Al92 O386 Si100 Tl66 Zn15	96-152-1493	0.6231
Mg4.76Fe0.22Ti0.2Si1.99O8((H)1.26F0.74)(F0.74 Fe0.22 H1.26 Mg4.76 09.26	96-154-	
Natural chondrodite at 7.3 GPa) Spinel	Si1.99 Ti0.02 Al0.988 Cr0.883 Fe0.469 Mg0.684	4884 96-900-	0.6230 0.6227
	Mn0.005 Ni0.001 O4 Si0.003 Ti0.015 C4 H12 A15 F17 N10	4938 96-450-6127	0.6224
Catena-bis(tris(2-Amineoethy)amine-	C99 Cd11 Fe10.5 N77 033	96-700-9718	0.6216
Manesiochromite	Al0.973 Cr0.973 Fe0.449 Mg0.684 Mn0.006 Ni0.001 O4 Si0.001 Ti0.003 Zn0.006	96-900-4939	0.6213
Na2 Pt (O D)6	D6 Na2 O6 Pt	96-152-4014	0.6195
Chromite	Al0.546 Cr0.422 Fe0.562 Mg0.457	96-900-4950	0.6191
And 516 others	110.002 04 510.002 110.044 2NU.007		

Search-Match

Settings Reference database used	COD Inorg 2021 06 14
Reference ualabase useu	COD-11019 2021.00.14
Automatic zeropoint adaptation	Yes
Downgrade entries with low scaling	factors Yes
Minimum figure-of-merit (FoM) 0.60	0.60
2theta window for peak corr.	0.30 deg.
Minimum rel. int. for peak corr.	1
Parameter/influence 2theta	0.50
Parameter/influence intensities	0.50
Parameter multiple/single phase(s)	0.50

Criteria for entries added by user

Reference:

Entry number: 96-154-4616;96-154-4617;96-900-0167;96-900-0168;96-900-Entry number: 96-154-4616;96-154-4617;96-900-0167;96-900-0168;96-900-0268;96-900-0315;96-900-0316;96-900-0317;96-900-0318;96-900-0319;96-900-0320;96-900-0321;96-900-0322;96-900-0323;96-900-0324;96-900-0325;96-900-0326;96-900-0327;96-900-0535;96-900-0536;96-900-0537;96-900-0538;96-900-0539;96-900-0540;96-900-0541;96-900-0542;96-900-0788;96-900-1667;96-900-1668;96-900-1669;96-900-1670;96-900-1671;96-900-4323;96-900-4324;96-900-4325;96-900-4326;96-900-4327;96-900-4328;96-900-4329;96-900-4330;96-900-4331;96-900-4332;96-900-4333;96-900-7378;96-901-0755;96-901-0756;96-901-0757;96-901-0758;96-901-0759;96-901-0760;96-901-0761;96-901-0762;96-901-0763;96-901-0764;96-901-0765;96-901-0766;96-901-0776;96-901-0777;96-901-0778;96-901-0779;96-901-0780;96-901-0781;96-901-1462;96-901-1463;96-901-1464;96-901-1465;96-901-1466;96-901-1467;96-901-1468;96-901-3094;96-901-3095;96-901-3096;96-901-3097;96-901-3098;96-901-3099;96-901-3100;96-901-3101;96-901-3102;96-901-3640;96-901-3641;96-901-3642;96-901-4298;96-901-5075;96-9015346;96-901-5659;96-901-6386;96-100-0048;96-101-1019;96-154-5543;96-154-8550;96-154-8551;96-154-8552;96-900-1179;96-900-1221;96-900-1594;96-900-1595;96-900-1596;96-900-1597;96-900-1598;96-900-1599;96-900-1600;96-900-1601;96-900-1602;96-900-1642;96-900-1643;96-900-1644;96-900-1645;96-900-1646;96-900-1700;96-900-1701;96-900-2711;96-900-2712;96-900-2713;96-900-2714;96-900-2715;96-900-2716;96-900-2717;96-900-4030;96-900-4031;96-900-4032;96-900-4033;96-900-4034;96-900-4118;96-900-4119;96-900-4957;96-900-4958;96-900-5542;96-900-5543;96-900-5544;96-900-5545;96-900-5589;96-900-5590;96-900-5776;96-900-5777;96-900-6338;96-900-6339;96-900-6340;96-900-6341;96-900-6342;96-900-6343;96-900-6428;96-900-6429;96-900-6430;96-900-6431;96-900-6432;96-900-6433;96-900-6434;96-900-6435;96-900-6436;96-900-6437;96-900-6438;96-900-6439;96-900-6440;96-900-6441;96-900-6442;96-900-6443;96-900-8078;96-900-8165;96-901-0242;96-901-0872;96-901-0873;96-901-0874;96-901-0888;96-901-0889;96-901-0890;96-901-0891;96-901-0892;96-901-0893;96-901-0894;96-901-0895;96-901-0896;96-901-0897;96-901-0898;96-901-0899;96-901-1582;96-901-3659;96-901-4118;96-901-4448;96-901-4536;96-901-4861;96-901-4978;96-901-4984;96-901-5810;96-901-6053;96-901-6154;96-901-6258;96-901-6266;96-901-6573;96-900-0849;96-900-1092;96-900-1093;96-900-1639;96-900-1640;96-900-1779;96-900-1883;96-900-4509;96-900-4510;96-900-4511;96-900-4512;96-900-4513;96-900-4514;96-900-4994;96-900-4995;96-900-7425;96-901-4665;96-901-5164;96-901-5487;96-901-5581;96-901-6051;96-901-6148;96-900-3104;96-900-4000;96-900-4515;96-901-4626;96-901-5975;96-901-6234;96-101-1153;96-300-0049;96-900-8041;96-900-8298;96-900-8732;96-901-4436;96-900-0097;96-900-0381;96-900-0972;96-900-0973;96-900-0974;96-900-0975;96-900-0976;96-900-1850;96-900-1851;96-900-1852;96-900-1853;96-900-1854;96-900-1855;96-900-2811;96-900-2812;96-900-2813;96-900-2814;96-900-2815;96-900-2816;96-900-2817;96-900-2818;96-900-2819;96-900-2820;96-900-2821;96-900-7693;96-900-9130;96-901-0201;96-901-0202;96-901-0203;96-901-0209;96-901-0210;96-901-0211;96-901-0214;96-901-0215;96-901-0216;96-901-0217;96-901-0218;96-901-0224;96-901-0225;96-901-0226;96-901-0227;96-901-1208;96-101-1098;96-101-1160;96-101-1173;96-101-1177;96-101-1201;96-110-0020;96-500-0036;96-900-0776;96-900-0777;96-900-0778;96-900-0779;96-9000780;96-900-0781;96-900-5018;96-900-5019;96-900-5020;96-900-5021;96-900-5022;96-900-5023;96-900-5024;96-900-5025;96-900-5026;96-900-5027;96-900-5028;96-900-5029;96-900-5030;96-900-5031;96-900-5032;96-900-5033;96-900-5034;96-900-7379;96-900-8093;96-900-8094;96-900-9667;96-901-0145;96-901-0146;96-901-0147;96-901-1494;96-901-1495;96-901-1496;96-901-1497;96-901-2601;96-901-2602;96-901-2603;96-901-2604;96-901-2605;96-901-2606;96-901-3322;96-901-5023;96-101-1033;96-101-1085;96-722-8111;96-900-0927;96-900-0928;96-900-0929;96-900-0930;96-900-0931;96-900-0932;96-900-0933;96-900-0934;96-900-0935;96-900-2317;96-900-2318;96-900-2319;96-900-2320;96-900-2321;96-900-2322;96-900-2323;96-900-2324;96-900-2325;96-900-2326;96-900-2327;96-900-2328;96-900-2329;96-900-2330;96-900-2331;96-900-2332;96-900-2333;96-900-2674;96-900-2675;96-900-4088;96-900-4156;96-900-4157;96-900-5813;96-900-5814;96-900-5815;96-900-5816;96-900-5817;96-900-5837;96-900-5838;96-900-5839;96-900-5840;96-900-5841;96-900-5842;96-900-5843;96-900-6185;96-900-6190;96-900-6195;96-900-6200;96-900-6243;96-900-6248;96-900-6253;96-900-6266;96-900-6921;96-900-6922;96-900-7645;96-900-7707;96-900-7708;96-900-9769;96-900-9770;96-901-0940;96-901-0941;96-901-0942;96-901-3530;96-901-3531;96-901-3532;96-901-3533;96-901-3534;96-901-3535;96-901-3536;96-900-6565;96-901-0767;96-901-0768;96-201-4615;96-900-0150;96-900-2481;96-900-2482;96-900-2483;96-900-2484;96-900-2485;96-900-2486;96-900-5435;96-100-8767;96-100-8768;96-100-8769;96-101-1088;96-221-1653;96-900-2159;96-900-2160;96-900-3077;96-900-3078;96-900-3079;96-900-3080;96-900-3081;96-901-0407;96-901-0408;96-901-0409;96-901-0410;96-901-0411;96-901-1413;96-901-5697;96-901-6060;96-901-6179;96-901-6407;96-100-0036;96-120-0007;96-900-1616;96-900-2902;96-900-5139;96-900-5844;96-900-9321;96-900-9665;96-900-7595

Peak List

N	2theta	d [Å]	I/I0 (peak	Counts (peak	FWHM	Matche
0.	[º]		height)	area)		d
1	6.40	13.7993	512.34	59.72	1.0000	А
2	9.46	9.3415	148.93	5.55	0.3200	A,D,E
3	12.36	7.1554	1000.00	60.61	0.5200	Á,C
4	18.66	4.7514	491.12	27.48	0.4800	Á

5	19.48	4.5532	337.43	20.45	0.5200	A,C,D,E
6	19.86	4.4669	270.40	40.34	1.2800	A,D,E
7	21.16	4.1953	548.16	66.45	1.0400	A,B,D
8	24.98	3.5618	844.37	47.24	0.4800	А
9	26.76	3.3287	570.29	21.27	0.3200	A,B,E
10	28.66	3.1122	409.24	13.36	0.2800	A,D
11	30.60	2.9192	177.62	7.45	0.3600	А
12	33.38	2.6822	227.19	27.54	1.0400	A,B,C,D
13	34.76	2.5788	362.48	27.04	0.6400	A,B,D,E
14	35.84	2.5035	654.70	85.47	1.1200	A,B,C,E
15	36.88	2.4353	631.90	55.97	0.7600	A,B,D
16	37.84	2.3757	148.39	6.92	0.4000	A,D
17	39.94	2.2555	170.85	50.98	2.5600	A,B,D,E
18	53.40	1.7144	248.69	31.31	1.0800	B,D,E
19	58.90	1.5667	179.38	10.04	0.4800	C,D,E
20	60.18	1.5364	304.64	22.72	0.6400	C,D,E
21	61.50	1.5066	222.98	27.03	1.0400	B,C,D,E

Integrated Profile Areas

Based on calculated profile

Profile area	Counts	Amount
Overall diffraction profile	98147	100.00%
Background radiation	59775	60.90%
Diffraction peaks	38372	39.10%
Peak area belonging to selected phases	24706	25.17%
Peak area of phase A (Antigorite)	5623	5.73%
Peak area of phase B (Goethite)	10923	11.13%
Peak area of phase C (Lizardite)	4459	4.54%
Peak area of phase D (Talc)	2841	2.89%
<i>Peak area of phase E (Enstatite)</i> Unidentified peak area	<i>859</i> 13666	<i>0.88%</i> 13.92%

Peak Residuals

Peak data	Counts	Amount
Overall peak intensity	715	100.00%
Peak intensity belonging to selected phases Unidentified peak intensity	558 157	78.09% 21.91%

Diffraction Pattern Graphics

LAMPIRAN D

HASIL ANALISIS X-RAY FLOURESCENCE (XRF)

Idontifikasi	Saguaraa	Time	Pos	Persentase Kadar (%)							
Identifikasi	Sequence			Ni	Fe	Si	Mg	AI	Ca	Cr	Со
QS AA/ LIM PITC	1 of 1	6/19/2021 11:30	2	0,95	35,76	33,51	10,28	10,34	0,06	2	0,07
QS AA/ SAP PITC	1 of 1	6/19/2021 11:30	3	1,59	32,94	36,03	8,22	8,85	0,09	2,12	0,06